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Abstract. In this article we find explicit formulae for spherically symmetric

solutions of the multidimensional zero-pressure gas dynamics system and its
adhesion approximation. The asymptotic behaviour of the explicit solutions of

the adhesion approximation has been studied. The radial components of the

velocity and density satisfy a simpler equation which enables us to get explicit
formulae for different types of domains and study its asymptotic behaviour. A

class of solutions for the inviscid system with conditions on the mass instead

of conditions at origin has also been analyzed.

1. Introduction

A proper understanding of radially symmetric solutions can be considered as a
fundamental step in studying the multi-dimensional systems. Though apparently
these solutions seem to be one-dimensional in nature, but the singularities at r = 0
make the study in these cases much more complicated and more intriguing than
in the general one-dimensional cases (see [3, 14, 19] for illuminating discussions on
this). This article is devoted to the study of explicit spherically symmetric solutions
for the multi-dimensional zero-pressure gas dynamics system and the associated
adhesion model.
The adhesion model

ut + (u.∇)u =
ε

2
∆u,

ρt +∇.(ρu) = 0.
(1.1)

is one of the analytical models proposed to describe the large-scale structure of
the universe. Here u, ρ are the velocity and the density of the particles respectively
(see [4] and references therein for the physical importance and analysis of solutions).
This system and its inviscid counterpart, the multi-dimensional zero-pressure gas
dynamics system

ut + (u.∇)u = 0,

ρt +∇.(ρu) = 0
(1.2)

have been active field of research since they were introduced, see [1, 4, 5, 21, 22].
However there is no clear analytical understanding of the solutions of these equa-
tions. The well-posedness theory and large time behaviour of the solutions still call
for a better understanding. The advantage of (1.2) over (1.1) lies in the fact that
it is simpler to describe the solution of (1.2) in the region where classical smooth
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solutions exist. It is well-known that global smooth solutions for (1.2) do not exist
in {(x, t) : x ∈ Rn, t > 0}, even when the initial data

u(x, 0) = u0(x),

ρ(x, 0) = ρ0(x)
(1.3)

are smooth with compact support. Therefore we need to interpret the global solu-
tions in a weak sense. But then weak solutions again are not unique and additional
conditions need to be specified to select the physically interesting solution. One
way of selecting the ‘physical’solution of (1.2) is by taking the limit of solution of
(1.1) as ε goes to 0.

In the context of the large scale structure formation, the fastest growing mode in
the linear theory has decaying vorticity. So it is natural to seek potential solutions of
the model equations (1.1) and (1.2). Then the velocity can be represented in terms
of a velocity potential φ, see [22]. In this case, uε, ε > 0 can be constructed using
the standard Hopf-Cole transformation, [9, 22]. Then the continuity equation for
ρε is a linear equation with smooth bounded coefficients which can be solved using
the method of characteristics. We use this method to construct weak asymptotic
solution of (1.1) and (1.3).

For the inviscid system (1.2), spherical solutions of the form u = (x/r)q, ρ(x) =
ρ(r), r = |x|, was constructed for n = 3 in [13]. This is a special case of potential
velocity. It was shown that the radial components of velocity and density satisfy

qt + qqr = 0,

ρt +
1

r2
(r2ρq)r = 0, r > 0,

(1.4)

where r = |x|. By the change of variable p = r2ρ the equation (1.4) takes the form

qt + qqr = 0,

pt + (qp)r = 0, r > 0.
(1.5)

Classical theory of hyperbolic conservation laws of Lax [15] is not applicable due
to the formation of δ waves. However the system (1.5) is well studied in [8, 10, 12].
Using explicit solution of this system, we obtain radial solution of (1.2), with initial
data at t = 0 and with different behaviours at the origin x = 0. It is clear that
in the region of smoothness, u and ρ constructed using (1.5) is a solution of the
multidimensional system (1.1). As the solution is not smooth, it is not obvious
that the constructed distribution is a weak solution of the multidimensional system
(1.2).

The structure of this paper is as described below.
In section 2, we derive the equations for (1.1) and (1.2) in the radial cases. For

the corresponding equation of (1.2) a linearization using Hopf-Cole transformation
is also provided. In section 3, we recall the notion of weak asymptotic solutions
from [1, 21] and recollect the Rankine-Hugoniot conditions derived therein for the
inviscid system (1.2). Section 4 is devoted to the construction of explicit weak
asymptotic solutions for (1.2) using the adhesion approximation. In Section 5, we
solve boundary value problems for radial adhesion model in different interesting
domains and study its asymptotic behaviour for space dimensions n = 2 and n = 3.
In Section 6, the Rankine-Hugoniot conditions for the one-dimensional systems
derived from (1.2) for the radial cases have been discussed. In the last section, we
find explicit solution for the radial inviscid system, with conditions on the mass.
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2. Corresponding equations in the radial case and their linearization

To study the radial solutions of (1.1) with prescribed initial and boundary con-
ditions, we look for radial components of velocity and density of the form

u(x, t) =
x

r
q(r, t), ρ(x, t) = ρ(r, t), r = |x|. (2.1)

We find the equations for q and ρ and show that the resulting system can be lin-
earized using the Hopf-Cole transformation. More precisely, we have the following

Theorem 2.1. The equations (1.1), for radial components, transform into the
following system:

qt + qqr =
ε

2
[qrr +

(n− 1)

r
qr −

(n− 1)

r2
q],

ρt + r−(n−1)(r(n−1)ρq)r = 0, r > 0, t > 0.

(2.2)

The above system can further be linearized by the transformation

q(r, t) = −εar
a
, ρ(r, t) = r−(n−1)p(r, t) (2.3)

to the system

at =
ε

2
[arr +

(n− 1)

r
ar], pt + (pq)r = 0. (2.4)

Proof. A simple computation shows that

(uj)xk =

{
( 1
r )q + (

x2
j

r2 )qr − (
x2
j

r3 )q, k = j

(
xjxk
r2 )qr − (

xjxk
r3 )q, k 6= j

(2.5)

and

(uj)xkxk =

{
(
x3
j

r3 )qrr + (
3xj
r2 −

3x3
j

r4 )qr + (
3x3
j

r5 −
3xj
r3 )q, k = j

(
xjx

2
k

r3 )qrr + (
xj
r2 −

xjx
2
k

r4 −
2xjx

2
k

r4 )qr + (
3xjx

2
k

r5 − xj
r3 )q, k 6= j

(2.6)

From (2.1),(2.5) and (2.6), we have for j = 1, 2, ...n

(uj)t +

n∑
k=1

uk(uj)xk = (
xj
r

)qt + (
xj
r

)q[(
1

r
)q + (

x2
j

r2
)qr − (

x2
j

r3
)q]

+ q
∑
k 6=j

xk
r

[(
xjxk
r2

)qr − (
xjxk
r3

)q]

=
xj
r

[qt + qqr]

and
ε

2
∆uj =

ε

2

xj
r

[(
x2
j

r2
)qrr + (

3

r
−

3x2
j

r3
)qr + (

3x2
j

r4
− 3

r2
)q]

+
∑
k 6=j

[(
x2
k

r2
)qrr + (

1

r
− 3x2

k

r3
)qr + (

3x2
k

r4
− 1

r2
)q]

=
ε

2

xj
r

[qrr +
(n− 1)

r
qr −

(n− 1)

r2
q].

Using these in (1.1), we get

xj
r
{qt + qqr} =

ε

2

xj
r

[qrr +
(n− 1)

r
qr −

(n− 1)

r2
q], j = 1, 2, 3, ...n, (2.7)
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Also for the continuity equation, we have

ρt +

n∑
k=1

(ukρ)xk = ρt +

n∑
k=1

{(1

r
q + (

x2
k

r2
)qr − (

x2
k

r3
)q)ρ+ (

x2
k

r2
)qρr}

= ρt +
n

r
qρ+ qrρ−

1

r
qρ+ qρr

= ρt + (
n− 1

r
)qρ+ (qρ)r

= ρt + r−(n−1)(r(n−1)ρq)r.

(2.8)

From (2.7) and (2.8), it follows that (u, ρ) of the form (2.1) is a solution of (1.1) iff
q and ρ satisfy the equations

qt + qqr =
ε

2
[qrr +

(n− 1)

r
qr −

(n− 1)

r2
q],

ρt + r−(n−1)(r(n−1)ρq)r = 0.

(2.9)

Let p = r(n−1)ρ. Then the above system becomes

qt + qqr =
ε

2
[qrr +

(n− 1)

r
qr −

(n− 1)

r2
q],

pt + (pq)r = 0, r > 0, t > 0.
(2.10)

Now the equation for the velocity component can be linearized using Hopf-Cole
transformation. For this first we note that if Q(r, t) is a solution of

Qt +
1

2
((Qr)

2) =
ε

2
[Qrr +

(n− 1)

r
Qr] (2.11)

then q(r, t) = Qr(r, t) is a solution of the first equation of (2.10). Now let

Q(r, t) = −ε log aε.

An easy calculation then shows that Q satisfies (2.11) iff aε satisfies

at =
ε

2
[arr +

(n− 1)

r
ar]. (2.12)

�

Proceeding as in the proof of Theorem (2.1), we can prove the following result
for the inviscid case.

Theorem 2.2. The equations (1.2), for radial components, transform into the
system

qt + qqr = 0,

ρt + r−(n−1)(r(n−1)ρq)r = 0.
(2.13)

Using the transformation ρ(r, t) = r−(n−1)p(r, t), the second equation above can
again be written as

pt + (pq)r = 0.
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3. Weak asymptotic solutions for the multi-dimensional case

In this section, we recollect the notion of weak asymptotic solutions and gener-
alized δ−shock wave type solutions for the inviscid system (1.2) as introduced in
[1, 21].
Definition 3.1 (Weak asymptotic solutions)
A family of smooth functions (uε, ρε)ε>0 is called a weak asymptotic solution of the
system (1.2) with initial conditions (1.3) if

uεt + (uε.∇)uε = oD′(R
n)(1),

ρεt +∇.(ρεuε) = oD′(R
n)(1),

uε(x, 0)− u0(x) = oD′(R
n)(1),

ρε(x, 0)− ρ0(x) = oD′(R
n)(1)

(3.1)

where 〈o′D(Rn)(1), η〉 → 0 as ε→ 0 uniformly in t > 0, for every η ∈ C∞c (Rn).

Now let us suppose that the initial conditions (1.3) are of the form

u0(x) = u+(x)H(S(x, 0) > 0) + u−(x)H(S(x, 0) < 0),

ρ0(x) = ρ̄+(x)H(S(x, 0) > 0) + ρ̄−(x)H(S(x, 0) < 0) + êδS(x,0)=0

(3.2)

where u+,u−,ρ̄+,ρ̄− are smooth functions away from the surface S(x, 0) = 0. We
consider an ansatz for (1.2) of the form

u(x, t) = u+(x, t)H(S(x, t) > 0) + u−(x, t)H(S(x, t) < 0),

ρ(x, t) = ρ̄+(x, t)H(S(x, t) > 0) + ρ̄−(x, t)H(S(x, t) < 0) + ê(t)δS(x,t)=0

(3.3)

where u+,u−,ρ̄+ and ρ̄− are smooth functions away from the surface S(x, t) = 0.

Definition 3.2 (Generalized δ−shock wave type solution)
The ansatz (3.3) is called a generalized δ−shock wave type solution for the Cauchy
problem (1.2),(1.3) if it is the distributional limit of a weak asymptotic solution
(uε, ρε)ε>0 as ε→ 0.

In [1] it was further remarked that a generalized δ−shock wave type solution for
(1.2),(1.3) can also be defined in terms of the following integral identities:

Let Γt = {(x, t) : S(x, t) = 0} be a surface of discontinuity, σ(x, t) = dS(x,t)
|∇x,tS| be

the surface measure and D
Dt = ∂t + u++u−

2 .∇x, u− and u+ are velocity behind and
ahead of the discontinuity. Then the ansatz (3.3) is a generalized δ−shock wave
type solution of (1.2),(1.3) if the following integral identities hold:∫

Ω×[0,T ]−Γt

(ρφt + ρu.∇x(φ))dxdt+

∫
Γt

ê(t)
Dφ

Dt
σ(x, t) = 0,∫

Ω×[0,T ]−Γt

(ut + (u.∇)u)φdxdt−
∫

Γt

[u]
DS

Dt
φσ(x, t) = 0

(3.4)

for all φ ∈ C∞c (Ω× (0, T )).

In [1], using the work of Majda [17, 18] on existence and stability of multidimen-
sional shock fronts, the authors gave a local construction of (u, ρ) and a surface
S(x, t) = 0, from an initial discontinuous wave front (3.2) satisfying an entropy



6 PAL CHOUDHURY, JOSEPH AND SAHOO

condition. The solution satisfied (1.2) in the region of smoothness and the Rankine
Hugoniot conditions

St + uδ.∇xS|Γt = 0,

δê

δt
+∇Γt(êuδ) = ([ρ̄u]− [ρ̄]uδ).∇xS|Γt ,

(3.5)

along the surface of discontinuity S(x, t) = 0.
In Section 7, we construct radial solutions which satisfy (1.2) in the region of
smoothness and the Rankine-Hugoniot conditions (3.5) along the surface of discon-
tinuity.

4. Explicit weak asymptotic solutions for the multidimensional case
using adhesion approximation

In this section, we construct explicit weak asymptotic solution of the system
(1.2) with initial conditions (1.3) using the adhesion approximation (1.1), under
the additional condition that u = ∇xφ.

We recall from Section 3 that a weak asymptotic solution for the system (1.2)
with initial conditions (1.3) is a family of smooth functions (uε, ρε)ε>0 satisfying
the conditions (3.1). We consider the adhesion approximation (1.1) with initial
conditions which are regularizations of (1.3). The velocity component uε can be
constructed using Hopf-Cole transformation, and then the continuity equation for
ρε is solved using the method of characteristics. The resulting family (uε, ρε)ε>0, is
a weak asymptotic solution of (1.2) and (1.3) as proved in the next theorem.

Theorem 4.1. Assume u0(x) = ∇xφ0 where φ0 ∈ W 1,∞(Rn) and ρ0 ∈ L∞(Rn).
Let φε0 = φ0 ∗ ηε, ∇xφε0 = ∇x(φ0 ∗ ηε) and ρ0 = ρ0 ∗ ηε, where ηε is the usual
Friedrichs mollifier in the space variable x ∈ Rn. Further let

uε(x, t) =

∫
Rn

(∇yφε0(y))e
−1
ε

[
|x−y|2

2t +φε0(y)

]
dy∫

Rn
e
−1
ε

[
|x−y|2

2t +φε0(y)
]
dy

,

ρε(x, t) = ρε0(Xε(x, t, 0))Jε(x, t, 0),

(4.1)

where Xε(x, t, s) is the solution of dXε(s)
ds = uε(Xε, s) with Xε(s = t) = x and

Jε(x, t, 0) is the Jacobian matrix of Xε(x, t, 0) w.r.t. x.
Then (uε, ρε) is a weak asymptotic solution to (1.2) and (1.3).

Proof. Following [6, 9, 22], we note that if φε is a solution of

φt +
|∇xφ|2

2
=
ε

2
∆φ, φ(x, 0) = φε0(x), (4.2)

then uε = ∇xφε is a solution of (1.1) with initial condition uε(x, 0) = ∇xφε0(x).

Now using the Hopf-Cole transformation θ = e−
φ
ε , it follows that φε is the solution

of (4.2) iff θε is the solution of

θt =
ε

2
∆θ, θ(x, 0) = e−

φε0(x)

ε . (4.3)

Solving (4.3), we get,

θε(x, t) =
1

(2πtε)n/2

∫
Rn

e−
1
ε [
|x−y|2

2t +φε0(y)]dy (4.4)
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Now

θε(x, t)xj =
1

(2πtε)n/2

∫
Rn

∂xj (e
− 1
ε [
|x−y|2

2t +φε0(y)])dy

= − 1

(2πtε)n/2

∫
Rn

(∂yj (e
− 1
ε
|x−y|2

2t )).e−
1
εφ
ε
0(y)dy

=
1

(2πtε)n/2

∫
Rn
−(

1

ε
)(∂yjφ

ε
0(y))e−

1
ε
|x−y|2

2t .e−
1
εφ
ε
0(y)dy.

(4.5)

In the last line we have used integration by parts with respect to the variable y.

Since θ = e−
φ
ε , we get from (4.4) and (4.5),

uε(x, t) =

∫
Rn

(∇yφε0(y))e
−1
ε

[
|x−y|2

2t +φε0(y)

]
dy∫

Rn
e
−1
ε

[
|x−y|2

2t +φε0(y)
]
dy

. (4.6)

From this formula it is clear that

||uε||L∞(Rn×[0,∞)) ≤ ||∇xφε0||L∞(Rn). (4.7)

Further as differentiation under the integral sign is justified if ∇xφ0 is bounded
measurable, it follows that uε is a C∞ function in Rn × (0,∞). Indeed, we can
write the formula (4.6) for uε in the following form

uε(x, t) =

∫
Rn
∇xφε0(x−

√
(2t)y)e

−1
ε

[
|y|2+φε0(x−

√
(2t)y)

]
dy∫

Rn
e
−1
ε

[
|y|2+φε0(x−

√
(2t)y)

]
dy

. (4.8)

Differentiating (4.8), using chain rule, it follows that

|∂αx ∂
j
t u
ε| ≤ Cα,j

ε|α|+j
, (4.9)

where Cα,j depends only on ||∇xφε0||L∞ . Next we consider the continuity equation
with coefficient uε and regularized initial condition,

ρεt +∇x.(uερε) = 0, ρε(x, 0) = ρε0(x). (4.10)

As uε is smooth, we use the method of characteristics to find ρ. Let Xε(x, t, s)
be the solution of

dXε(s)

ds
= uε(Xε, s) , Xε(s = t) = x. (4.11)

Since uε satisfies the estimates (4.7) and (4.9), by the existence and uniqueness
theory of ODE, there exists a unique solution Xε(s) to (4.11) for all 0 ≤ s ≤ t. To
make the dependence of x and t explicit, let us denote it by Xε(x, t, s). This flow
takes the point (x, t) to an initial point (Xε(x, t, 0), 0) and conversely.

Let J(Xε(x, t, s)) be the Jacobian determinant of Xε(x, t, s) with respect to x.
Then

ρε(x, t) = ρε0(Xε(x, t, 0))J(Xε(x, t, 0)) (4.12)
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is the solution of (4.10).
The family (uε, ρε)ε>0 given by (4.6) and (4.12) is then a weak asymptotic solu-
tion.This follows easily as

ε

∫
Rn

∆uεη(x)dx = ε

∫
Rn

uε∆η(x)dx = O(1)ε

uniformly in t for every η ∈ C∞0 (Rn) as uε is bounded independent of ε and (x, t)
by the estimate (4.7). The solution (uε, ρε)ε>0 satisfies the initial conditions since
we have

uε(x, 0)−∇xφ0(x) = uε(x, 0)−∇xφε0(x) +∇xφε0(x)−∇xφ0(x)

= ∇xφε0(x)−∇xφ0(x),

ρε(x, 0)− ρ0(x) = ρε(x, 0)− ρε0(x) + ρε0(x)− ρ0(x) = ρε0(x)− ρ0(x)

and ∇xφε0(x)−∇xφ0(x), ρε0(x)− ρ0(x) go to zero in distributions. �

There is a large class of interesting initial data which admit gradient type so-
lutions as described in the theorem. One such case is when the initial data is of
radial type.

u(x, 0) = u0(x) =
x

r
q0(r), (4.13)

Clearly it can be written as a gradient,

u0(x) = ∇xφ0(x) = ∇x(

∫ |x|
0

q0(s)ds).

For density we give the initial condition

ρ(x, 0) = ρ0(x). (4.14)

Theorem 4.2. The solution of (1.1), with initial conditions (4.13) and (4.14) with∫∞
0
q0(s)ds <∞ and

∫
Rn

ρ0(x)dx <∞ has the following asymptotic behaviour. The
velocity component goes to 0 as t tends to ∞ uniformly on compact subsets of Rn

and the mass
∫
Rn

ρ(x, t)dx is conserved.

Proof. From (4.4)-(4.5) and θ = e−
φ
ε , we get the following formula for the velocity

uε(x, t) =

∫
Rn

(x−yt )e
−1
ε

[
|x−y|2

2t +
∫ |y|
0 q0(s)ds

]
dy∫

Rn
e
−1
ε

[
|x−y|2

2t +
∫ |y|
0 q0(s)ds

]
dy

.

Making the change of variable y → (x− y)/
√

2t, we get,

uε(x, t) =

√
2
t

∫
Rn

ye
−1
ε

[
|y|2+

∫ |x−√(2t)y|
0 q0(s)ds

]
dy

∫
Rn

e
−1
ε

[
|y|2+

∫ |x−√(2t)y|
0 q0(s)ds

]
dy

(4.15)

From (4.15), it follows that, as t goes to ∞, uε goes to 0 uniformly on compact
subsets of Rn . From the formula (4.12) we have∫

Rn
ρε(x, t)dx =

∫
Rn

ρε0(Xε(x, t, 0))J(Xε(x, t, 0))

=

∫
Rn

ρ0(x)dx,
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since for every t, Xε(x, t, 0) : Rn → Rn is a diffeomorphism and the determinant of
Jacobian, J(Xε(x, t, 0)) is positive. Thus the mass

∫
Rn

ρ(x, t)dx is conserved. �

From the above discussions, we know that solution of the adhesion approximation
(1.1) has an explicit formula

uε(x, t) =

∫
Rn

(x−yt )e
−1
ε

[
|x−y|2

2t +φε0(y)

]
dy∫

Rn
e
−1
ε

[
|x−y|2

2t +φε0(y)
]
dy

,

ρε(x, t) = ρε0(Xε(x, t, 0))Jε(x, t, 0),

(4.16)

We conclude this section with a result concerning the vanishing viscosity limit of
the velocity component u.
For the general data u(x, 0) = ∇xφ0(x), formula (4.16) implies

lim
ε→0

uε(x, t) = u(x, t) =
x− y(x, t)

t

where y(x, t) is a minimizer in

min
y∈Rn

{φ0(y) +
|x− y|2

2t
}.

For almost every (x, t) this minimizer is unique and so u(x, t) is well defined a.e.
We show that if the initial data is radial then the solution is also radial and has a
simpler form.

Theorem 4.3. Assume the initial data φ0(x) = φ0(|x|), then

min
y∈Rn

{φ0(|y|) +
|x− y|2

2t
} = min

r≥0
{φ0(r) +

(|x| − r)2

2t
}

u(x, t) =
x− y(x, t)

t
= (
|x| − r(|x|, t)

t
)
x

|x|
(4.17)

where y(x, t) and r(|x|, t) are the minimizers on the left and right of the first equality
above, respectively.

Proof. Since ||x| − |y|| ≤ |x− y|, we have

||x| − |y||2

2t
+ φ0(y) ≤ |x− y|

2

2t
+ φ0(|y|)

and so

min
y∈Rn

||x| − |y||2

2t
+ φ0(y) ≤ min

r∈Rn
|x− y|2

2t
+ φ0(|y|)

Now consider y = r x
|x| , then |x− y| = | x|x| (|x| − r)| = ||x| − |y|| and so

min
y∈Rn

{φ0(|y|) +
|x− y|2

2t
} ≤ min

r≥0
{φ0(r) +

(|x| − r)2

2t
}

and the first equality follows. Further the minimum is achieved on y(x, t) of the
form y(x, t) = x

|x|r(|x|, t). Therefore we have

(x− y(x, t)) = x− x

|x|
r(|x|, t) =

x

|x|
(|x| − r(|x|, t))

and the second equality follows. �
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Remark : The weak limit of ρε, as ε goes to zero is a measure and passage
to the limit in uε.ρε is still open. For the radial case considered in Section 7, we
construct a solution using the velocity component u obtained above in theorem 4.3.

5. Radial solutions of the adhesion model with boundary conditions

In this section, we obtain explicit solutions for (1.1) in some spherically symmet-
ric domains of the form Ω = D × (0,∞) for 2 and 3 space dimensions.

Case 1: Let Ω = {(x, t) : |x| = r < R, t > 0} be the domain under consideration.
We take initial conditions of the form

u(x, 0) =
x

|x|
q0(r),

ρ(x, 0) = ρ0(r), |x| < R,
(5.1)

and boundary conditions

lim
|x|→R

x

|x|
u(x, t) = qB , where qB is constant

lim
|x|→R

ρ(x, t) = ρB(t), if qB < 0.
(5.2)

(Here we note that a boundary condition for ρ needs to be specified only if qB is
negative.)
We also assume a first order consistency condition of the initial and boundary data
at {(x, t) : |x| = R, t = 0}.
Let Γ = {(x, t) ∈ Ω : either |x| = R or t = 0}. Define pΓ on Γ by

pΓ(r, t) =

{
p0(r), if t = 0,

pB(t), if r = R.
(5.3)

As q is smooth, the characteristic β(r, t, s) of pt + (qp)r = 0 passing through (r, t)
exists for all s < t, till it meets Γ, at time t = t0(r, t) ≥ 0.
Let Jk, for k = 0, 1, denote the Bessel functions of first kind and order k. With
these notations, we have the following theorem.

Theorem 5.1. Explicit solution for (1.1), with initial and boundary conditions
(5.1) - (5.2) is given by

u(x, t) = −ε x
|x|

∫ R
0
∂rG(r, ξ, t)e−

1
ε

∫ ξ
0
q0(s)dsdξ∫ R

0
G(r, ξ, t)e−

1
ε

∫ ξ
0
q0(s)dsdξ

ρ(x, t) = r−(n−1)pΓ(β(r, t, t0(r, t)), t0(r, t))e
−
∫ t
t0(r,t)

qr(β(r,t,s))ds
,

(5.4)

where G(r, ξ, t) is as described below.
For n = 2, G has the form

G(r, ξ, t) =
2

R2

∞∑
n=1

µ2
nξ

((qB/ε)2R2 + µ2
n)J2

0 (µn)
J0(

µnr

R
)J0(

µnξ

R
)e−

εµ2nt

2R2 , (5.5)

where µn are positive solutions of the transcendental equation µJ1(µ)−kRJ0(µ) = 0
and for n = 3, G takes the form
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G(r, ξ, t) =
2ξ

Rr

∞∑
n=1

µ2
n + ((qB/ε)R− 1)2

µ2
n + (qB/ε)R((qB/ε)R− 1)

sin(
µnr

R
) sin(

µnξ

R
)e−

εµ2nt

2R2 , (5.6)

where µn are positive solutions of the transcendental equation µ cot(µ) + (qB/ε)R−
1 = 0.

Proof. By Theorem 2.1, it follows that the velocity u is given by u(x, t) = −ε x|x|
ar
a ,

where a satisfies the linear problem

at =
ε

2
[arr +

(n− 1)

r
ar], r < R, t > 0

a(r, 0) = e−
∫ r
0 q(s)ds

ε , r < R

εar(R, t) + qBa(R, t) = 0, t > 0.

(5.7)

Then G given by (5.5) and (5.6) are just the Green’s functions for the boundary
value problem (5.7), for n = 2 and n = 3 respectively, see [20]. The formula (5.4)
for u follows.

Now we find a formula for ρ. Notice that ρ(x, t) = 1
r(n−1) p where p satisfies the

equation

pt + qpr = −qrp.
Using the method of characteristics we have dp

ds = −qrp along the curve dβ
ds = q. Let

us consider the characteristic curve (β(r, t, s), s) passing through (x, t). Integrating
the equation for p, along this characteristic, we get

p(r, t) = p(β(r, t, t0))e
−
∫ t
t0
qr(β(r,t,s))ds

,

where t0 = t0(r, t)(< t) is the time the curve touches the boundary Γ. �

Case 2: Next let us consider the equation (1.1) in the domain Ω = {(x, t) :
R1 < |x| < R2, t > 0} with initial conditions

u(x, 0) =
x

|x|
q0(r),

ρ(x, 0) = ρ0(r), R1 < |x| < R2

(5.8)

and boundary conditions

lim
|x|→Ri

x

|x|
u(x, t) = qi, i = 1, 2 (5.9)

where qi are constants. For ρ we need to prescribe a boundary condition on (|x| =
Ri) only if (−1)i+1qi is positive,

lim
|x|→Ri

ρ(x, t) = ρi(t), if (−1)i+1qi > 0. (5.10)

We also assume a first order consistency condition of the initial and boundary data
at {(x, t) : |x| = R1, R2 and t = 0}.
Let Γ = {(x, t) ∈ Ω : either |x| = Ri or t = 0}. Define pΓ on Γ by

pΓ(r, t) =

{
p0(r), if t = 0,

pi(t), if r = Ri.
(5.11)

As q is smooth, let β(r, t, s) be the characteristic of pt + (qp)r = 0 passing through
(r, t) and let this characteristic meet the boundary point at time t = t0(r, t).
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Let Jk (k = 0, 1) denote the Bessel functions of first kind and order k and Yk
(k = 0, 1) denote the Bessel functions of second kind and order k. With these
notations, we have the following theorem.

Theorem 5.2. Explicit solution for (1.1), with initial and boundary conditions
(5.1) - (5.2) is given by

u(x, t) = −ε x
|x|

∫ R2

R1
∂rG(r, ξ, t)e−

1
ε

∫ ξ
0
q0(s)dsdξ∫ R2

R1
G(r, ξ, t)e−

1
ε

∫ ξ
0
q0(s)dsdξ

ρ(x, t) = r−(n−1)pΓ(β(r, t, t0(r, t)), t0(r, t))e
−
∫ t
t0(r,t)

qr(β(r,t,s))ds
,

(5.12)

where G(r, ξ, t) is as described below.
For n = 2, G has the form

G(r, ξ, t) =
π2

2

∞∑
n=1

λ2
n

Bn
[(q2/ε)J0(λnr2)− λnJ1(λnr2)]2ξHn(r)Hn(ξ)e−

ελ2nt

2 (5.13)

where
Bn = (λ2

n + (q2/ε)
2)[−(k1/ε)J0(λnR1) + λnJ1(λnR1)]2

− (λ2
n + (k1/ε)

2)[(q2/ε)J0(λnR2)− λnJ1(λnR2)]2,

Hn(r) = [−(q1/ε)Y0(λnR1) + λnY1(λnR1)]J0(λnr)

− [−(q1/ε)J0(λnR1) + λnJ1(λnR1)]Y0(λnr)

(5.14)

and the λn are positive roots of the equation

[−(q1/ε)J0(λR1) + λJ1(λR1)][(q2/ε)Y0(λR2)− λY1(λR2)]

− [(q2/ε)J0(λR2)− λJ1(λR2)][−(q1/ε)Y0(λR2) + λY1(λR1)] = 0.
(5.15)

For n = 3, G has the form

G(r, ξ, t)

=
2ξ

r

∞∑
n=1

(b22 +R2
2λ

2
n)Ψn(r)Ψn(ξ)e−

ε
2λ

2
nt

(R2 −R1)(b21 +R2
1λ

2
n)(b22 +R2

2λ
2
n) + (b1R2 + b2R1)(b1b2 +R1R2λ2

n)
,

(5.16)
where

Ψn(r) = b1 sin[λn(r −R1)] +R1λncos[λn(r −R1)]

b1 = −(q1/ε)R1 + 1, b2 = (q2/ε)R2 − 1,
(5.17)

and λn are positive solutions of the transcendental equation

(b1b2 −R1R2λ
2) sin[λ(R2 −R1)] + λ(R1b2 +R2b1) cos[λ(R2 −R1)] = 0. (5.18)

Proof. From theorem 2.1, we get u = −εara where a satisfies

at =
ε

2
[arr +

(n− 1)

r
ar], R1 < r < R2, t > 0

a(r, 0) = e−
∫ r
0 q(s)ds

ε , R1 < r < R2

εar(Ri, t) + qia(Ri, t) = 0, i = 1, 2, t > 0.

(5.19)

Then G given by (5.13)-(5.15) and (5.16)-(5.18) are just the Green’s functions for
the boundary value problem (5.19) for n = 2 and n = 3 respectively, see [20].
Therefore the formula (5.12) for u follows. The formula for ρ is obtained by the
method of characteristics in the same way as in the previous theorem and the details
are omitted. �
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5.1. Remarks on large time behaviour. The large time behaviour of the ve-
locity follows easily from the explicit formulae. In Case 1, where we considered
the problem in the domain {(x, t) : |x| < R, t > 0}, u given by (5.4)-(5.6) has the
following asymptotic form :

lim
t→∞

u(x, t) = −ε x
|x|

∫ R
0
∂rG(r, ξ)e−

1
ε

∫ ξ
0
q0(s)dsdξ∫ R

0
G(r, ξ)e−

1
ε

∫ ξ
0
q0(s)dsdξ

where for n = 2,

G(r, ξ) = ξJ0(
µ1ξ

R
)J0(

µ1r

R
),

µ1 being the first positive solution of the equation µJ1(µ) − kRJ0(µ) = 0. For
n = 3,

G(r, ξ) =
ξ

r
sin(

µ1r

R
) sin(

µ1ξ

R
),

µ1 being the first positive solution of the equation µ cot(µ) + qB
ε − 1 = 0.

Similarly, for Case 2 where we consider the problem in the domain {(x, t) : R1 <
|x| < R2, t > 0}, u given by (5.12)-(5.18) has the following asymptotic form :

lim
t→∞

u(x, t) = −ε x
|x|

∫ R2

R1
∂rG(r, ξ)e−

1
ε

∫ ξ
0
q0(s)dsdξ∫ R2

R1
G(r, ξ)e−

1
ε

∫ ξ
0
q0(s)dsdξ

where for n = 2,

G(r, ξ) = ξH1(r)H1(ξ)

where H1 is given by (5.14) with λ1 being the first positive root of the equation
(5.15). For n = 3,

G(r, ξ) =
ξ

r
Ψ1(r)Ψ1(ξ)

where Ψ1(r) = b1 sin[λ1(r − R1)] + R1λ1 cos[λn(r − R1)], b1 = −(q1/ε)R1 + 1,
b2 = (q2/ε)R2 − 1, and λ1 is the first positive solution of the equation (5.17).

The asymptotic behaviour of ρ is more complex and depends on whether mass
flows out or flows in. Let us consider the mass m(t) =

∫
D
ρ(x, t)dx. When ρ is

spherically symmetric and D = {x : |x| < R},

m(t) = ωn−1

∫ R

0

r(n−1)ρ(r, t)dr.

From the second equation of (2.9), we have

dm(t)

dt
= −q(R, t)p(R, t)

In the case when ρ is spherically symmetric and D = R1 < |x| < R2,

dm(t)

dt
= −(q(R2, t)p(R2, t)− q(R1, t)p(R1, t)).

These show that the mass is conserved if velocity is zero on the space boundary.
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6. Rankine-Hugoniot conditions for the one-dimensional case

Let us consider the initial value problem

ut + f(u)x = 0,

vt + (f ′(u)v)x = 0
(6.1)

with initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), (6.2)

with the flux satisfying f ′′(u) > 0, and lim|u|→0
f(u)
u = ∞. The convex dual f∗ of

f is well defined on R1. There are different notions of solutions when the solution
contains a measure component. Our aim in this section is to relate the notion of
solution introduced by LeFloch [16] and the weak asymptotic solution of [1, 21],
for the one dimensional case. Let u0 and v0 are of bounded variation, using Lax’s
formula, it was shown in [16] that the pair (u, v) given by

u(x, t) = (f∗)′(
x− y(x, t)

t
), v(x, t) = ∂x(

∫ y(x,t)

0

v0(z)dz), (6.3)

where y(x, t) is a minimizer of miny{
∫ y

0
u0(z)dz + tf∗(x−yt )} is a weak solution of

(6.1), satisfying the initial condition (6.2).
Here we show that this solution satisfies the Rankine-Hugoniot conditions derived

in [1, 21].

Theorem 6.1. Assume that the solution is smooth away except along a curve
x = s(t) in a nbd of a point (s(t0), t0). Then v has the form v(x, t) = vl(x, t) +
H(x − s(t))vr(x, t) + e(t)δx=s(t), and the solution satisfies the Rankine-Hugoniot
condition

s′(t) =
f(u(s(t)+, t))− f(u(s(t)−, t))

u(s(t)+, t)− u(s(t)−, t)
,

e′(t) = −s′(t)[v](s(t), t) + [vf ′(u)](s(t), t).

(6.4)

Proof. Assume that x = s(t) is a discontinuity curve for u and let (s(t0), t0) be a
point on it. Also assume that for a small nbd of this point, this curve is the only
discontinuity; that is except along this curve, u and hence v is smooth. Let φ be
any test function supported in this neighborhood. Now from the formula for v,

v(x, t) = vl(x, t) +H(x− s(t))vr(x, t) + e(t)δx=s(t)

The equation is understood

vt + (f̄ ′(u)v)x = 0

in the sense of distribution, where

f̄ ′(u) =

∫ 1

0

f ′(u(s(t)−, t) + τ(u(s(t)+, t)− u(s(t)−, t)))dτ.

This means that∫
x<s(t)

(vl(x, t)φt + (f ′(ul(x, t))vl(x, t))φx)dxdt

+

∫
x>s(t)

(vr(x, t)φt + (f ′(ur(x, t))vr(x, t))φx)dxdt

+

∫ ∞
0

e(t)φt(s(t), t) + f̄ ′(u)e(t)φx(s(t), t)dt = 0
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Using ∫ 1

0

f ′(u(s(t)−, t) + τ(u(s(t)+, t)− u(s(t)−, t)))dτ

=

∫ 1

0
df
dτ (u(s(t)−, t) + τ(u(s(t)+, t)− u(s(t)−, t)))dτ

u(s(t)+, t)− u(s(t)−, t)

=
f(u(s(t)+, t))− f(u(s(t)−, t))

u(s(t)+, t)− u(s(t)−, t)
= s′(t)

we get,∫
x<s(t)

(vl(x, t)φt + (f ′(ul)vl)φx)dxdt+

∫
x>s(t)

(vr(x, t)φt + (f ′(ur)vr)φx)dxdt

+

∫ ∞
0

e(t)
dφ(s(t), t)

dt
= 0.

By integration by parts and arranging terms we get, for all test functions supported
in a neighborhood of (s(t0), t0), t0 > 0∫ ∞

0

(−s′(t)[v](s(t), t) + [vf ′(u)](s(t), t)− e′(t))φ(s(t), t)dt = 0.

This gives the Rankine-Hugoniot condition for the delta shock. �

The case of our interest is when f(q) = q2

2 . The pair (u, v) given by

u(x, t) =
x− y(x, t)

t
, v(x, t) = ∂x(

∫ y(x,t)

0

v0(z)dz), (6.5)

where y(x, t) is a minimizer of miny{
∫ y

0
u0(z)dz+ (x−y)2

2t }, is a weak solution of (6.1)

with f(q) = q2

2 , satisfying the initial condition (6.2). This formula is also derived
in [12], using vanishing viscosity method. In this case, the previous theorem gives

Theorem 6.2. Assume that the solution is smooth away except along a curve
x = s(t) in a nbd of a point (s(t0), t0). Then v has the form v(x, t) = vl(x, t) +
H(x − s(t))vr(x, t) + e(t)δx=s(t), and the solution satisfies the Rankine-Hugoniot
condition

s′(t) =
[u

2

2 ]

[u]
, e′(t) = −s′(t)[v](s(t), t) + [uv](s(t), t). (6.6)

7. Radially symmetric solutions with prescribed mass condition and
normal velocity at the origin

The aim of this section is to find explicit global radial solution of

ut + (u.∇)u = 0, ρt +∇.(ρu) = 0, (7.1)

with initial conditions

u(x, 0) =
x

r
q0(r), ρ(x, 0) = ρ0(r) = r−(n−1)p0(r), r = |x|, (7.2)

a condition on the mass ∫
Rn

ρ(x, t)dx = pB(t) (7.3)
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and prescribed normal velocity at the origin,

lim
x→0

x

r
u(x, t) = qB(t). (7.4)

The functions q0(r) and p0(r) are considered to be in the space of bounded varia-
tions and the functions pB , qB are considered continuous. In fact, using a change
of variables as in the proof of Therorem 4.2 it is sufficient that pB is a constant
which again corresponds to the conservation of mass condition. We would also like
to mention that the vanishing viscosity solution for u in the radial case corresponds
to the case when qB(t) = 0. We start with the following remark which gives us an
idea regarding the form of the solution that we can expect.

Remark: If we consider the radial solutions of of the inviscid system (1.2) of
the form (u, ρ) = x

r q(r, t), ρ(r, t), r = |x| , then from Theorem 2.2 it follows that q
and ρ satisfy the equations

qt + qqr = 0,

ρt +
1

r(n−1)
(r(n−1)ρq)r = 0.

The transformation p = r(n−1)ρ changes the above system to

qt + qqr = 0,

pt + (pq)r = 0, r > 0, t > 0.
(7.5)

The initial value problem for this equation is well understood. This motivates us
to seek a solution with initial data

u(x, 0) =
x

r
q0(r), ρ(x, 0) = ρ0(r), r = |x|

The corresponding initial data for (q, p) is then given by

q(r, 0) = q0(r), p(r, 0) = p0(r) = rn−1ρ0(r) (7.6)

Entropy weak solution of (7.5) and (7.6) is

p(r, t) =
r − r0(r, t)

t
, q(r, t) = ∂r(

∫ r0(r,t)

0

τn−1ρ0(τ)dτ)

where r0(r, t) is a minimizer of

min
r0≥0
{
∫ r0

0

q0(τ)dτ +
(r − r0)2

2t
}.

This suggests the following formula for the solution of (7.1) with initial conditions

u(x, 0) =
x

r
q0(r), ρ(x, 0) = ρ0(r)

namely,

u(x, t) =
x

r

(r − r0(r, t))

t
, q(r, t) = r−(n−1)∂r(

∫ r0(r,t)

0

τn−1ρ0(τ)dτ), r = |x|

But since the singularity at r = 0 has to be taken care of, we need to impose ap-
propriate conditions at the origin. We would like to note here that the formula for
u(x, t) above was derived as the vanishing viscosity limit of the velocity component
(see Theorem 4.3).
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Getting back to our original problem under discussion, we note that for initial
data u0(x), in the space of bounded variation, the vanishing viscosity limit of the
velocity component u remains in the space of bounded variation, see [9]. The
density ρ is generally a measure. A local study of the Cauchy problem for (7.1) and
propagation of delta wave front was carried out by Albeverio and Shelkovich [1] in
the frame work of the weak asymptotic method.

For the radial case we give here a global construction of (u, ρ). We also do not
require entropy condition on the initial data for u, as the equation is reduced to
one dimensional Burgers equation and hence we use the well-known one dimensional
theory. As a first step of construction of (u, ρ), we derive the equation for the radial
case. From Theorem 2.2 it follows that q and p = r(n−1)ρ satisfy the equations

qt + qqr = 0, pt + (pq)r = 0, (7.7)

with initial conditions

q(x, 0) = q0(r), p(x, 0) = p0(r), r = |x|, (7.8)

and boundary condition for q and integral condition on p:

q(0, t) = qB(t), ωn−1

∫ ∞
0

p(r, t)dr = pB(t) (7.9)

which is to be understood in a weak sense [2]. Weak formulation for the boundary
condition for q is

either q(0+, t) = qB(t)

or q(0+, t) ≤ 0 and q2(0+, t) ≤ q+
B(t)

2 (7.10)

and for p is

if q(0+, t) > 0 then ωn−1

∫ ∞
0

p(r, t)dr = pB(t). (7.11)

To describe the solution, we follow [7, 10, 11]. We introduce a class of paths in
the quarter plane D = {(z, s) : z ≥ 0, s ≥ 0}. For each fixed (r, r0, t), r ≥ 0, r0 ≥
0, t > 0, C(r, r0, t) denotes the following class of paths β. Each path is connected
from the point (r0, 0) to (r, t) and is of the form z = β(s), where β is a piecewise
linear function of maximum three lines. On C(r, r0, t), we define a functional

J(β) = −1

2

∫
{s:β(s)=0}

(qB(s)+)2ds+
1

2

∫
{s:β(s)6=0}

(
dβ(s)

ds

2

)ds. (7.12)

We call β0 the straight line path connecting (r0, 0) and (r, t) which does not
touch the space boundary x = 0, namely {(0, t), t > 0}. Then let

A(r, r0, t) = J(β0) =
(r − r0)2

t
. (7.13)

Any β ∈ C∗(r, r0, t) = C(r, r0, t) − β0 is made up of three pieces, namely lines
connecting (r0, 0) to (0, t1) in the interior and (0, t1) to (0, t2) on the boundary and
(0, t2) to (r, t) in the interior. For such curves, it can be easily seen from (7.12) that

J(β) = J(r, r0, t, t1, t2) = −
∫ t2

t1

(qB(s)+)2

2
ds+

r2
0

2t1
+

r2

2(t− t2)
. (7.14)

For curves β ∈ C∗(r, r0, t) made up of two straight lines with one piece lying on the
boundary r = 0, we can write down a similar expression as in the earlier case.
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It was proved in [11] that there exists β∗ ∈ C∗(r, r0, t) and corresponding
t1(r, r0, t), t2(r, r0, t) so that

B(r, r0, t) = min{J(β) : β ∈ C∗(r, r0, t)}
= min{J(r, r0, t, t1, t2) : 0 ≤ t1 < t2 < t}
= J(r, r0, t, t1(r, r0, t), t2(r, r0, t))

(7.15)

is Lipschitz continuous. Further

m(r, r0, t) = min{J(β) : β ∈ C(r, r0, t)}
= min{A(r, r0, t), B(r, r0, t)}

(7.16)

and

Q(r, t) = min{m(r, r0, t) +

∫ r

0

q0(s)ds, 0 ≤ r0 <∞} (7.17)

are Lipschitz continuous function in their variables. Further, minimum in (7.17)
is attained at some value of r0 ≥ 0, which depends on (r, t); we call it r0(r, t). If
A(r, r0(r, t), t) ≤ B(r, r0(r, t), t),

Q(r, t) =
(r − r0(r, t))2

2t
+

∫ r0(r,t)

0

q0(s)ds (7.18)

and if A(r, r0(r, t), t) > B(r, r0(r, t), t),

Q(x, t) = J(r, r0(r, t), t, t1(r, r0(r, t), t), t2(r, r0(r, t), t)) +

∫ r0(r,t)

0

q0(s)ds. (7.19)

Here and henceforth r0(r, t) is a minimizer in (7.18) and in the case of (7.19),
t2(r, t) = t2(r, r0(r, t), t) and t1(r, t) = t1(r, r0(r, t), t). With these notations, we
have the following result.

Theorem 7.1. With r0(r, t), A(r, r0(r, t), t), B(r, r0(r, t), t), t1(r, t), t2(r, t) as de-
fined above, define

u(x, t) =
x

r

{
r−r0(r,t)

t , if A(r, r0(r, t), t) < B(r, r0(r, t), t),
r

t−t1(x,t) , if A(r, r0(r, t), t) > B(r, r0(r, t), t),
(7.20)

and

P (r, t) =

{
−
∫∞
r0(r,t)

p0(z)dz, if A(r, r0(r, t), t) < B(r, r0(r, t), t),

ωn−1pB(t2(x, t)), if A(r, r0(r, t), t) > B(r, r0(r, t), t).
(7.21)

and set

ρ(x, t) =
∂r(P (r, t))

r(n−1)
. (7.22)

Then the distribution (u(x, t), ρ(x, t)) given by (7.20)-(7.22) satisfies (7.1) in the
region of smoothness and the Rankine-Hugoniot conditions (3.5), along a disconti-
nuity surface. Further it satisfies the initial conditions (7.2), mass conditions (7.3)
and normal velocity at the origin (7.4) in the weak sense (7.10)-(7.11).

Proof. Explicit formula for the entropy weak solution q satisfying (7.8)-(7.10) is
given in [7, 10]. This formula involves only a finite dimensional minimization,
namely (7.15)-(7.17) in three variables (t1, t2, y). The formula takes the form

q(r, t) =

{
r−r0(r,t)

t , if A(r, r0(r, t), t) < B(r, r0(r, t), t),
r

t−t1(x,t) , if A(r, r0(r, t), t) > B(r, r0(r, t), t).
(7.23)
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To get the component p we consider the problem for

P (r, t) = −
∫ ∞
r

p(s, t)ds (7.24)

so that
p(r, t) = ∂r(P (r, t)). (7.25)

It is easy to see from (7.7), (7.8) and (7.11) that P must satisfy

Pt + qPx = 0,

with initial condition

P (r, 0) = −
∫ ∞
r

p0(s)ds

and boundary condition

if q(0+, t) > 0, then P (r, t)dr = − 1

ωn−1
pB(t).

An explicit formula for the solution of this problem is given in [10] and has the
form (7.21). The formula (7.20)-(7.22) is then obtained from the transformation
(2.1) and (7.23)-(7.25).

Now we show that (u, ρ) given by (7.20)-(7.22) is a solution of (7.1) in the
region of smoothness. This fact follows easily as (q, p) satisfies the system (7.7)
and the weak form of initial and boundary conditions (7.8)-(7.11) (see [10]). Also
it was shown in [10], that (q, p) is a weak solution of (7.7) and that the surface of
discontinuity of (u, ρ) and (q, p) are same. In order to show that (u, ρ) satisfies the
Rankine-Hugoniot conditions, we use the corresponding conditions for the system
(7.7) from Theorem 6.2.

Consider a solution (q(r, t), p(r, t)) of the system (7.7) with a discontinuity on
the surface S(r, t) = 0, with S(r, t) = r − s(t). In a neighbourhood of this surface,
we assume (q, p) has the form

q(r, t) = q̄(x, t), p(r, t) = p̄(r, t) + e(t)δr=s(t). (7.26)

where q̄, p̄ are smooth except on the surface r = s(t), and e(t) differentiable function
of t. The Rankine-Hugoniot condition for (q, p) takes the form

ds(t)

dt
=
q+ + q−

2
,
de

dt
= [qp]− [p]

ds

dt
. (7.27)

We show that the distributions (7.20)-(7.22) satisfy the Rankine-Hugoniot condi-
tions (5.6). As u = x

r q, r
(n−1)ρ = p, the coefficient of the measure δ in the density

ρ, ê and that in p are related by

r(n−1)ê = e. (7.28)

Since S(x, t) = S(r, t) = r − s(t), with r = |x|, we have

St = −ds
dt
, ∇xS =

x

r
.

The first equation of (5.6) becomes

St + uδ.∇xS|Γt = −ds
dt

+
q+ + q−

2
.
x

r
.
x

r
= −ds

dt
+
q+ + q−

2
= 0, (7.29)

where we used the first equation of (7.27). To verify the second equation in (3.5),
we compute each terms in radial components.
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δê

δt
=
∂ê

∂t
+G

∂ê

∂r
=
∂ê

∂t
− St
Sr

∂ê

∂r
=
dê

dt
. (7.30)

Also we know from [1],
∇Γt .(êuδ) = −2KGê, (7.31)

where K is the mean curvature of the surface of discontinuity, K = − 1
2∇.ν, ν = x

r

and G = − St
Sr

. An easy computation gives

K = −1

2

n∑
i=1

∂νi
∂xi

= −1

2

n

r
+

1

2

n∑
i=1

x2
i

r3
= −n− 1

2r
. (7.32)

Using (7.32) in (7.31), we get

∇Γt .(êuδ) =
n− 1

r
(−St
Sr

)ê =
n− 1

r

dr

dt
ê. (7.33)

Finally,

([ρ̄u]− [ρ̄]uδ]).∇xS|Γt = (
1

r(n−1)
.
x

r
[pq]− 1

r(n−1)
[p]

(q+ + q−)

2

x

r
)Sr.

x

r

=
Sr

r(n−1)
([pq]− [p]

ds

dt
).

(7.34)

Since Sr = 1, we get from (7.30),(7.33) and (7.34),

δê

δt
+∇Γt(êuδ)− ([ρu]− [ρ]uδ).∇xS|Γt =

dê

dt
+
n− 1

r

dr

dt
ê− Sr

r(n−1)
([pq]− [p]

dr

dt
)

=
1

r(n−1)
[
d(r(n−1)ê)

dt
− [pq]− [p]

dr

dt
]

=
1

r(n−1)
[
de

dt
− [pq]− [p]

dr

dt
] = 0,

where in the last equality we used the second equation of (7.27). This completes
the proof of the theorem. �
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