
RIGOROUS DERIVATION OF THE LIGHTHILL-WHITHAM-RICHARDS MODELFROM THE FOLLOW-THE-LEADER MODEL AS MANY PARTICLE LIMITM. DI FRANCESCO AND M.D. ROSINIAbstra
t. We prove that the unique entropy solution to the ma
ros
opi
 Lighthill-Witham-Ri
hards modelfor tra�
 �ow 
an be rigorously obtained as the large parti
le limit of the mi
ros
opi
 follow-the-leadermodel, whi
h is interpreted as the dis
rete Lagrangian approximation of the former. More pre
isely, weprove that the empiri
al measure (respe
tively the dis
retised density) obtained from the follow-the-leadersystem 
onverges in the 1�Wasserstein topology (respe
tively in L1

loc
) to the unique entropy solution of theLighthill-Witham-Ri
hards equation in the Kruzkov sense. The initial data are taken in L∞ with 
ompa
tsupport, hen
e we are able to handle densities with va
uum. Our result holds for a reasonably general 
lassof velo
ity maps (in
luding all the relevant examples in the appli
ations) with possible degenerate slope nearthe va
uum state. The proof of the result is based on dis
rete BV estimates and on a dis
rete version of theone-sided Oleinik-type 
ondition. In parti
ular, we prove that the regularizing e�e
t L∞

7→ BV is intrinsi
of the dis
rete model.Keywords: mi
ro-ma
ro limit, Lighthill-Whitham-Ri
hards models, follow-the-leader models, Oleinik 
ondition, entropy solutions, parti
le method.2010 AMS Subje
t 
lassi�
ation: 35L65 , 35L45 , 90B20 , 65N75 , 82C22 .1. Introdu
tionThe modeling of vehi
ular tra�
 �ow 
an be 
onsidered as one of the most important 
hallenges of appliedmathemati
s in the last seventy years. Among its several reper
ussions on real-world appli
ations, we mentione.g. the development of smart tra�
 management systems for integrated appli
ations of 
ommuni
ations,
ontrol, and information pro
essing te
hnologies to the whole transport system. Other important resultantbene�ts are the implementation of a joint problem-solving in tra�
 management, and the addressing ofpra
ti
al problem su
h as redu
ing 
ongestion and related 
osts. These goals 
an be a
hieved by optimizingthe use of transport resour
es and infrastru
tures of the transport system as a whole, by bringing moree�
ien
y in terms of tra�
 �uidity, and by providing pro
edures for system stabilization.Several analyti
al models for vehi
ular tra�
s have been developed in the re
ent de
ades. In the �rstinstan
e, they are 
lassi�ed into two main 
lasses: mi
ros
opi
 models � taking into a

ount ea
h singlevehi
le � and ma
ros
opi
 ones � dealing with averaged quantities. We refer to [5, 30, 39, 42℄ for a survey ofthe models 
urrently available in the literature.Re
ently, the availability of on-line data allows to implementing real-time strategies aiming at avoiding (ormitigating) 
ongested tra�
. To address this task, the development and the appli
ation of analyti
al modelsthat are easy-to-use and with a high performan
e in terms of time and reliability are essential requirements.In this sense, opposed to dire
t numeri
al `individual based' simulations of large number of intera
tingagents � as typi
al when dealing with mi
ros
opi
 models � many resear
hers re
ommend using ma
ros
opi
(e.g. �uid-dynami
) models for tra�
 �ows. The main advantages of the ma
ros
opi
 approa
h with respe
tto the mi
ros
opi
 one are
• the model is 
ompletely evolutive and is able to rapidly des
ribe tra�
 situations at every time;
• the resulting des
ription of queues evolution and of traveling times is a

urate as the position ofsho
k waves 
an be exa
tly 
omputed and 
orresponds to queues tails;1
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• the theory helps developing e�
ient numeri
al s
hemes suitable to des
ribe very large number ofagents;
• the model 
an be easily 
alibrated, validated and implemented as the number of parameters is low;
• the theory allows to state and possibly solve optimal management problems.The basi
 ma
ros
opi
 approa
h to tra�
 �ow is given by nonlinear hyperboli
 
onservation laws [11, 18,46℄. Su
h 
hoi
e is a very natural 
onsequen
e of the assumption that the total number of vehi
les is 
onstantas the tra�
 dynami
s evolves. Among the ma
ros
opi
 models, we 
an distinguish two main approa
hes:�rst order and se
ond order models. The former � sometimes referred to as equilibrium models � are based onthe assumption that the velo
ity 
an be expressed a priori as an expli
it fun
tion of the density alone, see forinstan
e [33, 41℄. The latter 
orrespond to the non-equilibrium models, in whi
h the velo
ity and the densityare 
oupled through a further evolution equation, whi
h 
an be regarded as a 
ontinuum analogue of Newton'slaw, as for instan
e in [4, 50℄. We underline that the only a

urate physi
al law in vehi
ular tra�
 theoryis the 
onservation of the total number of vehi
les. All other assumptions result from 
oarse approximationsof empiri
al observations. However, as the dynami
s of any living system are in�uen
ed by de
ision-makingand psy
hologi
al e�e
ts, nobody would expe
t that tra�
 models 
ould rea
h an a

ura
y 
omparableto that attained in other domains of s
ien
e (e.g. Newtonian physi
s or thermodynami
s). Nevertheless,they potentially have su�
ient des
riptive power for the spe
i�
 appli
ation-driven purpose, and they helpunderstanding non-trivial properties of tra�
 �ows. In this paper we shall fo
us on equilibrium ma
ros
opi
tra�
 models by assuming a general 
onstitutive equation for the velo
ity.The use of ma
ros
opi
 models relies on the 
ontinuum assumption, namely on the assumption that themedium is inde�nitely divisible without 
hanging its physi
al nature. Su
h assumption is not justi�able inthe 
ontext of vehi
ular tra�
s, as the number of vehi
les is typi
ally far lower than the typi
al number ofmole
ules e.g. in �uid dynami
s. Indeed, in order to motivate the use of a 
ontinuum model, the numberof vehi
les should be large enough to give sense to 
on
epts like ma
ros
opi
 density and average �ow.Usually, the 
ontinuum hypothesis is a

epted as a te
hni
al approximation of the physi
al reality, regardingma
ros
opi
 quantities as measures of tra�
 features. In order to justify and make more 
lear the 
ontinuumhypothesis, the study of the dis
rete to 
ontinuum limit for se
ond order models has been proposed in [3,6℄. First attempts at analyzing the same 
onne
tion for �rst order ma
ros
opi
 models have been re
entlyproposed in [14, 15, 43℄. In this paper we address this latter task in a rigorous and 
onstru
tive form. Morepre
isely we prove that, under reasonable assumptions on the velo
ity �eld, the 
ontinuum (ma
ros
opi
)model 
an be solved as a many parti
le limit of a dis
rete (mi
ros
opi
) one.Our approa
h 
an be sket
hed as follows. We �x L > 0 to be the total length of the vehi
les on a highway,namely the total spa
e o

upied by the all vehi
les (i.e. the total mass in a `
ontinuum PDEs' language),and we 
onsider an initial 
ontinuum density ρ̄ with total length L. For a given positive integer N , we split

ρ̄ in N platoons of `possibly fra
tional' vehi
les, ea
h one of equal length ℓ := L/N (more pre
isely, ℓ isthe spa
e o

upied by the vehi
les belonging to ea
h single platoon), with the endpoints of ea
h platoonpositioned at x̄i ∈ R, i = 0, . . . , N . The points x̄i are interpreted as (ordered) parti
les, and they are takenas initial 
ondition to an ODE system des
ribing the evolution of vehi
les in the dis
rete setting, namely tothe follow-the-leader system
ẋi(t) = v

(

ℓ

xi+1(t)− xi(t)

)

, i = 0, . . . , N − 1, (1.1a)
ẋN (t) = vmax, (1.1b)where vmax > 0 is the maximum speed possible. Here v = v(ρ) is the empiri
al law for the velo
ity as afun
tion of the density ρ. The points xi(t) are interpreted as moving parti
les on the real line. We remarkhere that no 
ollisions o

ur between them, as the distan
e between two 
onse
utive points is expe
ted to belarger than or equal to the quantity ℓ for all times, see Lemma 1.1 below. We shall des
ribe this model in
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tion 1.2. We then 
onsider the empiri
al measure
ρN (t) = ℓ

N−1
∑

i=0

δxi(t), (1.2)and prove in Theorem 1.3 that its limit (in a measure sense to be explained later on) as N goes to in�nity isa
tually an L
1 density ρ, whi
h satis�es the Lighthill-Whitham-Ri
hards model [33, 41℄

ρt + f(ρ)x = 0, with f(ρ) = ρ v(ρ), (1.3)in the Oleinik-Kruºkov entropy sense [31, 37℄, see De�nition 1.1 below. Our 
onvergen
e result has a naturalinterpretation as a large parti
le limit for the s
alar 
onservation law (1.3). In this sense, it 
an be seen asan abstra
t parti
le method for (1.3) whi
h 
an be applied in the 
ontext of numeri
s. On the other hand,the dis
rete model (1.1) 
an be also interpreted as a dis
rete Lagrangian formulation of (1.3), whi
h makesour result meaningful from a physi
al point of view.The main novelty with respe
t to previous results in the literature is that our result is purely 
onstru
tive,in the sense that it 
an be 
onsidered as an alternative tool to solve a s
alar 
onservation law. No propertyof the limiting solution is used, ex
ept the uniqueness of entropy solutions in [31, 37℄ whi
h is used to provethat the s
heme has a unique limit. Furthermore, di�erently from [3℄, we do not shrink the length of thevehi
les to zero and we do not let the size of the highway or the number of vehi
les under 
onsideration tendto in�nity. In fa
t, our approximation algorithm rather lets the number of platoons under 
onsideration tendto in�nity, but keeps both the length of the highway and the total length L of the vehi
les 
onstant. Finally,another important di�eren
e from [3℄ is that our approa
h allows to handle va
uum regions. This introdu
esfurther te
hni
al di�
ulties that are rigourously treated and solved in the present paper.Although the literature on nonlinear 
onservation laws is extremely ri
h of e�e
tive numeri
al s
hemes (wemention here the pioneering work of Glimm [24℄ for systems, and the wave-front tra
king algorithm proposedby Dafermos in [17℄ and improved later on by Di Perna [21℄ and Bressan [10℄, see [11℄ and the referen
estherein for more details), to our knowledge the rigorous approximation of an entropy solution to a s
alar
onservation law by the empiri
al solution to an ODE system of lagrangian parti
les in the spirit of (1.1) hasnot been 
overed yet. The re
ent paper [15℄ provides preliminary results, but it does not 
ontain the neededestimates to justify the limiting pro
edure.Our approa
h di�ers from most of the numeri
al approa
hes to the solution to a s
alar 
onservation lawin that it interprets the mi
ros
opi
 limit as a mean �eld limit of a system of intera
ting parti
les withnearest neighbour type intera
tion, in the spirit of (lo
ally and non-lo
ally) intera
ting parti
les systems instatisti
al me
hani
s, probability, kineti
 theory, mathemati
al biology, et
. In this sense, our result 
anbe 
ast in the framework of large (deterministi
) parti
le limits with appli
ation to several 
ontexts in �uidme
hani
s, see e.g. the 
lassi
al referen
es [22, 35, 38℄. In one spa
e dimension, a key result in the 
ontext ofdeterministi
 approximations is the one by Russo [45℄, whi
h applies to the linear di�usion equation, in whi
hthe di�usion operator is repla
ed by a nearest neighbour intera
tion term (see also later generalizations tononlinear di�usion in [34℄). We also mention here the paper by Brenier and Grenier [8℄, whi
h provides aparti
le justi�
ation of the pressureless Euler system (and a parti
le approximation for a s
alar 
onservationlaw, although with a 
ompletely di�erent approa
h and interpretation). Our approa
h 
an be 
onsidered asmore in the spirit of [45℄, applied to a s
alar 
onservation law of tra�
 type.The existing numeri
al method for s
alar 
onservation laws whi
h most resembles our parti
le method isprobably the wave-front tra
king algorithm, in whi
h the solution is approximated by a pie
ewise 
onstantpro�le whi
h is dis
ontinuous on a �nite number of moving fronts. Su
h a stru
ture naturally suggests thetotal variation as the natural quantity to look at in order to perform e�
ient uniform estimates, and thespa
e L
1 as the natural environment to set up the problem and to measure the error in the approximationpro
edure. In our 
ase, the approximating sequen
e is a linear 
ombination of Dira
's deltas. Therefore,a measure topology is needed to 
ompare the approximating solution and its limit. Our 
hoi
e (whi
h will



4 M. DI FRANCESCO AND M.D. ROSINIappear as the most natural one) for su
h a topology is (a s
aled version of) the 1�Wasserstein distan
e,see [1, 49℄.The main advantage in using the Wasserstein distan
e relies on its identi�
ation with the L
1�topology inthe spa
e of pseudo-inverses of 
umulative distributions. Roughly speaking, let ρ be the solution to (1.3) andlet

F (t, x) :=

ˆ x

−∞

ρ(t, x) dx ∈ [0, L],be its primitive. The pseudo inverse variable
X(t, z) := inf {x ∈ R : F (x) > z} , z ∈ [0, L[ ,formally satis�es the Lagrangian PDE

Xt(t, z) = v

(

1

Xz(t, z)

)

.Now, if we repla
e the z�derivative of X by a forward �nite di�eren
e
Xz ≈

X(t, z + ℓ)−X(t, z)

ℓ
,and assume that X is pie
ewise 
onstant on intervals of length ℓ, the ODE system (1.1) is immediatelyre
overed, with the stru
ture

X(t, z) =
∑

i

xi(t)χ[iℓ,(i+1)ℓ[(z).We shall explain the above formal 
omputation more in detail in Se
tion A in the Appendix.The use of pseudo-inverse variables and Wasserstein distan
es in the framework of s
alar 
onservationlaws is not totally new. In [12℄, a 
ontra
tion estimate in the so-
alled ∞�Wasserstein distan
e for genuinelynonlinear s
alar 
onservation laws was derived. The 
ase of non-de
reasing solution was treated earlier in [7℄.As far as the LWR model is 
on
erned, we also remark here that in [36℄ a simpli�ed version of the model (1.3)is derived by introdu
ing as new variable the 
umulative number of vehi
les passing through a lo
ation x attime t starting from the passage of some referen
e vehi
le, see [2, 19℄ for re
ent developments of this theory.From the te
hni
al point of view, our 
onvergen
e result relies �rst of all on proving that the empiri
almeasure (1.2) has the same (weak) N → +∞ limit as the pie
ewise 
onstant approximation
ρ̂N(t, x) =

N−1
∑

i+1

yi(t)χ[xi(t),xi+1(t)[, yi(t) :=
ℓ

xi+1(t)− xi(t)
,in whi
h yi(t) is the dis
rete lagrangian version of the density. The most important step, however, liesin providing strong L

1 
ompa
tness of ρ̂N . This task is performed in two di�erent ways. In the 
ase of
BV initial data, we are able to provide a dire
t estimate of the total variation of the dis
rete density (seeProposition 2.5). On the other hand, our main result 
on
erns with the 
ase of general L∞ data: in this
ase, a key estimate on the parti
le model (see Lemma 2.4), whi
h 
an be 
onsidered as a dis
rete version ofthe Oleinik 
ondition for the s
alar 
onservation law, allows to provide strong 
ompa
tness even if the initialtotal variation is unbounded. In some sense, this proves that the one-sided Lips
hitz regularizing e�e
t ofthe s
alar 
onservation law (1.3) is somehow an intrinsi
 property of the dis
rete Lagrangian formulation ofthe model. We defer to [25℄ and the referen
es therein for general results on the regularizing e�e
t for s
alar
onservation laws.For numeri
al purposes, the use of dis
rete Oleinik 
onditions has been addressed before for the Lax-Friedri
hs and Godunov s
hemes in [9, 26, 37, 47℄. There is also a similar result for se
ond order systemsin [6℄. The striking novelty in our approa
h is the fa
t that our dis
rete Oleinik 
ondition is only posedin terms of the velo
ity �eld, whereas the 
lassi
al Oleinik 
ondition is stated in terms of the derivativeof the �ux, see [29℄. This is due to the fa
t that the dis
rete model is a Lagrangian one, and is therefore
hara
terised by the velo
ity law. The advantage of having the dis
rete one-sided Lips
hitz 
ondition in terms
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ity is that we 
an also 
onsider velo
ity laws with degenerate slopes at ρ = 0. An interestingnumeri
al feature (whi
h is however quite natural when 
onsidering parti
le approximations) is that thedis
rete approximation ρ̂N for the density has no va
uum regions in the interior of its support, no matterwhether or not the (
ontinuum) initial 
ondition is made up by more than one hump. Finally, let us mentionthat our dis
rete density ρ̂N is always dis
ontinuous on at most N+1 fronts, unlike in the wave front tra
kingapproximation in whi
h the number of jumps may in
rease in time.Our paper is stru
tured as follows. We introdu
e the (
ontinuum) LWR model (1.3) and the (dis
rete)FTL model (1.1) in detail, in subse
tions 1.1 and 1.2 respe
tively. In Subse
tion 1.3 we re
all the basi
s onthe Wasserstein distan
e in one spa
e dimension. We set up the approximating s
heme and state our mainresult in Se
tion 2. The pre
ise statement of the main result is 
ontained in Theorem 1.3 and its proof is splitinto the subse
tions 2.1, 2.2, 2.3, and 2.4. More pre
isely, Subse
tion 2.1 is devoted to the proof of the weak
onvergen
e of our approximating s
heme, in Subse
tion 2.2 we prove the two basi
 
ompa
tness estimatesmentioned above, in Subse
tion 2.3 we provide the needed time-
ontinuity and prove strong 
ompa
tness in
L
1, and �nally in Subse
tion 2.4 we prove that the limit is the unique entropy solution in the Oleinik-Kruºkoventropy sense [31, 37℄.1.1. The LWR model. The LWR model is the �rst and most popular equilibrium model for tra�
 �ows.It was independently introdu
ed by Lighthill, Whitham [33℄ and Ri
hards [41℄. It is based on the assumptionthat the velo
ity of the vehi
les depends only on their lo
al density, and that the number of vehi
les is
onserved, namely that the total number of vehi
les on a given segment of the road x ∈ [a, b] only varies dueto the in
oming �ux in x = a and the outgoing �ux in x = b. With these assumptions the model is expressedby the following Cau
hy problem for a s
alar 
onservation law

ρt + [ρ v(ρ)]x = 0, t > 0, x ∈ R, (1.4a)
ρ(0, x) = ρ̄(x), x ∈ R, (1.4b)where ρ = ρ(t, x) ∈ [0, 1] is the (dimensionless) normalized density of vehi
les in x ∈ R at time t ≥ 0, v is the(mean) velo
ity and ρ̄ is the initial distribution of the vehi
les with 
ompa
t support.The velo
ity law ρ 7→ v(ρ) is de�ned on [0, 1] and with values in [0, vmax], with vmax > 0 being themaximum speed 
orresponding to a free highway. Typi
ally, lower velo
ities 
orrespond to higher densities,namely ρ 7→ v(ρ) is a non-in
reasing fun
tion with v(0) = vmax. Moreover, in order not to allow a vehi
le tomove in 
ase of maximum density, one pres
ribes v(1) = 0. The tra�
 �ux fun
tion

f(ρ) := ρ v(ρ)is typi
ally assumed to be 
on
ave with f(0) = f(1) = 0. Sin
e f(0) = 0 and for the �nite speed ofpropagation lim|x|→+∞ ρ(t, x) = 0, we have that the total spa
e L := ‖ρ(t)‖
L1(R;[0,1]) o

upied by all vehi
lesat time t is time independent, namely L = ‖ρ̄‖

L1(R;[0,1]) for all t ≥ 0.A

ording to the theory of nonlinear 
onservation laws, see e.g. [11, 18, 46℄, solutions to (1.4) may developdis
ontinuities in a �nite time, also for regular initial data. For this reason, one has to 
onsider weak solutions
ρ to (1.4), more pre
isely ρ in L

∞
(

[0,+∞[ ;L1 (R; [0, 1])
) that satisfy (1.4) in the sense of distributions,namely

ˆ

R

ˆ +∞

0

[

ρ(t, x)ϕt(t, x) + f (ρ(t, x))ϕx(t, x)

]

dt dx+

ˆ

R

ρ̄(x)ϕ(0, x) dx = 0 (1.5)for all ϕ ∈ C
∞
c

([0,+∞[× R;R). The 
hoi
e of L1 (R; [0, 1]) as the fun
tional spa
e to deal with the x�regularity appears as the most reasonable one in order to obtain existen
e of weak solutions when theapproximating pro
edure is performed via a vanishing vis
osity argument, see e.g. [18, Se
tion 6.3℄. How-ever, the spa
e BV (R; [0, 1]) is more reminis
ent of the typi
al stru
ture of solutions featuring sho
ks andrarefa
tion waves, and turns out to be a natural 
hoi
e when the problem is e.g. solved by the polygonalapproximation algorithm also known as the wave-front tra
king algorithm [17℄, see also [11℄ and the referen
estherein.



6 M. DI FRANCESCO AND M.D. ROSINIIt is well known that the notion of weak solution introdu
ed above is not enough to provide uniqueness ofsolutions to (1.4). The 
on
ept of entropy solution formulated in [31, 32, 37℄ (see also [18℄ and the referen
estherein), provides the most natural and e�
ient way to single out a unique (physi
ally relevant) solutionto (1.4). Su
h 
on
ept 
an be be formulated in several ways, also depending on the regularity of ρ, the mostgeneral one being the one proposed by Kruºkov [31℄, whi
h holds for a reasonably wide 
lass of �uxes (namely
ρ 7→ f(ρ) being lo
ally Lips
hitz) and in arbitrary spa
e dimension.De�nition 1.1 (Entropy solutions). Assume that the �ux ρ 7→ f(ρ) is lo
ally Lips
hitz. A fun
tion ρ in
L
∞

(

[0,+∞[ ;L1 (R; [0, 1])
) is an entropy solution to (1.4) if it satis�es the entropy inequality

ˆ

R

ˆ +∞

0

[

|ρ(t, x) − k|ϕt(t, x) + sgn (ρ(t, x)− k) [f (ρ(t, x))− f(k)]ϕx(t, x)

]

dt dx

+

ˆ

R

ϕ(0, x)|ρ̄(x) − k|dx ≥ 0 (1.6)for all ϕ ∈ C
∞
c ([0,+∞[× R;R) with ϕ ≥ 0, and for all 
onstants k ∈ R.Clearly, any entropy solution is a weak solution to (1.4) in the sense of (1.5). Moreover uniqueness followsfrom (1.6).Theorem 1.1 (Kruºkov [31℄). Assume that the �ux f is lo
ally Lips
hitz. Then, for any given initial
ondition ρ̄ in L

∞ with 0 ≤ ρ̄ ≤ 1 a.e. and with 
ompa
t support, there exists a unique entropy solutionto (1.4) in the sense of De�nition 1.1.It is easy to 
he
k that any fun
tion ρ satisfying the entropy inequality (1.6) satis�es also the followingproperty of (weak) L1�
ontinuity in time
lim

T→0+

1

T

ˆ T

0

ˆ

|x|≤r

|ρ(t, x)− ρ̄(x)| dxdt = 0for all r > 0. However, depending on the way we attempt at 
onstru
ting entropy solutions, an importantissue is related with dete
ting the tra
e at t = 0 in a strong enough topology. This is often the 
ase when theapproximating s
heme la
ks of 
ompa
tness when t approa
hes zero. A theorem due to Chen and Ras
le [13℄states that the uniqueness of the entropy solution is preserved also for a notion of entropy solution relaxedat t = 0, provided the �ux f satis�es a.e. a genuine nonlinearity 
ondition.Theorem 1.2 (Chen and Ras
le [13℄). Assume there exists no nontrivial interval on whi
h f is a�ne. If ρ̄ isin L
∞ with 0 ≤ ρ̄ ≤ 1 a.e. and with 
ompa
t support, then there exists a unique ρ in L

∞
(

[0,+∞[ ;L1 (R; [0, 1])
)weak solution to (1.4) in the sense of (1.5) that satis�es also

ˆ

R

ˆ +∞

0

[

|ρ(t, x)− k|ϕt(t, x) + sgn(ρ(t, x) − k)[f (ρ(t, x))− f(k)]ϕx(t, x)

]

dt dx ≥ 0 (1.7)for all ϕ ∈ C
∞
c

(]0,+∞[× R;R) with ϕ ≥ 0, and for all 
onstants k ∈ R. Moreover, ρ is the unique entropysolution in the sense of De�nition 1.1.Let us �nally re
all that, for C1��uxes f whi
h are 
on
ave or 
onvex, another 
lassi
al tool to uniquelydetermine all weak solutions by their L∞�initial values is the so 
alled Oleinik-type 
ondition [29℄
ˆ

R

ˆ +∞

0

f ′(ρ(t, x))ϕx(t, x) dt dx ≥ −

ˆ

R

ˆ +∞

0

1

t
ϕ(t, x) dt dx (1.8)for all ϕ ∈ C

∞
c ([0,+∞[× R;R) with ϕ ≥ 0, and for all t > 0. Moreover, if f ′ has Lips
hitz 
ontinuousinverse, then (1.8) implies that ρ(t, ·) has lo
ally bounded total variation for all t > 0 even if the initialdatum is not in BV.



RIGOROUS DERIVATION OF THE LWR MODEL FROM THE FTL MODEL 71.2. The FTL model. Mi
ros
opi
 models of vehi
ular tra�
 are typi
ally based on the so 
alled Follow-The-Leader (FTL) model, that is the subje
t of this se
tion.Consider a single lane road parameterized by x ∈ R, with tra�
 moving in the dire
tion of in
reasing x,with N+1 ordered Referen
e Vehi
les (RVs). Denote by t 7→ xi(t) the position of the i�th RV for i = 0, . . . , N .Then, a

ording to the FTL model, the evolution of the tra�
 along the road is des
ribed indu
tively by thefollowing Cau
hy problem for an ODE system
ẋN (t) = vmax, (1.9a)
ẋi(t) = v

(

ℓ

xi+1(t)− xi(t)

)

, i = 0, . . . , N − 1, (1.9b)
xi(0) = x̄i, i = 0, . . . , N, (1.9
)where v ∈ C

1([0, 1]; [0, vmax]) is the velo
ity map, x̄0 < . . . < x̄N are the initial positions of the RVs, ℓ > 0 isthe length of ea
h RV, and vmax is the maximum velo
ity, rea
hed by vehi
les with free road ahead, i.e. onlyby the leading vehi
le xN . Coherently with the de�nition of ℓ, we assume that
x̄i+1 − x̄i ≥ ℓ, i = 0, . . . , N − 1. (1.10)System (1.9) 
an be solved indu
tively starting from i = N . Indeed, from (1.9a), we immediately dedu
ethat

xN (t) = x̄N + vmax t.Then, we 
an 
ompute t 7→ xi(t) on
e we know t 7→ xi+1(t). In fa
t, a

ording with the system (1.9) thevelo
ity of the i�th RV depends on its distan
e from the (i + 1)�th RV alone via the smooth velo
ity map
v, that is assumed to be non-in
reasing and with v(1) = 0. The latter assumption 
an be interpreted as
ẋi(t) = 0 when xi+1(t)− xi(t) = ℓ, namely, if at time t the vehi
les xi(t) and xi+1(t) are bumper-to-bumper,then the i�th RV is not moving. As we will see in the next lemma, this ensures that xi+1(t) − xi(t) ≥ ℓ,
i = 0, . . . , N − 1, for all times t ≥ 0 and, therefore, that (1.9) admits a global-in-time solution.Lemma 1.1 (Dis
rete maximum prin
iple, [43℄). For all i = 0, . . . , N − 1, we have

ℓ ≤ xi+1(t)− xi(t) ≤ x̄N − x̄0 + vmax t for all times t ≥ 0. (1.11)Proof. The upper bound is obvious. Hen
e, it is su�
ient to prove the lower bound. Consider the Cau
hyproblem obtained from (1.9) by substituting v with its extension V : [0,+∞[ → [0, vmax] de�ned by V :=
v χ[0,1] (note that the extension on ]−∞, 0[ is not of interest as the argument of v is always deta
hed fromzero). Denote by (X0, . . . , XN) the 
orresponding solution. By (1.10) we have that Xi+1(0) − Xi(0) ≥ ℓ.Assume by 
ontradi
tion that there exists i ∈ {0, . . . , N − 1} and t2 > t1 ≥ 0 su
h that Xi+1(t1)−Xi(t1) = ℓandXi+1(t)−Xi(t) < ℓ for all t ∈ ]t1, t2]. Sin
e t 7→ Xi+1(t)−Xi(t) isC1, we have that Ẋi+1(t1)−Ẋi(t1) < 0.On the other hand, by (1.9) we have that for all t ∈ [t1, t2]

Ẋi+1(t)− Ẋi(t) = V

(

ℓ

Xi+2(t)−Xi+1(t)

)

≥ 0 if i = 0, . . . , N − 2,

ẊN (t)− ẊN−1(t) = vmax > 0 if i = N − 1,but this is a 
ontradi
tion. Hen
e Xi+1(t) −Xi(t) ≥ ℓ for all t ≥ 0. As a 
onsequen
e of the uniqueness ofthe solution to (1.9), we have that (X1, . . . , XN) is in fa
t also the solution of (1.9) with the original v. ⋄



8 M. DI FRANCESCO AND M.D. ROSINI1.3. Notation and preliminaries on measure distan
es. In this se
tion we re
all basi
 properties ofpseudo-inverse operators that we shall use extensively in the rest of the paper. We defer to [49℄ for furtherdetails.For a �xed L > 0, introdu
e the pseudo-inverse operators
X : L∞ (R; [0, L]) → L

∞ ([0, L[ ;R) ,

F : L∞ ([0, L[ ;R) → L
∞ (R; [0, L]) ,de�ned by

X [F ] (z) := inf {x ∈ R : F (x) > z} for z ∈ [0, L[ ,

F [X ] (x) := meas {z ∈ [0, L] : X(z) ≤ x} for x ∈ R,and 
onsider the spa
e
ML := {ρ Radon measure on R with 
ompa
t support : ρ ≥ 0, ρ(R) = L} .For a given ρ ∈ ML, we denote xρmin := min (spt(ρ)) and xρmax := max (spt(ρ)), and by Fρ : R → [0, L] its
umulative distribution, namely Fρ(x) := ρ (]−∞, x]). We observe that Fρ ∈ L

∞ (R; [0, L]) is non-de
reasing,right-
ontinuous with Fρ(x) = 0 for all x ≤ xρmin and Fρ(x) = L for all x ≥ xρmax. Therefore we 
an de�neits pseudo-inverse Xρ := X [Fρ]. Clearly, Xρ ∈ L
∞ ([0, L[ ; [xρmin, x

ρ
max]) is non-de
reasing, right-
ontinuouswith Xρ(0) = xρmin. By abuse of notation, we shall adopt the notation ρ to denote an absolutely 
ontinuousmeasure in ML with L

1�density ρ.Lemma 1.2 (Change of variable). If ρ ∈ ML, then for all ϕ ∈ C
0(R;R) we have

ˆ

R

ϕ(x) dρ(x) =

ˆ L

0

ϕ (Xρ(z)) dz.We re
all that, for L = 1, the one-dimensional 1�Wasserstein distan
e between ρ1, ρ2 ∈ M1 (de�ned interms of optimal plans in the Monge-Kantorovi
h problem, see e.g. [49℄) 
an be de�ned as
d1(ρ1, ρ2) := ‖Fρ1

− Fρ2
‖
L1(R;R) = ‖Xρ1

−Xρ2
‖
L1([0,1];R).For a general stri
tly positive L, we introdu
e the s
aled 1�Wasserstein distan
e between ρ1, ρ2 ∈ ML as

dL,1(ρ1, ρ2) := ‖Fρ1
− Fρ2

‖
L1(R;R) = ‖Xρ1

−Xρ2
‖
L1([0,L];R). (1.12)Indeed, straightforward 
omputation yields

dL,1(ρ1, ρ2) = Ld1(ρ1/L, ρ2/L).The distan
e dL,1 inherits all the topologi
al properties of the 1�Wasserstein distan
e for probability measures.In parti
ular, a sequen
e (ρn)n∈N in ML 
onverges to ρ ∈ ML in dL,1 if and only if
lim

n→+∞

ˆ

R

ϕ(x) dρn(x) =

ˆ

R

ϕ(x) dρ(x),for all ϕ ∈ C
0(R;R) growing at most linearly at in�nity.1.4. Statement of the main result. In this subse
tion we state our main result, whi
h provides a rigorousdes
ription of the unique entropy solution ρ to the Cau
hy problem (1.4) as the limit for N that goes toin�nity of a density asso
iated to the mi
ros
opi
 model (1.9) to be 
onstru
ted as des
ribed below.We shall work under the standing assumption on the initial datum(In) The initial datum ρ̄ is in ML ∩ L

∞(R;R) and 0 ≤ ρ̄ ≤ 1 almost everywhere.In some 
ases we shall require the stronger 
ondition(InBV) The initial datum ρ̄ is in ML ∩BV(R; [0, 1]).As for the velo
ity fun
tion v, we shall require throughout the paper(V1) v ∈ C
1([0, 1]; [0, vmax]), v stri
tly de
reasing on [0, 1], vmax > 0.



RIGOROUS DERIVATION OF THE LWR MODEL FROM THE FTL MODEL 9(V2) v(0) = vmax and v(1) = 0.The assumption (V1) is a minimal requirement for having a unique lo
al solution to the system (1.9).Assumption (V2) is a su�
ient 
ondition to guarantee that su
h solution is globally de�ned, as seen inLemma 1.1. From the modelling point of view, 
ondition (V2) is a natural requirement, as it pres
ribes speedzero at maximal density. The monotoni
ity 
ondition in (V1) is also a natural requirement for a tra�
 model(all vehi
les drive faster in lower densities).In some 
ases, we shall use the extra assumption(V3) ρ v′′(ρ) + v′(ρ) ≤ 0 for all ρ ∈ [0, 1].Noti
e that the assumption (V3) implies in parti
ular that the �ux ρ 7→ f(ρ) is stri
tly 
on
ave. On theother hand, (V3) is a slightly stri
ter requirement than stri
t 
on
avity, but is veri�ed in many examples ofvelo
ities arising in tra�
 �ow models.Remark 1.1 (Examples of velo
ities). Clearly, the prototype for the velo
ity v(ρ) = vmax (1− ρ) by Green-shields [28℄ satis�es the assumptions (V1), (V2), (V3). The same holds for the Pipes-Munjal velo
ity [40℄
v(ρ) = vmax (1− ρα) α > 0,in whi
h the 
on
avity of the �ux ρ v(ρ) degenerates at ρ = 0. Further examples of speed-density relationsthat satisfy (V1), (V2), (V3) 
an be obtained by a slight modi�
ation of the Greenberg model [27℄

v(ρ) = vmax

[

log

(

1 + α

α

)]−1

log

(

1 + α

ρ+ α

)

, α > 0,or of the Underwood model [48℄
v(ρ) = vmax

e−ρ − e−1

1− e−1
.We shall denote by x̄min < x̄max the extremal points of the 
onvex hull of the support of ρ̄, namely

⋂

[a,b]⊇spt(ρ̄) [a, b] = [x̄min, x̄max].We now introdu
e our atomization s
heme. Let n be a positive integer su�
iently large. We split the totallength of vehi
les L := ‖ρ̄‖
L1(R;R) in Nn := 2n platoons of length ℓn := 2−nL as follows. We set

x̄n0 := x̄min, (1.13a)and re
ursively
x̄ni := sup

{

x ∈ R :

ˆ x

x̄n

i−1

ρ̄(y) dy < ℓn

}

, i = 1, . . . , Nn. (1.13b)It is easily seen that x̄nNn
= x̄max, x̄nNn−i = x̄n+m

Nn+m−2mi, and sin
e 0 ≤ ρ̄ ≤ 1 a.e. we have
ℓn =

ˆ x̄n

i+1

x̄n

i

ρ̄(y) dy ≤ x̄ni+1 − x̄ni , i = 0, . . . , Nn − 1.Thus the 
ondition (1.10) is satis�ed with ℓ = ℓn, and we 
an take the values x̄n0 , . . . , x̄nNn
as the initialpositions of the (Nn + 1) referen
e vehi
les in the n�depending version of the follow-the-leader (1.9)

ẋnNn
(t) = vmax, (1.14a)

ẋni (t) = v

(

ℓn
xni+1(t)− xni (t)

)

, i = 0, . . . , Nn − 1, (1.14b)
xni (0) = x̄ni , i = 0, . . . , Nn. (1.14
)The existen
e of a global-in-time solution to (1.14) follows from Lemma 1.1. Moreover, from (1.14a) weimmediately dedu
e that

xnNn
(t) = x̄max + vmax t.



10 M. DI FRANCESCO AND M.D. ROSINIBy introdu
ing in (1.14) the new variable
yni (t) :=

ℓn
xni+1(t)− xni (t)

, i = 0, . . . , Nn − 1, (1.15)we obtain
ẏnN−1 = −

(ynN−1)
2

ℓn

[

vmax − v(ynN−1)
]

, (1.16a)
ẏni = −

(yni )
2

ℓn

[

v(yni+1)− v(yni )
]

, i = 0, . . . , Nn − 2, (1.16b)
yni (0) = ȳni :=

ℓn
x̄ni+1 − x̄ni

, i = 0, . . . , Nn − 1. (1.16
)Observe that ℓn/ [x̄max − x̄min + vmax t] ≤ yni (t) ≤ 1 for all t ≥ 0 in view of Lemma 1.1. The quantity yni 
anbe seen as a dis
rete version of the density of 
ars in Lagrangian 
oordinates, and the ODEs (1.16a)�(1.16b)are a dis
rete Lagrangian version of the s
alar 
onservation law (1.4a).We are now ready to state the main result of this paper.Theorem 1.3. Let ρ̄ satisfy the 
ondition (In) and v the 
ondition (V1) and (V2). Assume further thateither
• ρ̄ satis�es (InBV),or
• v satis�es (V3).De�ne the pie
ewise 
onstant (with respe
t to x) density

ρ̂n(t, x) :=

Nn−1
∑

i=0

yni (t)χ[xni (t), x
n
i+1(t)

[(x), (1.17)and the empiri
al measure
ρ̃n(t, x) := ℓn

Nn−1
∑

i=0

δxni (t)
(x). (1.18)Then the sequen
e (ρ̂n)n∈N 
onverges to the unique entropy solution ρ of the Cau
hy problem (1.4) almosteverywhere and in L

1

loc
([0,+∞[× R; [0, 1]). Moreover, the sequen
e (ρ̃n)n∈N 
onverges to ρ in the topologyof L1

loc
([0,+∞[ ; dL,1). 2. Proof of the main resultOur strategy for the proof of Theorem 1.3 
an be resumed as follows:(i) Following the notation introdu
ed in Subse
tion 1.3, we set F̂n = Fρ̂n and X̂n = X [F̂n], respe
tively
F̃n = Fρ̃n and X̃n = X [F̃n], as the 
umulative distribution of ρ̂n, respe
tively ρ̃n, and its pseudoinverses. Introdu
e the dis
rete Lagrangian density

ρ̌n = ρ̂n ◦ X̂n.(ii) We �rst prove that the sequen
e of pie
ewise 
onstant pseudo-inverse distributions (X̃n)n∈N has astrong limit X in L
1

loc
([0,+∞[×[0, L];R), whi
h is equivalent to having (ρ̃n)n∈N 
onverging to a mea-sure ρ in the L

1

loc
([0,+∞[; dL,1) topology. At the same time, we shall also prove that (X̂n)n∈N 
on-verges in L

1

loc
([0,+∞[×[0, L];R) to the same limitX , i.e. (ρ̂n)n∈N 
onverges to ρ in L

1

loc
([0,+∞[; dL,1).



RIGOROUS DERIVATION OF THE LWR MODEL FROM THE FTL MODEL 11(iii) We then prove that the limit pseudo-inverse fun
tion X has di�eren
e quotients bounded below by 1.This fa
t allows to prove that the limit measure ρ in (ii) is a
tually in L
∞ and is a.e. bounded by 1.At the same time, we easily infer weak�∗ 
onvergen
e of (ρ̌n)n∈N to a limit ρ̌ in L

∞. It remainsto prove that ρ̌ ◦ F = ρ̃, and that su
h limit is the unique entropy solution to (1.4). This requiresstronger estimates on ρ̂n.(iv) A dire
t proof of a uniform BV estimate for ρ̂n 
an be performed in the 
ase of ML ∩ BV initialdatum. In the 
ase of general ML ∩ L
∞ initial datum we shall prove that the dis
rete Lagrangiandensity ρ̌n satis�es a (uniform) dis
rete version of the Oleinik 
ondition, whi
h implies automati
allya BV uniform estimate for ρ̌n, and hen
e for ρ̂n. This step 
ru
ially requires 
ondition (V3) on v.(v) The de�nition of weak solution (1.5) for ρ follows from the n→ +∞ limit of the formulation of (1.14)as a PDE
X̃n

t = v(ρ̌n). (2.1)(vi) We �nally re
over the entropy 
ondition (1.6) in the dis
rete setting, and use the strong L
1 
ompa
t-ness to pass it to the limit.2.1. Weak 
onvergen
e of the approximating s
heme. Throughout this subse
tion we shall assumethat v satis�es (V1) and (V2). Let ρ̂n and ρ̃n be de�ned as in (1.17) and (1.18) respe
tively. We have that

ρ̂n(t), ρ̃n(t) ∈ ML for all t ≥ 0. Thus we 
an 
onsider the 
umulative distributions asso
iated to ρ̂n and ρ̃n(re
all that ρ̃n is an empiri
al measure)
F̂n(t, x) :=

ˆ x

−∞

ρ̂n(t, y) dy, F̃n(t, x) := ρ̃n(]−∞, x]),and their pseudo-inverses
X̂n := X

[

F̂n
]

, X̃n := X
[

F̃n
]

,extended to z = L by taking X̂n(t, L) = xnNn
(t) = X̃n(t, L). By de�nition, see �gures 1 and 2, for all t ≥ 0,PSfrag repla
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Figure 1. Maps of the form, respe
tively from the left, (1.17), (2.2) and (2.3) with n(= 3)and t(≥ 0) omitted.
z ∈ [0, L] and x ∈ R we have
F̂n(t, x) =

Nn−1
∑

i=0

[

i ℓn + yni (t) [x− xni (t)]

]

χ[
xni (t), x

n
i+1(t)

[(x) + Lχ[
xnNn

(t),+∞
[(x), (2.2)

X̂n(t, z) =

Nn−2
∑

i=0

[

xni (t) +
z − i ℓn
yni (t)

]

χ
[i ℓn, (i + 1) ℓn[

(z) +

[

xnNn−1(t) +
z − L+ ℓn
ynNn−1(t)

]

χ
[L− ℓn, L]

(z), (2.3)
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Figure 2. Maps of the form, respe
tively from the left, (1.18), (2.4) and (2.5) with n(= 3)and t(≥ 0) omitted.
F̃n(t, x) =

Nn−2
∑

i=0

ℓn (i+ 1)χ[
xni (t), x

n
i+1(t)

[(x) + Lχ[
xnNn−1(t),+∞

[(x), (2.4)
X̃n(t, z) =

Nn−1
∑

i=0

xni (t)χ[i ℓn, (i + 1) ℓn[
(z) + xnNn

(t)χ
{L}

(z). (2.5)Observe that for any �xed t ≥ 0

• z 7→ X̂n(t, z) and x 7→ F̂n(t, x) are pie
ewise linear 
ontinuous and non-de
reasing;
• F̂n(t) : [xn0 (t), x

n
Nn

(t)] → [0, L] and X̂n(t) : [0, L] → [xn0 (t), x
n
Nn

(t)] are stri
tly in
reasing and areinverse fun
tions of ea
h other in the 
lassi
al sense;
• z 7→ X̃n(t, z) and x 7→ F̃n(t, x) are pie
ewise 
onstant with Nn jumps of dis
ontinuity, right 
ontin-uous and non-de
reasing;
• F̂n(t, x) ≤ F̃n(t, x) for any x ∈ R and X̃n(t, z) ≤ X̂n(t, z) for any z ∈ [0, L];
• F̃n+1(t, x) ≤ F̃n(t, x) for any x ∈ R and X̃n(t, z) ≤ X̃n+1(t, z) for any z ∈ [0, L];
• ρ̂n(t, x) = F̂n

x (t, x) for all x 6= xni (t), i = 1, . . . , Nn, while ρ̃n = F̃n
x in the sense of distributions.
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RIGOROUS DERIVATION OF THE LWR MODEL FROM THE FTL MODEL 13For later use, see Figure 3, we introdu
e also the dis
rete Lagrangian density
ρ̌n(t, z) := ρ̂n

(

t, X̂n(t, z)
)

=

Nn−1
∑

i=0

yni (t)χ[i ℓn, (i + 1) ℓn[
(z) (2.6)and observe that

X̃n
t (t, z) = v (ρ̌n(t, z)) , t > 0, z ∈ [0, L]. (2.7)As a �rst step, we want to prove that (X̃n)n∈N and (X̂n)n∈N have the same unique limit in L

1

loc
([0,+∞[×[0, L];R).Proposition 2.1 (De�nition of X). There exists a unique X ∈ L

∞ ([0,+∞[× [0, L] ;R), monotone non-de
reasing and right 
ontinuous with respe
t to z, su
h that
(X̂n)n∈N and (X̃n)n∈N 
onverge to X in L

1

loc ([0,+∞[× [0, L] ;R) ,and for any t, s > 0

TV [X(t)] ≤ |x̄max − x̄min + vmax t|, (2.8a)
‖X(t)‖

L∞([0,L];R) ≤ max {|x̄min|, |x̄max + vmax t|} , (2.8b)
ˆ L

0

|X(t, z)−X(s, z)|dz ≤ vmax L |t− s|. (2.8
)Moreover, (X̃n)n∈N 
onverges to X a.e. on [0,+∞[× [0, L].Proof. Fix T > 0, and let n > 0.
• Step 1: X̃

n → X. Sin
e z 7→ X̃n(t, z) is non-de
reasing with X̃n(t, 0) = xn0 (t) ≥ x̄n0 = x̄min and
X̃n(t, L) = x̄max + vmax t, we have that

TV
[

X̃n(t)
]

≤ |x̄max − x̄min + vmax t|,
∥

∥

∥
X̃n(t)

∥

∥

∥

L∞([0,L];R)
≤ max{|x̄min|, |x̄max + vmax t|}.Moreover, if s < t, then by (1.14b) and (2.5)

ˆ L

0

∣

∣

∣
X̃n(t, z)− X̃n(s, z)

∣

∣

∣
dz =

Nn−1
∑

i=0

ℓn [x
n
i (t)− xni (s)] =

Nn−1
∑

i=0

ℓn

[
ˆ t

s

v (yni (τ)) dτ

]

≤ vmax L (t− s) .Therefore, by applying Helly's theorem in the form [11, Theorem 2.4℄, up to a subsequen
e, (X̃n)n∈N 
onvergesin L
1

loc
([0,+∞[× [0, L] ;R) to a fun
tion X right 
ontinuous w.r.t. z and satisfying (2.8). Finally, sin
e

X̃n+1(t, z) ≤ X̃n(t, z) for all t ≥ 0 and z ∈ [0, L], the whole sequen
e (X̃n)n∈N 
onverges to X and a.e. on
[0,+∞[× [0, L].
• Step 2: X̂

n → X. By de�nition, see (1.15), (2.3) and (2.5), we have for all t ∈ [0, T ]

ˆ L

0

∣

∣

∣
X̂n(t, z)− X̃n(t, z)

∣

∣

∣
dz =

Nn−1
∑

i=0

yni (t)
−1

ˆ (i+1) ℓn

i ℓn

[z − i ℓn] dz

=
ℓn
2

Nn−1
∑

i=0

[

xni+1(t)− xni (t)
]

=
ℓn
2

[

xnNn
(t)− xn0 (t)

]

≤
ℓn
2

[

x̄max − x̄min + vmax T
]

,and the proof is 
omplete as (X̃n)n∈N 
onverges to X in view of Step 1. ⋄In the next lemma we prove that X inherits the maximum prin
iple property satis�ed by X̃n proven inLemma 1.1.



14 M. DI FRANCESCO AND M.D. ROSINILemma 2.1. For all t ≥ 0 and for a.e. z1, z2 ∈ [0, L] with z1 < z2 we have
z2 − z1 ≤ X(t, z2)−X(t, z1) ≤ x̄max − x̄min + vmax t. (2.9)Proof. The upper bound is obvious. Take 0 ≤ z1 < z2 ≤ L. For n > 0 su�
iently large, we 
an take

i, j ∈ {0, 1, . . . , Nn} su
h that i < j, i ℓn ≤ z1 < (i+1) ℓn and ℓn j ≤ z2 < ℓn (j+1). By (2.5) and Lemma 1.1we have
X̃n(t, z2)− X̃n(t, z1)

z2 − z1
≥

xnj (t)− xni (t)

(j + 1) ℓn − i ℓn
≥

(j − i) ℓn
(j + 1) ℓn − i ℓn

= 1−
1

j − i+ 1
≥ 1−

1

(z2 ℓ
−1
n − 1)− z1 ℓ

−1
n + 1

= 1−
ℓn

z2 − z1
.By letting n go to in�nity we 
on
lude the proof. Indeed, limn→+∞ ℓn/[z2 − z1] = 0 and (X̃n)n∈N 
onvergesto X a.e. on [0,+∞[× [0, L] in view of Proposition 2.1. ⋄Proposition 2.2 (De�nition of F ). (F̂n)n∈N and (F̃n)n∈N 
onverge to F := F [X ] in L
1

loc
([0,+∞[×R; [0, L]).Moreover, (F̃n)n∈N 
onverges to F a.e. on [0,+∞[× R.Proof. We �rst observe that by Lemma 2.1 for any �xed t ≥ 0, the map z 7→ X(t, z) is stri
tly in
reasingand for all z ∈ [0, L]

z +X(t, 0) ≤ X(t, z) ≤ x̄max + vmax t− L+ z.Thus, F is well de�ned. The 
onvergen
e of (F̂n)n∈N and (F̃n)n∈N to F follows from the basi
 property (1.12)of the s
aled Wasserstein distan
e and from Proposition 2.1. Indeed, for any T > 0 we have
lim

n→+∞

ˆ T

0

ˆ

R

∣

∣

∣
F̂n(t, x) − F (t, x)

∣

∣

∣
dxdt = lim

n→+∞

ˆ T

0

ˆ L

0

∣

∣

∣
X̂n(t, z)−X(t, z)

∣

∣

∣
dz dt = 0,

lim
n→+∞

ˆ T

0

ˆ

R

∣

∣

∣
F̃n(t, x) − F (t, x)

∣

∣

∣
dxdt = lim

n→+∞

ˆ T

0

ˆ L

0

∣

∣

∣
X̃n(t, z)−X(t, z)

∣

∣

∣
dz dt = 0.Finally, (F̃n)n∈N 
onverges to F a.e. on [0,+∞[×R be
ause F̃n+1(t, x) ≤ F̃n(t, x) for all t ≥ 0 and x ∈ R. ⋄Lemma 2.2. For all t ≥ 0 and for a.e. x1, x2 ∈ R with x1 < x2 we have

0 ≤ F (t, x2)− F (t, x1) ≤ x2 − x1. (2.10)Proof. Fix x1 < x2 and denote z1 = F (t, x1) ≤ z2 = F (t, x2). Sin
e the lower bound is obvious, it is su�
ientto prove that
z2 − z1 ≤ x2 − x1.If z1 = z2, then there is nothing to prove. Assume therefore that z1 6= z2 and �x η ∈ ]0, z2 − z1[. Byde�nition, X(t, z) = X [F ](t, z) = inf{x ∈ R : F (t, x) > z}. Sin
e F (t, x2) = z2 > z2 − η, we have that

X(t, z2 − η) ≤ x2. Moreover, X(t, z1) ≥ x1 be
ause z 7→ X(t, z) is stri
tly in
reasing and right 
ontinuous.Therefore, by Lemma 2.1 we have
x2 − x1 ≥ X(t, z2 − η)−X(t, z1) ≥ z2 − η − z1.Sin
e η > 0 is arbitrary, we have z2 − z1 ≤ x2 − x1. ⋄Proposition 2.3 (De�nition of ρ). For any t ≥ 0, let ρ(t) be the distributional derivative of x 7→ F (t, x),with F de�ned in Lemma 2.1. Then:

• ρ(t, ·) ∈ ML for all t ≥ 0,
• 0 ≤ ρ(t, x) ≤ 1 for a.e. t ≥ 0 and x ∈ R,
• (ρ̃n)n∈N and (ρ̂n)n∈N 
onverge to ρ in the topology of L1

loc
([0,+∞[ ; dL,1),



RIGOROUS DERIVATION OF THE LWR MODEL FROM THE FTL MODEL 15Proof. For any �xed t ≥ 0, by Lemma 2.2 we have that x 7→ F (t, x) is a Lips
hitz fun
tion with Lip (F (t)) ≤
1. Hen
e its weak derivative ρ(t) is well de�ned in the spa
e of distributions and is essentially boundedwith ‖ρ(t)‖

L∞(R;R) ≤ 1. Moreover, x 7→ F (t, x) is non-de
reasing, and therefore ρ(t) ≥ 0 a.e. in R. ByProposition 2.1 and (1.12) we easily obtain that for any T > 0

lim
n→+∞

ˆ T

0

dL,1 (ρ̂
n(t), ρ(t)) dt = lim

n→+∞

ˆ T

0

ˆ L

0

∣

∣

∣
X̂n(t, z)−X(t, z)

∣

∣

∣
dz dt = 0,

lim
n→+∞

ˆ T

0

dL,1 (ρ̃
n(t), ρ(t)) dt = lim

n→+∞

ˆ T

0

ˆ L

0

∣

∣

∣
X̃n(t, z)−X(t, z)

∣

∣

∣
dz dt = 0.Thus, ρ satis�es also the last 
ondition and ρ(t) ∈ ML. ⋄Lemma 2.3 (De�nition of ρ̌). There exists ρ̌ in L

∞([0,+∞[×[0, L];R) su
h that, up to a subsequen
e,
(ρ̌n)n∈N 
onverges weakly-* in L

∞([0,+∞[×[0, L];R) to ρ̌.Proof. It is su�
ient to observe that for any n > 0 we have ‖ρ̌n‖
L∞([0,+∞[×[0,L];R) ≤ 1 be
ause, by Lemma 1.1,

‖yni ‖L∞([0,+∞[;R) ≤ 1. ⋄We 
on
lude this subse
tion by 
he
king that the s
heme is 
onsistent with the pres
ribed initial 
onditionin the limit.Proposition 2.4. The sequen
es (ρ̃n|t=0)n∈N and (ρ̂n|t=0)n∈N both 
onverge to ρ̄ in the dL,1�Wassersteindistan
e.Proof. By de�nitions (1.17) and (1.18) we have that
ρ̂n(0, x) =

Nn−1
∑

i=0

ȳni χ[x̄ni , x̄
n
i+1

[(x), ρ̃n(0, x) = ℓn

Nn−1
∑

i=0

δx̄ni
(x).Therefore Fρ̂n|t=0

= F̂n|t=0, Fρ̃n|t=0
= F̃n|t=0 and by (1.12), (1.16
) we have

dL,1(ρ̃
n|t=0, ρ̂

n|t=0) =
∥

∥

∥
F̃n|t=0 − F̂n|t=0

∥

∥

∥

L1(R;R)
=

Nn−2
∑

i=0

ˆ x̄n

i+1

x̄n

i

[

ℓn − ȳni [x− x̄ni ]

]

dx

= ℓn

Nn−2
∑

i=0

ˆ x̄n

i+1

x̄n

i

x̄ni+1 − x

x̄ni+1 − x̄ni
dx ≤ ℓn [x̄max − x̄min] .Hen
e, it is su�
ient to prove that (ρ̃n|t=0)n∈N 
onverges to ρ̄ in the dL,1�Wasserstein distan
e. By (1.13)we have that

dL,1(ρ̃
n|t=0, ρ̄) =

∥

∥

∥
F̃n|t=0 − Fρ̄

∥

∥

∥

L1(R;R)
=

Nn−2
∑

i=0

ˆ x̄n

i+1

x̄n

i

[

ℓn (i+ 1)−

ˆ x

−∞

ρ̄(y) dy

]

=

Nn−2
∑

i=0

ˆ x̄n

i+1

x̄n

i

[

ℓn −

ˆ x

x̄n

i

ρ̄(y) dy

]

dx ≤ ℓn [x̄max − x̄min]and this 
on
ludes the proof. ⋄



16 M. DI FRANCESCO AND M.D. ROSINI2.2. BV estimates and dis
rete Oleinik 
ondition. Let us sum up what we have proven so far. Thefamily of empiri
al measures (ρ̃n)n∈N 
onverges in the s
aled 1�Wasserstein sense to a limit ρ, with ρ ∈
L
∞ ([0,+∞[ ;ML) and 0 ≤ ρ ≤ 1 almost everywhere. Moreover, the empiri
al measure ρ̃n has a pseudo-inverse distribution fun
tion X̃n satisfying the PDE

X̃n
t (t, z) = v (ρ̌n(t, z)) , (t, z) ∈ [0,+∞[×[0, L],with the family (ρ̌n)n∈N being weakly�∗ 
ompa
t in L

∞ ([0,+∞[×[0, L]; [0, 1]). The Wasserstein topology isa proper tool to pass to the limit the time derivative term in the above PDE, as this term is linear. Buton the other hand, the weak�∗ topology is too weak to pass to the limit v(ρ̌n) for a general nonlinear v.Moreover, there is the additional di�
ulty of having to 
he
k that the two limits are related in some sense.A typi
al way to over
ome the di�
ulty stated above is to provide a BV estimate for the approximatingsequen
e (ρ̌n)n∈N. We ta
kle this task in two ways. First of all, we perform a dire
t estimate of the totalvariation of ρ̌n, and prove that su
h a quantity de
reases in time, and is therefore uniformly bounded providedthe initial datum ρ̄ is BV. However, this result is only partly satisfa
tory, as it is well known that the solution
ρ to (1.4a) is BV even for an initial datum in L

1∩L
∞. We shall therefore prove that a uniform BV estimateof ρ̌n is available for an initial datum in L

1 ∩ L
∞ provided the additional property (V4) of v is pres
ribed.The latter task is performed by a one-sided estimate of the di�eren
e quotients of ρ̌n, in the spirit of adis
rete version of the 
lassi
al Oleinik-type 
ondition (1.8), whi
h 
an be 
onsidered as the main te
hni
ala
hievement of this paper.We start with the following proposition.Proposition 2.5 (BV 
ontra
tivity for BV initial data). Assume v satis�es (V1) and (V2). If ρ̄ satis�es(InBV), then for any n ∈ N

TV [ρ̂n(t)] = TV [ρ̌n(t)] ≤ TV [ρ̄] for all t ≥ 0.Proof. For notational simpli
ity, we shall omit the dependen
e on t and n whenever not ne
essary. By
onstru
tion, see (1.15) and (1.17), we have that
TV [ρ̂(0)] = ȳ0 + ȳN−1 +

N−2
∑

i=0

|ȳi − ȳi+1|

=

 x̄1

x̄min

ρ̄(y) dy +

 x̄max

x̄N−1

ρ̄(y) dy +

N−2
∑

i=0

∣

∣

∣

∣

∣

 x̄i+1

x̄i

ρ̄(y) dy −

 x̄i+1

x̄i+2

ρ̄(y) dy

∣

∣

∣

∣

∣

≤ TV [ρ̄] .Moreover
d

dt
TV [ρ̂(t)] =

d

dt

[

y0 + yN−1 +

N−2
∑

i=0

|yi − yi+1|

]

= ẏ0 + ẏN−1 +

N−2
∑

i=0

sgn [yi − yi+1] [ẏi − ẏi+1]

=

[

1 + sgn [y0 − y1]

]

ẏ0 +

[

1− sgn [yN−2 − yN−1]

]

ẏN−1 +

N−2
∑

i=1

[

sgn [yi − yi+1]− sgn [yi−1 − yi]

]

ẏi.We 
laim that the latter right hand side above is ≤ 0. Indeed, assumptions (V1) and (V2) together with (1.16)imply
[

1 + sgn [y0 − y1]

]

ẏ0 = −

[

1 + sgn [y0 − y1]

]

y20
ℓ
[v(y1)− v(y0)] ≤ 0,

[

1− sgn [yN−2 − yN−1]

]

ẏN−1 = −

[

1− sgn [yN−2 − yN−1]

]

y2N−1

ℓ
[vmax − v(yN−1)] ≤ 0,
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[

sgn [yi − yi+1]− sgn [yi−1 − yi]

]

ẏi = −

[

sgn [yi − yi+1]− sgn [yi−1 − yi]

]

y2i
ℓ
[v(yi+1)− v(yi)] ≤ 0.Therefore, TV [ρ̂(t)] ≤ TV [ρ̄] for all t ≥ 0. Finally, sin
e ρ̌n = ρ̂ ◦ X̂, ρ̌n is pie
ewise 
onstant and on i ℓ hasthe same tra
es as ρ̂ on xi, the statement for ρ̌n follows easily. ⋄We now perform our dis
rete Oleinik-type 
ondition, whi
h holds for general initial data in L

1 ∩ L
∞.Lemma 2.4 (Dis
rete Oleinik-type 
ondition). Assume v satis�es (V1), (V2), and (V3), and let ρ̄ satisfy(In). Then, for any i = 0, . . . , Nn − 2 we have

t yni (t)
[

v
(

yni+1(t)
)

− v (yni (t))
]

≤ ℓn for all t ≥ 0. (2.11)Proof. For notational simpli
ity, we shall omit the dependen
e on t and n whenever not ne
essary. Let
zi := t yi [v (yi+1)− v (yi)] , i = 0, . . . , N − 2,

zN−1 := t yN−1 [vmax − v(yN−1)] .

• Step 0: zN−1 ≤ ℓ. By (1.16a) and (V1)
żN−1 = yN−1 [vmax − v(yN−1)] + t ẏN−1 [vmax − v(yN−1)]− t yN−1 v

′(yN−1) ẏN−1

= yN−1 [vmax − v(yN−1)]−
t y2N−1

ℓ
[vmax − v(yN−1)]

2
+
t v′(yN−1) y

3
N−1

ℓ
[vmax − v(yN−1)]

≤ yN−1 [vmax − v(yN−1)]
[

1−
zN−1

ℓ

]

.Sin
e zN−1(0) = 0, from the above estimate we get zN−1(t) ≤ ℓ for all t ≥ 0.
• Step 1: zi+1 ≤ ℓ ⇒ zi ≤ ℓ. Let i ∈ {0, . . . , N − 3} and assume zi+1 ≤ ℓ. From (1.16b) and (V1) we get

żi = yi [v (yi+1)− v (yi)] + t ẏi [v (yi+1)− v (yi)] + t yi [v
′(yi+1) ẏi+1 − v′(yi) ẏi]

= yi [v (yi+1)− v (yi)]−
t y2i
ℓ

[v(yi+1)− v(yi)]
2

+ t yi

[

−
v′(yi+1) y

2
i+1

ℓ
[v(yi+2)− v(yi+1)] +

v′(yi) y
2
i

ℓ
[v(yi+1)− v(yi)]

]

= yi [v (yi+1)− v (yi)]−
yi
ℓ
[v(yi+1)− v(yi)] zi −

v′(yi+1) yi yi+1

ℓ
zi+1 +

v′(yi) y
2
i

ℓ
zi.Sin
e sgn+ [zi] = sgn+ [v (yi+1)− v (yi)] = sgn+ [yi − yi+1] for all t > 0, from the assumption on zi+1 weeasily obtain

d

dt
[zi]+ = yi [v (yi+1)− v (yi)]+ −

yi
ℓ
[v(yi+1)− v(yi)]+ [zi]+

−
v′(yi+1) yi yi+1

ℓ
sgn+[zi] zi+1 +

v′(yi) y
2
i

ℓ
[zi]+

≤ yi [v (yi+1)− v (yi)]+

[

1−
[zi]+
ℓ

]

− v′(yi+1) yi yi+1 sgn+[zi] +
v′(yi) y

2
i

ℓ
[zi]+.Condition (V3) implies that the fun
tion y 7→ y v′(y) is non-in
reasing, whi
h gives

d

dt
[zi]+ ≤ yi [v (yi+1)− v (yi)]+

[

1−
[zi]+
ℓ

]

− v′(yi) y
2
i sgn+[zi] +

v′(yi) y
2
i

ℓ
[zi]+

= yi

[

[v (yi+1)− v (yi)]+ − v′(yi) yi

] [

1−
[zi]+
ℓ

]

.Now, as v′ ≤ 0, and sin
e zi(0) = 0, we get that zi(t)+ ≤ ℓ for all t ≥ 0.
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• Step 2: zN−2 ≤ ℓ. From analogous 
omputations as in previous step, we get

d

dt
[zN−2]+ = yN−2 [v (yN−1)− v (yN−2)]+ −

yN−2

ℓ
[v(yN−1)− v(yN−2)]+ [zN−2]+

−
v′(yN−1) yN−2 yN−1

ℓ
sgn+[zN−2] zN−1 +

v′(yN−2) y
2
N−2

ℓ
[zN−2]+,and we 
an use the monotoni
ity of y 7→ y v′(y) and Step 0 to get

d

dt
[zN−2]+ ≤ yN−2 [v (yN−1)− v (yN−2)]+

[

1−
[zN−2]+

ℓ

]

− v′(yN−2) y
2
N−2 sgn+[zN−2] +

v′(yN−2) y
2
N−2

ℓ
[zN−2]+

= yN−2

[

[v (yN−1)− v (yN−2)]+ − v′(yN−2) yN−2

] [

1−
[zN−2]+

ℓ

]

.Again, v′ ≤ 0 and zN−2(0) = 0 imply that zN−2(t)+ ≤ ℓ for all t ≥ 0.
• Con
lusion. The estimate (2.11) is proven re
ursively: Step 2 provides the �rst step with i = N − 2,whereas Step 1 proves that the estimate holds for all i ∈ {0, . . . , N − 3}. ⋄Corollary 2.1. Assume v satis�es (V1), (V2), and (V3), and let ρ̄ satisfy (In). Then, for any i ∈ {0, . . . , N−
2} we have

v (ρ̂n (t, xni (t)))− v
(

ρ̂n
(

t, xni+1(t)
))

≤
xni+1(t)− xni (t)

t
for all t > 0. (2.12)Proof. The statement follows from Lemma 2.4 and from the de�nitions of ρ̂N and yi. ⋄In the following proposition we prove uniform bounds on the total variation of v (ρ̌n) and v (ρ̂n). Let usemphasize that the regularising e�e
t L∞ 7→ BV implies that the BV estimate ne
essarily blows up as tց 0.Proposition 2.6 (UniformBV estimates for v (ρ̌n) and v (ρ̂n)). Assume v satis�es the properties (V1), (V2),and (V3), and let ρ̄ satisfy (In). Let δ > 0. Then(i) the sequen
e (v (ρ̂n))n∈N is uniformly bounded in L

∞ ([δ,+∞[ ; BV(R; [0, vmax]));(ii) the sequen
e (v (ρ̌n))n∈N is uniformly bounded in L
∞ ([δ,+∞[ ; BV([0, L]; [0, vmax])).More pre
isely, for any n ∈ N

TV [v(ρ̂n(t))] = TV [v(ρ̌n(t))] ≤ Cδ for all t ≥ δ,where Cδ :=
[

3 vmax + 2 |x̄max|+|x̄min|
δ

].Proof. For notational simpli
ity, we shall omit the dependen
e on n. We set
σ̂(t, x) := v(ρ̂(t, x)) +

1

t

N−1
∑

i=0

xi(t)χ
[xi(t), xi+1(t)[

(x) for all x ∈ R.We 
laim that, for any �xed t ≥ 0, the map x 7→ σ̂(t, x) is a pie
ewise 
onstant, non-de
reasing fun
tion on
[x0(t), xN (t)[. To see this, we �rst noti
e that the map x 7→ σ̂(t, x) is 
onstant on the interval [xi(t), xi+1(t)[,
i = 0, . . . , N − 1. On the other hand, σ̂(t) is non-de
reasing on the potential dis
ontinuity points xi(t),
i = 1, . . . , N − 1, in view of (2.12). Now, from (1.14) and the dis
rete maximum prin
iple in Lemma 1.1 weknow that for any x ∈ [x0(t), xN (t)[

x̄min

t
≤ σ̂(t, x) ≤ vmax +

1

t
[x̄max + vmax t] = 2vmax +

x̄max

t
.
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e σ̂ is uniformly bounded in L
∞ ([δ,+∞[ ;BV(R;R)) with

sup
t≥δ

TV [σ̂(t)] ≤

[

2vmax +
|x̄max|+ |x̄min|

δ

]

.Therefore, also v(ρ̂) is uniformly bounded in L
∞ ([δ,+∞[ ;BV(R;R)) be
ause by triangular inequality

TV [v(ρ̂(t))] ≤ TV [σ̂(t)] + TV

[

1

t

N−1
∑

i=0

xi(t)χ
[xi(t), xi+1(t)[

]

= TV [σ̂(t)] +
1

t
|x̄max − x̄min + vmax t| ≤ Cδ,for t ≥ δ. Finally, sin
e ρ̌n = ρ̂ ◦ X̂, ρ̌n is pie
ewise 
onstant and on i ℓ has the same tra
es as ρ̂ on xi, thestatement for ρ̌n follows easily. ⋄2.3. Time 
ontinuity and 
ompa
tness.Proposition 2.7 (Uniform L

1�
ontinuity in time of ρ̌n). For any δ > 0 we have
ˆ L

0

|ρ̌n(t, z)− ρ̌n(s, z)| dz ≤ [Cδ + vmax] |t− s| for all t, s ≥ δ,with Cδ de�ned in Proposition 2.6.Proof. By (1.16), we 
ompute for t > s > δ,
ˆ L

0

|ρ̌n(t, z)− ρ̌n(s, z)| dz =

Nn−1
∑

i=0

ℓn |y
n
i (t)− yni (s)| =

Nn−1
∑

i=0

ℓn

∣

∣

∣

∣

ˆ t

s

ẏni (τ) dτ

∣

∣

∣

∣

=

Nn−2
∑

i=0

∣

∣

∣

∣

ˆ t

s

yni (τ)
2
[

v
(

yni+1(τ)
)

− v (yni (τ))
]

dτ

∣

∣

∣

∣

+

ˆ t

s

ynNn−1(τ)
2
[

vmax − v
(

ynNn−1(τ)
)]

dτ.Therefore, by Lemma 1.1
ˆ L

0

|ρ̌n(t, z)− ρ̌n(s, z)|dz

≤

ˆ t

s

[

Nn−2
∑

i=0

yni (τ)
2
∣

∣v
(

yni+1(τ)
)

− v (yni (τ))
∣

∣+ ynNn−1(τ)
2
[

vmax − v
(

ynNn−1(τ)
)]

]

dτ

≤

ˆ t

s

[

Nn−2
∑

i=0

∣

∣v
(

yni+1(τ)
)

− v (yni (τ))
∣

∣+ vmax

]

dτ ≤

ˆ t

s

[

TV [v (ρ̌n(τ))] + vmax

]

dτ.Then it is su�
ient to apply the estimate in Proposition 2.6 to 
omplete the proof. ⋄Proposition 2.8 (Uniform Wasserstein time 
ontinuity of ρ̂n). For any n ∈ N we have
dL,1 (ρ̂

n(t), ρ̂n(s)) ≤ 2L vmax |t− s| for all s, t ≥ 0.Proof. By (1.12), (1.15) and (1.14), we 
ompute for any t > s ≥ 0

dL,1 (ρ̂
n(t), ρ̂n(s)) =

∥

∥

∥
X̂n(t)− X̂n(s)

∥

∥

∥

L1([0,L];R)
=

Nn−1
∑

i=0

ˆ (i+1) ℓn

i ℓn

[

X̂n(t, z)− X̂n(s, z)
]

dz

=

Nn−1
∑

i=0

ˆ (i+1) ℓn

i ℓn

[

xni (t) +
z − i ℓn
yni (t)

− xni (s)−
z − i ℓn
yni (s)

]

dz
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=

Nn−1
∑

i=0

ℓn [x
n
i (t)− xni (s)] +

Nn−1
∑

i=0

[

yni (t)
−1 − yni (s)

−1
]

ˆ (i+1) ℓn

i ℓn

(z − i ℓn) dz

=

Nn−1
∑

i=0

ℓn

ˆ t

s

v (yni (τ)) dτ +

Nn−1
∑

i=0

ℓ2n
2

ˆ t

s

d

dτ

[

yni (τ)
−1

]

dτ

≤ L vmax (t− s) +
ℓn
2

ˆ t

s

[

Nn−2
∑

i=0

[

v
(

yni+1(τ)
)

− v (yni (τ))
]

+ vmax − v
(

ynNn−1(τ)
)

]

dτ

= L vmax (t− s) +
ℓn
2

ˆ t

s

[

vmax − v (yn0 (τ))

]

dτ

≤
[

1 + 2−n−1
]

L vmax (t− s) ≤ 2L vmax (t− s)and this 
on
ludes the proof. ⋄We now re
all a generalization of Aubin-Lions lemma, whi
h uses the Wasserstein distan
e as a repla
ementof a negative Sobolev norm, proven in [44, Theorem 2℄, whi
h we present here in a version adapted to our
ase. In order to have the paper self-
ontained, we �rst re
all the pre
ise statement of [44, Theorem 2℄ (seealso the adapted version in [20℄).Theorem 2.1 (Theorem 2 from [44℄). On a separable Bana
h spa
e X, let be given(F) a normal 
oer
ive integrand F : X → [0,+∞], i.e., F is lower semi-
ontinuous and its sublevels arerelatively 
ompa
t in X;(g) a pseudo-distan
e g : X × X → [0,+∞], i.e., g is lower semi-
ontinuous, and if ν, µ ∈ X are su
hthat g(ν, µ) = 0, F[ν] < +∞ and F[µ] < +∞, then ν = µ.Let further U be a set of measurable fun
tions ν : ]0, T [ → X, with a �xed T > 0. Under the hypotheses that
sup
ν∈U

ˆ T

0

F [ν(t)] dt < +∞ and lim
h↓0

[

sup
ν∈U

ˆ T−h

0

g (ν(t+ h), ν(t)) dt

]

= 0, (2.13)Then U is strongly relatively 
ompa
t in L
1(]0, T [ ;X).Theorem 2.2 (Generalized Aubin-Lions lemma). Let T, L > 0 and I ⊂ R be a bounded open 
onvex interval.Assume w : R → R is a Lips
hitz 
ontinuous and stri
tly monotone fun
tion. Let (ρn)n∈N be a sequen
e in

L
∞ (]0, T [× R;R) ∩ML su
h that(1) ρn : ]0, T [ → L

1 (R;R) is measurable for all n ∈ N;(2) spt (ρn(t)) ⊆ I for all t ∈ ]0, T [ and n ∈ N;(3) supn∈N

´ T

0

[

‖w (ρn(t))‖
L1(I;R) +TV [w (ρn(t))]

]

dt < +∞;(4) there exists a 
onstant C depending only on T su
h that dL,1 (ρ
n(s), ρn(t)) ≤ C |t− s| for all s, t ∈

]0, T [ and n ∈ N.Then, (ρn)n∈N is strongly relatively 
ompa
t in L
1(]0, T [× R;R).Proof. We want to use Theorem 2.1 with

X := L
1 (I;R) , F[ν] := ‖w(ν)‖

L1(I;R) +TV [w(ν)] , U := (ρn)n∈N, g(ν, µ) :=

{

dL,1(ν, µ) if ν, µ ∈ ML,

+∞ otherwise.We �rst have to prove that F, g and U satisfy the 
orresponding hypotheses in Theorem 2.1.(F) Assume that (νn)n∈N 
onverges to ν in L
1 (I;R). Sin
e w is Lips
hitz 
ontinuous, (w(νn))n∈N


onvergesto w(ν) in L
1 (I;R). Hen
e, for the lower semi-
ontinuity of the total variation w.r.t. the L

1�norm, see [23,Theorem 1 on page 172℄, we have that TV [w(ν)] ≤ lim infn→+∞ TV [w(νn)]. Thus F [ν] ≤ lim infn→+∞ F [νn]
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. in X. Finally, 
onsider a sequen
e (νn)n∈N belonging to a sublevel of F, namely supn∈N F [νn] <
+∞. For the 
ompa
tness of BV in L

1 on bounded open 
onvex intervals and for basi
 properties of the L1�
onvergen
e, see [23, Theorem 4 on page 176 and Theorem 5 on page 21℄, up to a subsequen
e (w(νn))n∈N
onverges to w̄ in L
1 and a.e. on I. Sin
e w is 
ontinuous and stri
tly monotone, (νn)n∈N is uniformlybounded in L

∞ (
onsequen
e of the uniform bound on the total variation) and 
onverges to ν̄ := w−1(w̄)a.e. on I and therefore, by the Lebesgue dominated 
onvergen
e theorem, the 
onvergen
e is also in L
1.(g) Pro
eeding as before and applying lower semi-
ontinuity of the 1�Wasserstein distan
e w.r.t. the L1�normgive that g is l.s.
. in X×X. Finally, if F[ν] < +∞, F[µ] < +∞ and g(µ, ν) = 0, then w(µ), w(ν) are in BV,

ν, µ ∈ ML, and dL,1 (µ, ν) = 0. Hen
e we have µ = ν.(U) Conditions in (2.13) follow dire
tly from the hypotheses (3) and (4).Hen
e we 
an apply Theorem 2.1 and obtain the 
onvergen
e in L
1(]0, T [ × I;R). Finally, re
alling thehypothesis (2) 
on
ludes the proof. ⋄2.4. Convergen
e to entropy solutions. In the next proposition we 
olle
t the previous 
ompa
tnessresults to get strong 
onvergen
e.Proposition 2.9. Let ρ̌ be de�ned as in Lemma 2.3 and ρ as in Proposition 2.3. Under the assumptions inTheorem 1.3 we have that(i) the sequen
e (ρ̌n)n∈N 
onverges to ρ̌ almost everywhere and strongly in L

1

loc
on ]0,+∞[× [0, L];(ii) the sequen
e (ρ̂n)n∈N 
onverges to ρ almost everywhere and strongly in L

1

loc
on ]0,+∞[× R;(iii) if ρ̄ satis�es also (InBV), then the sequen
e (ρ̌n)n∈N 
onverges to ρ̌ strongly in L

1

loc
on [0,+∞[× [0, L].Proof. We already know from Proposition 2.3 that both (ρ̂n)n∈N and (ρ̃n)n∈N, de�ned respe
tively by (1.17)and (1.18), 
onverge in the topology of L

1

loc
([0,+∞[ ; dL,1) to the density ρ ∈ L

∞ ([0,+∞[ ;ML) with
0 ≤ ρ ≤ 1. From Proposition 2.1 we know that both (X̂n)n∈N and (X̃n)n∈N, de�ned respe
tively by (2.3)and (2.5), 
onverge strongly in L

1

loc
([0,+∞[× [0, L] ;R) to X ∈ L

∞ ([0,+∞[× [0, L] ;R), the pseudo-inverseof F , the 
umulative distribution of ρ. Finally, from Lemma 2.3 we know that (ρ̌n)n∈N, de�ned by (2.6),
onverges to ρ̌ weakly-* in L
∞([0,+∞[×[0, L];R).

• Step 1. Strong 
onvergen
e of (ρ̌n)n∈N for general initial datum in ML ∩ L
∞.Let ρ̄ satisfy (In). For any �xed δ > 0, we know from Proposition 2.6 that (v(ρ̌n))n∈N

is uniformly boundedin L
∞ ([δ,+∞[ ; BV([0, L]; [0, vmax])). Furthermore, from Proposition 2.7 we easily obtain that

ˆ L

0

|v(ρ̌n(t, z))− v(ρ̌n(s, z))| dz ≤ Lip (v) [Cδ + vmax] |t− s| for all t, s ≥ δ.Therefore, we 
an on
e again apply Helly's theorem in the form [11, Theorem 2.4℄ to get that (v(ρ̌n))n∈Nis strongly 
ompa
t in L
1

loc
([δ,+∞[× [0, L]; [0, vmax]). Hen
e, by the monotoni
ity of v and the uniquenessof the limit in the L

1

loc
([δ,+∞[ ; dL,1) topology, up to a subsequen
e (ρ̌n)n∈N 
onverges strongly in L

1

loc
anda.e. on [δ,+∞[× [0, L] to ρ̌. Finally, sin
e δ > 0 is arbitrary, the proof of (i) is 
omplete.

• Step 2. Strong 
onvergen
e of (ρ̂n)n∈N for general initial datum in ML ∩ L
∞.Let ρ̄ satisfy (In) and �x T, δ > 0 with δ < T . We want to prove that (ρn)n∈N with ρn(t, x) := ρ̂n(t + δ, x)satis�es the hypotheses of Theorem 2.2 with I = ]x̄min − 1, x̄max + vmax (T + δ) + 1[ and w = v. The hypothe-ses (1) and (2) are satis�ed be
ause by de�nition (1.17) we have that ‖ρ̂n(t)‖

L1(R;R) = L and spt (ρ̂n(t)) ⊂ Ifor all t ∈ [0, T + δ]. By Proposition 2.6, the hypothesis (3) holds true be
ause
ˆ T+δ

δ

[

‖v (ρ̂n(t))‖
L1(I;R) +TV [v (ρ̂n(t))]

]

dt ≤ [vmax |I|+ Cδ]T.Finally, the hypothesis (4) follows dire
tly from Proposition 2.8. Hen
e, we 
an apply Theorem 2.2 to obtainthat (ρ̂n)n∈N is strongly 
ompa
t in L
1(]δ, T [× R;R). By the uniqueness of the limit in the L

1(]δ, T [ ; dL,1)topology, up to a subsequen
e (ρ̂n)n∈N 
onverges strongly in L
1 and a.e. on ]δ, T [ × R to ρ. Finally, sin
e

T > δ > 0 are arbitrary, the proof of (ii) is 
omplete.
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• Step 3. Strong 
onvergen
e for initial datum in BV.Let ρ̄ satisfy (InBV). The result in Proposition 2.5 ensures that both (ρ̂n)n∈N and (ρ̌n)n∈N are uniformlybounded in L

∞([0,+∞[; BV(R; [0, 1])). Hen
e, we 
an repeat the proof of Proposition 2.7 (we omit thedetails) to obtain that
ˆ L

0

|ρ̌n(t, z)− ρ̌n(s, z)|dz ≤ [Lip (v)TV(ρ̄) + vmax] |t− s| for all t, s ≥ 0.Therefore, Helly's theorem implies the desired 
ompa
tness. Moreover, we 
an use Theorem 2.2 with w beingthe identity fun
tion on [0, 1], and obtain the desired 
ompa
tness of ρ̂n. ⋄We now prove that the two limits ρ̌ and ρ are related.Proposition 2.10. Let F be the 
umulative distribution of ρ as de�ned in Proposition 2.2. Then
ρ̌ (t, F (t, x)) = ρ(t, x) for a.e. (t, x) in spt(ρ).Proof. By de�nition (2.6) and Lemma 1.2, for any ϕ ∈ C

∞
c ([0, T ]× R;R) we have

ˆ T

0

ˆ L

0

ρ̌n(t, z)ϕ
(

t, X̂n(t, z)
)

dz dt =

ˆ T

0

ˆ L

0

ρ̂n
(

t, X̂n(t, z)
)

ϕ
(

t, X̂n(t, z)
)

dz dt

=

ˆ T

0

ˆ

R

ρ̂n(t, x)2 ϕ(t, x) dxdt.By extra
ting the a.e. 
onvergent subsequen
e provided in Proposition 2.9, we 
an send n→ +∞ in the aboveidentity and use the Lebesgue dominated 
onvergen
e theorem (as the support of ρ̌n and ρ̂n are uniformlybounded w.r.t. n) to get̂
T

0

ˆ L

0

ρ̌(t, z)ϕ (t,X(t, z)) dz dt =

ˆ T

0

ˆ

R

ρ(t, x)2 ϕ(t, x) dxdt.By 
hanging variable z = F (t, x) in the �rst integral above, we get
ˆ T

0

ˆ

R

ρ̌ (t, F (t, x)) ρ(t, x)ϕ(t, x) dxdt =

ˆ T

0

ˆ

R

ρ(t, x)2 ϕ(t, x) dxdt, (2.14)and this ends the proof. ⋄In the next proposition we prove that ρ is a weak solution in the sense of (1.5).Proposition 2.11. The limit fun
tion ρ de�ned in Proposition 2.3 is a weak solution in the sense of (1.5).Proof. Let ϕ ∈ C
∞
c

([0,+∞[× R;R). By (1.14), (2.5) and (2.6), for all n we have
ˆ +∞

0

ˆ L

0

[

v (ρ̌n(t, z))ϕx

(

t, X̃n(t, z)
)

]

dz dt =

Nn−1
∑

i=0

ˆ +∞

0

ˆ (i+1) ℓn

i ℓn

[

v (yni (t))ϕx (t, x
n
i (t))

]

dz dt

=

Nn−1
∑

i=0

ˆ +∞

0

ˆ (i+1) ℓn

i ℓn

[

ẋni (t)ϕx (t, x
n
i (t))

]

dz dt =

Nn−1
∑

i=0

ˆ +∞

0

ˆ (i+1) ℓn

i ℓn

[

d

dt
ϕ (t, xni (t))− ϕt (t, x

n
i (t))

]

dt

= −

ˆ L

0

ϕ
(

0, X̃n(0, z)
)

dz −

ˆ +∞

0

ˆ L

0

ϕt

(

t, X̃n(t, z)
)

dz dt.Sin
e (X̃n)n∈N and (ρ̌n)n∈N 
onverge strongly in L
1([0, T ]× [0, L];R), and in view of Proposition 2.4, we getby sending n→ +∞

ˆ +∞

0

ˆ L

0

[

ϕt (t,X(t, z)) + v (ρ̌(t, z))ϕx (t,X(t, z))

]

dz dt+

ˆ L

0

ϕ (0, Xρ̄(z)) dz = 0.
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hange of variable x = X(t, z), see Lemma 1.2, and obtain
ˆ +∞

0

ˆ

R

[

ρ(t, x)ϕt(t, x) + ρ(t, x) v (ρ̌ (t, F (t, x)))ϕx(t, x)

]

dxdt+

ˆ

R

ρ̄(x)ϕ(0, x) dx = 0.Finally, by Proposition 2.10 we have ρ̌ (t, F (t, x)) = ρ(t, x) a.e. on spt(ρ), and therefore ρ satis�es (1.5). ⋄We are now ready to 
omplete the proof of our main result.Proof of Theorem 1.3. In view of Theorem 1.2, the entropy inequality (1.7) is su�
ient in order to show that
ρ is the unique entropy solution in the sense of De�nition 1.1.Let ϕ ∈ C∞

c (]0,+∞[×R;R) with ϕ ≥ 0 and k ≥ 0 be a 
onstant. We shall prove that the limit ρ satis�esthe entropy inequality (1.7). We 
onsider the quantity
ˆ +∞

0

ˆ

R

[

|ρ̂n(t, x)− k|ϕt(t, x) + sgn(ρ̂n(t, x) − k) [f(ρ̂n(t, x)) − f(k)]ϕx(t, x)

]

dxdt

=B0 +BN +

Nn−1
∑

i=0

Ii,with
B0 :=

ˆ +∞

0

ˆ xn

0 (t)

−∞

[

k ϕt(t, x) + f(k)ϕx(t, x)

]

dxdt,

BN :=

ˆ +∞

0

ˆ +∞

xn

Nn
(t)

[

k ϕt(t, x) + f(k)ϕx(t, x)

]

dxdt,

Ii :=

ˆ +∞

0

ˆ xn

i+1(t)

xn

i
(t)

[

|yni (t)− k|ϕt(t, x) + sgn(yni (t, x) − k) [f(yni (t, x)) − f(k)]ϕx(t, x)

]

dxdt.For simpli
ity in the notation, from now on we shall drop the n index and the (t, x) dependen
y, ex
ept in
ases in whi
h t = 0. Moreover we de�ne yN ≡ 0. We next observe by (1.14) that
d

dt

[
ˆ xi+1

xi

ϕdx

]

= v(yi+1)ϕ(t, xi+1)− v(yi)ϕ(t, xi) +

ˆ xi+1

xi

ϕt dx, (2.15)
d

dt

[
ˆ x0

−∞

ϕdx

]

= v(y0)ϕ(t, x0) +

ˆ x0

−∞

ϕt dx, (2.16)
d

dt

[
ˆ +∞

xN

ϕdx

]

= −vmaxϕ(t, xN ) +

ˆ +∞

xN

ϕt dx. (2.17)In view of (2.16) and (2.17), the terms B0 and BN 
an be rewritten as follows
B0 =

ˆ +∞

0

k [v(k)− v(y0)]ϕ(x0) dt, BN =

ˆ +∞

0

k [vmax − v(k)]ϕ(xN ) dt.As for the term Ii, we have for i = 0, . . . , N − 1

Ii =

ˆ +∞

0

|yi − k|

{

d

dt

[

ˆ xi+1

xi

ϕdx

]

− v(yi+1)ϕ(xi+1) + v(yi)ϕ(xi)

}

dt

+

ˆ +∞

0

sgn(yi − k) [f(yi)− f(k)] [ϕ(xi+1)− ϕ(xi)] dt.By (1.16), we 
ompute the term
ˆ +∞

0

|yi − k|
d

dt

[
ˆ xi+1

xi

ϕdx

]

dt = −

ˆ +∞

0

[
ˆ xi+1

xi

ϕdx

]

d

dt
|yi − k| dt
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= −

ˆ +∞

0

sgn(yi − k)

[

−
y2i
ℓ
[v(yi+1)− v(yi)]

] [
ˆ xi+1

xi

ϕdx

]

dt

=

ˆ +∞

0

sgn(yi − k) yi [v(yi+1)− v(yi)]

[
 xi+1

xi

ϕdx

]

dt.Hen
e, we have
N−1
∑

i=0

Ii−1 =

N
∑

i=1

ˆ +∞

0

Ji dt+

N
∑

i=1

ˆ +∞

0

Ki ϕ(xi) dt+

ˆ +∞

0

Lϕ(t, x0) dt−

ˆ +∞

0

M ϕ(t, xN ) dt,with
Ji := sgn(yi−1 − k) yi−1 [v(yi)− v(yi−1)]

[

 xi

xi−1

ϕdx− ϕ(xi)

]

,

Ki := sgn(yi−1 − k) yi−1 [v(yi)− v(yi−1)] + |yi − k| v(yi)− sgn(yi − k)[f(yi)− f(k)],

− |yi−1 − k| v(yi) + sgn(yi−1 − k) [f(yi−1)− f(k)] ,

L := |y0 − k| v(y0)− sgn(y0 − k) [f(y0)− f(k)] ,

M := k vmax − f(k).We observe that
BN −

ˆ +∞

0

Mϕ(t, xN ) dt = 0.We now 
ompute L. If k < y0, we have
L = k [v(k)− v(y0)] ≥ 0,as v is non in
reasing. Therefore, for k < y0

B0 +

ˆ +∞

0

Lϕ(t, x0) dx = 2

ˆ +∞

0

k [v(k)− v(y0)]ϕ(x0) dt ≥ 0.Similarly, for k ≥ y0 we have
L = k [v(y0)− v(k)] ≥ 0,whi
h gives

B0 +

ˆ +∞

0

Lϕ(t, x0) dx = 0.We now 
ompute the term Ki for i = 1, . . . , N . After some easy manipulations, we get
Ki = k [v(k)− v(yi)] {sgn(yi − k)− sgn(yi−1 − k)} .We 
onsider all the possible 
ases for k. If either k < min{yi, yi−1}, or k > max{yi, yi−1}, then we easily get

Ki = 0. If yi ≤ k ≤ yi−1, then Ki = 2k[v(yi)−v(k)] ≥ 0 as v is non in
reasing. Finally, if yi−1 ≤ k ≤ yi, then
Ki = 2k[v(k)− v(yi)] ≥ 0. In all 
ases, we get Ki ≥ 0 for all i = 1, . . . , N . Putting all the terms together, weget

ˆ +∞

0

ˆ

R

[

|ρ̂− k|ϕt + sgn(ρ̂− k) [f(ρ̂)− f(k)]ϕx

]

dxdt ≥

N
∑

i=1

ˆ +∞

0

Ji dt. (2.18)



RIGOROUS DERIVATION OF THE LWR MODEL FROM THE FTL MODEL 25We now estimate the terms Ji. For some δ > 0, assuming that the support of ϕ is 
ontained in the strip
t ∈ [δ, T ], we have by Proposition 2.6

∣

∣

∣

∣

∣

N
∑

i=1

ˆ +∞

0

Ji dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

i=1

ˆ +∞

0

sgn(yi−1 − k) yi−1 [v(yi)− v(yi−1)]

[

 xi

xi−1

ϕdx− ϕ(xi)

]

dt

∣

∣

∣

∣

∣

≤

ˆ +∞

0

N
∑

i=1

[

y2i−1

ℓ
|v(yi)− v(yi−1)|

ˆ xi

xi−1

|ϕ(x)− ϕ(xi)| dx

]

dt

≤ Lip(ϕ)

ˆ T

δ

sup
i=1,...,N

[

y2i−1 (xi − xi−1)
2

ℓ

]

N
∑

i=1

|v(yi)− v(yi−1)| dt

≤ ℓLip(ϕ)T sup
t≥δ

TV [v(ρ̂n(t))] ≤ ℓLip(ϕ)T Cδ.As a 
onsequen
e
lim

n→+∞

N
∑

i=1

ˆ +∞

0

Ji dt = 0and letting n go to in�nity in (2.18) we obtain the entropy inequality (1.7). ⋄2.5. Con
luding remarks. We 
on
lude this paper with the some te
hni
al remarks whi
h help motivatingour 
hoi
es in the strategy of the proof at several stages in the paper.
• In the 
ase of v su
h that v′ ≤ −c < 0, then the Oleinik-type estimate (2.12) gives a one sidedestimate for ρ̂nx in the sense of distributions. Su
h an estimate 
an be then passed to the limit veryeasily, and one obtains an analogous estimate for the limit. In this way, one 
an 
he
k that the limit
ρ is an entropy solution in mu
h easier way than the above proof. In the general 
ase of v′ possiblydegenerating, su
h a strategy fails. Indeed, surprisingly enough the Oleinik estimate one gets in thelimit from (2.12) is not equivalent (in general) to the estimate (1.8). For this reason, we preferredgetting the entropy 
ondition in the Kruºkov sense rather than the one sided Lips
hitz 
ondition.This strategy allows in parti
ular to get the entropy 
ondition in the limit also in the 
ase of v notsatisfying (V3) and ρ̄ satisfying (InBV).

• In the 
ase of linear velo
ity v, e.g. v(ρ) = vmax(1− ρ), the 
onvergen
e to a weak solution (1.5) 
anbe obtained without the need of the BV estimates, as the velo
ity term in (2.7) is linear. This issomehow intrinsi
 in using a Lagrangian des
ription.
• In order to get 
ontinuity in time for the sequen
e ρ̂n, the most natural try would be getting L

1�
ontinuity. En
ouraged by the L
1 time equi-
ontinuity of ρ̌n, we have attempted at proving su
ha property in many ways without su

ess. This is the reason why use the generalized Aubin-Lionslemma, whi
h allows to take advantage of the Wasserstein equi-
ontinuity of ρ̂n, and still get thesame L

1�
ompa
tness in the end. The only drawba
k of this strategy is that we 
an't get any L
1time 
ontinuity for the limit.

• As pointed out in the introdu
tion, the proposed Lagrangian approa
h has the advantage of providinga pie
ewise 
onstant approximation with a non in
reasing number of jumps. The pri
e to pay forsu
h a simpli�
ation is that we lose the 
lassi
al sho
k stru
ture at a mi
ros
opi
 level. Indeed, aspointed out in [15, 43℄, the expli
it solution to the FTL system even for simple Riemann�type initial
onditions is not immediate. On the other hand, this aspe
t gives an added value to our result, as weshow that sho
ks and rarefa
tion waves are still a
hieved in the ma
ros
opi
 limit, despite not beingeasily dete
table at the mi
ros
opi
 level.



26 M. DI FRANCESCO AND M.D. ROSINIAppendix A. Heuristi
 derivation of the FTL model from the LWR modelIn this appendix we formally provide our derivation from the LWR model (1.4) of a dis
rete approximatingmodel of the form (1.9).Let ρ be an entropy solution of (1.4) in the sense of De�nition 1.1 and κ := Rρ. We assume for simpli
itythat ρ is 
ompa
tly supported. The total spa
e o

upied by the vehi
les present in ]−∞, x] at time t ≥ 0 is
F (t, x) :=

ˆ x

−∞

ρ(t, y) dy. (A.1)Clearly, F takes values in [0, L], where L := ‖ρ̄‖
L1(R;[0,1]), and for any �xed t ≥ 0 the map x 7→ F (t, x) is
ontinuous and non-de
reasing, F (t,−∞) = 0 and F (t,+∞) = L. The result in the next proposition showsthat (1.4a) is equivalent to requiring that the weak partial derivatives of F with respe
t to time and spa
e
ommute in the sense of distributions.Proposition A.1 ([16℄). The partial derivatives of F satisfy in the sense of distributions

Fx = ρ, Ft = −f (ρ) . (A.2)Proof. The �rst equality in (A.2) is obvious. For any test fun
tion ψ ∈ C
∞
c (]0,+∞[ × R;R) we have thatby (1.5)

ˆ

R

ˆ

R+

F (t, x) ∂tψx(t, x) dt dx =

ˆ

R

ˆ

R+

F (t, x) ∂xψt(t, x) dt dx

= −

ˆ

R

ˆ

R+

ρ(t, x)ψt(t, x) dt dx =

ˆ

R

ˆ

R+

f (ρ(t, x))ψx(t, x) dt dx.This shows that for any t ≥ 0, the map x 7→ [Ft(t, x) + f (ρ(t, x))] is 
onstant (as a distribution). Thereforethere exists c ∈ L
1

loc
([0,+∞[ ;R) su
h that
ˆ

R

ˆ +∞

0

[

F (t, x)ϕt(t, x)− f (ρ(t, x))ϕ(t, x) + c(t)ϕ(t, x)

]

dt dx = 0.Choose now, for any integer k ∈ N,
ϕ(t, x) = η(t)ψ(x − k),where η ∈ C

∞
c

(]0,+∞[ ;R) and ψ ∈ C
∞
c
(R; [0,+∞[) su
h that ‖ψ‖

L1(R;R) = 1. We get
0 =

ˆ

R

ˆ +∞

0

[

F (t, x) η̇(t)− f (ρ(t, x)) η(t) + c(t) η(t)

]

ψ(x− k) dt dx

=

ˆ

R

ˆ +∞

0

[

F (t, x+ k) η̇(t)− f (ρ (t, x+ k)) η(t) + c(t) η(t)

]

ψ(x) dt dx.By Lebesgue dominated 
onvergen
e theorem, we 
an send k to +∞ and get
0 =

ˆ

R

ˆ +∞

0

[

L η̇(t) + c(t) η(t)

]

ψ(x) dt dx =

ˆ +∞

0

c(t) η(t) dt,and the above expression on the right hand side 
an be easily made nonzero by suitably 
hoosing η, unless
c(t) = 0 for a.e. t ≥ 0, whi
h proves the assertion. ⋄For any t ≥ 0 the map x 7→ F (t, x) is stri
tly in
reasing on the intervals where the density x 7→ ρ(t, x) isnot zero and otherwise it is 
onstant. Therefore we 
an introdu
e X := X [F ], the pseudo-inverse of F . Now,assume for simpli
ity that ρ (t, x) > 0 for all (t, x) ∈ spt(ρ) = {(t, x) ∈ R+ × R : a(t) ≤ x ≤ b(t)}. Then, forany t ≥ 0 by Proposition A.1 we have that x 7→ F (t, x) is stri
tly in
reasing on spt (ρ(t)). This implies that
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X [F ] is the inverse of F on the support of ρ, namely F (t,X(t, z)) = z on (t, z) ∈ R+ × [0, L], and, assumingthat all the derivatives below are well de�ned, we have that

Fx (t,X(t, z)) = ρ (t,X(t, z)) > 0 for a.e. (t, z) ∈ R+ × [0, L] .Therefore,
1 =

d

dz
F (t,X(t, z)) = Fx (t,X(t, z))Xz(t, z),

0 =
d

dt
F (t,X(t, z)) = Ft (t,X(t, z)) + Fx (t,X(t, z))Xt(t, z),whi
h yields, on
e again by Proposition A.1, that X(t, z) is indeed a solution of the PDE

Xt(t, z) = v

(

1

Xz(t, z)

)

. (A.3)The initial 
ondition X(0, z) is determined bŷ
X(0,z)

−∞

ρ̄(y) dy = z.The 
omputation above is only rigorous on the sets in whi
h ρ (t, x) > 0.The last step needed in order to (formally) re
ognize the dis
rete model (1.9) in (A.3) is by repla
ing the
z�derivative of X in (A.3) by the (forward) �nite di�eren
es

Xz ≈
X(t, z + ℓ)−X(t, z)

ℓ
, (A.4)whi
h gives

Xt(t, z) ≈ v

(

ℓ

X(t, z + ℓ)−X(t, z)

)

.Then the desired model (1.9) is obtained by assuming that X(t) is pie
ewise 
onstant on intervals of measure
ℓ, with X(t, j ℓ) = xj(t), j = 1, . . . , N − 1. For any �xed z ∈ {i ℓ : i = 0, 1, . . . , N}, the map t 7→ X(t, z) 
anbe ideally interpreted as the path des
ribed by the `in�nitesimal vehi
le' labelled with z ∈ [0, L]. Therefore,(A.3) 
an be interpreted as the expression in the Lagrangian 
oordinates (t, z) of the Cau
hy problem (1.4).A
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