
RIGOROUS DERIVATION OF THE LIGHTHILL-WHITHAM-RICHARDS MODELFROM THE FOLLOW-THE-LEADER MODEL AS MANY PARTICLE LIMITM. DI FRANCESCO AND M.D. ROSINIAbstrat. We prove that the unique entropy solution to the marosopi Lighthill-Witham-Rihards modelfor tra� �ow an be rigorously obtained as the large partile limit of the mirosopi follow-the-leadermodel, whih is interpreted as the disrete Lagrangian approximation of the former. More preisely, weprove that the empirial measure (respetively the disretised density) obtained from the follow-the-leadersystem onverges in the 1�Wasserstein topology (respetively in L1

loc
) to the unique entropy solution of theLighthill-Witham-Rihards equation in the Kruzkov sense. The initial data are taken in L∞ with ompatsupport, hene we are able to handle densities with vauum. Our result holds for a reasonably general lassof veloity maps (inluding all the relevant examples in the appliations) with possible degenerate slope nearthe vauum state. The proof of the result is based on disrete BV estimates and on a disrete version of theone-sided Oleinik-type ondition. In partiular, we prove that the regularizing e�et L∞

7→ BV is intrinsiof the disrete model.Keywords: miro-maro limit, Lighthill-Whitham-Rihards models, follow-the-leader models, Oleinik ondition, entropy solutions, partile method.2010 AMS Subjet lassi�ation: 35L65 , 35L45 , 90B20 , 65N75 , 82C22 .1. IntrodutionThe modeling of vehiular tra� �ow an be onsidered as one of the most important hallenges of appliedmathematis in the last seventy years. Among its several reperussions on real-world appliations, we mentione.g. the development of smart tra� management systems for integrated appliations of ommuniations,ontrol, and information proessing tehnologies to the whole transport system. Other important resultantbene�ts are the implementation of a joint problem-solving in tra� management, and the addressing ofpratial problem suh as reduing ongestion and related osts. These goals an be ahieved by optimizingthe use of transport resoures and infrastrutures of the transport system as a whole, by bringing moree�ieny in terms of tra� �uidity, and by providing proedures for system stabilization.Several analytial models for vehiular tra�s have been developed in the reent deades. In the �rstinstane, they are lassi�ed into two main lasses: mirosopi models � taking into aount eah singlevehile � and marosopi ones � dealing with averaged quantities. We refer to [5, 30, 39, 42℄ for a survey ofthe models urrently available in the literature.Reently, the availability of on-line data allows to implementing real-time strategies aiming at avoiding (ormitigating) ongested tra�. To address this task, the development and the appliation of analytial modelsthat are easy-to-use and with a high performane in terms of time and reliability are essential requirements.In this sense, opposed to diret numerial `individual based' simulations of large number of interatingagents � as typial when dealing with mirosopi models � many researhers reommend using marosopi(e.g. �uid-dynami) models for tra� �ows. The main advantages of the marosopi approah with respetto the mirosopi one are
• the model is ompletely evolutive and is able to rapidly desribe tra� situations at every time;
• the resulting desription of queues evolution and of traveling times is aurate as the position ofshok waves an be exatly omputed and orresponds to queues tails;1



2 M. DI FRANCESCO AND M.D. ROSINI
• the theory helps developing e�ient numerial shemes suitable to desribe very large number ofagents;
• the model an be easily alibrated, validated and implemented as the number of parameters is low;
• the theory allows to state and possibly solve optimal management problems.The basi marosopi approah to tra� �ow is given by nonlinear hyperboli onservation laws [11, 18,46℄. Suh hoie is a very natural onsequene of the assumption that the total number of vehiles is onstantas the tra� dynamis evolves. Among the marosopi models, we an distinguish two main approahes:�rst order and seond order models. The former � sometimes referred to as equilibrium models � are based onthe assumption that the veloity an be expressed a priori as an expliit funtion of the density alone, see forinstane [33, 41℄. The latter orrespond to the non-equilibrium models, in whih the veloity and the densityare oupled through a further evolution equation, whih an be regarded as a ontinuum analogue of Newton'slaw, as for instane in [4, 50℄. We underline that the only aurate physial law in vehiular tra� theoryis the onservation of the total number of vehiles. All other assumptions result from oarse approximationsof empirial observations. However, as the dynamis of any living system are in�uened by deision-makingand psyhologial e�ets, nobody would expet that tra� models ould reah an auray omparableto that attained in other domains of siene (e.g. Newtonian physis or thermodynamis). Nevertheless,they potentially have su�ient desriptive power for the spei� appliation-driven purpose, and they helpunderstanding non-trivial properties of tra� �ows. In this paper we shall fous on equilibrium marosopitra� models by assuming a general onstitutive equation for the veloity.The use of marosopi models relies on the ontinuum assumption, namely on the assumption that themedium is inde�nitely divisible without hanging its physial nature. Suh assumption is not justi�able inthe ontext of vehiular tra�s, as the number of vehiles is typially far lower than the typial number ofmoleules e.g. in �uid dynamis. Indeed, in order to motivate the use of a ontinuum model, the numberof vehiles should be large enough to give sense to onepts like marosopi density and average �ow.Usually, the ontinuum hypothesis is aepted as a tehnial approximation of the physial reality, regardingmarosopi quantities as measures of tra� features. In order to justify and make more lear the ontinuumhypothesis, the study of the disrete to ontinuum limit for seond order models has been proposed in [3,6℄. First attempts at analyzing the same onnetion for �rst order marosopi models have been reentlyproposed in [14, 15, 43℄. In this paper we address this latter task in a rigorous and onstrutive form. Morepreisely we prove that, under reasonable assumptions on the veloity �eld, the ontinuum (marosopi)model an be solved as a many partile limit of a disrete (mirosopi) one.Our approah an be skethed as follows. We �x L > 0 to be the total length of the vehiles on a highway,namely the total spae oupied by the all vehiles (i.e. the total mass in a `ontinuum PDEs' language),and we onsider an initial ontinuum density ρ̄ with total length L. For a given positive integer N , we split

ρ̄ in N platoons of `possibly frational' vehiles, eah one of equal length ℓ := L/N (more preisely, ℓ isthe spae oupied by the vehiles belonging to eah single platoon), with the endpoints of eah platoonpositioned at x̄i ∈ R, i = 0, . . . , N . The points x̄i are interpreted as (ordered) partiles, and they are takenas initial ondition to an ODE system desribing the evolution of vehiles in the disrete setting, namely tothe follow-the-leader system
ẋi(t) = v

(

ℓ

xi+1(t)− xi(t)

)

, i = 0, . . . , N − 1, (1.1a)
ẋN (t) = vmax, (1.1b)where vmax > 0 is the maximum speed possible. Here v = v(ρ) is the empirial law for the veloity as afuntion of the density ρ. The points xi(t) are interpreted as moving partiles on the real line. We remarkhere that no ollisions our between them, as the distane between two onseutive points is expeted to belarger than or equal to the quantity ℓ for all times, see Lemma 1.1 below. We shall desribe this model in



RIGOROUS DERIVATION OF THE LWR MODEL FROM THE FTL MODEL 3detail below in Subsetion 1.2. We then onsider the empirial measure
ρN (t) = ℓ

N−1
∑

i=0

δxi(t), (1.2)and prove in Theorem 1.3 that its limit (in a measure sense to be explained later on) as N goes to in�nity isatually an L
1 density ρ, whih satis�es the Lighthill-Whitham-Rihards model [33, 41℄

ρt + f(ρ)x = 0, with f(ρ) = ρ v(ρ), (1.3)in the Oleinik-Kruºkov entropy sense [31, 37℄, see De�nition 1.1 below. Our onvergene result has a naturalinterpretation as a large partile limit for the salar onservation law (1.3). In this sense, it an be seen asan abstrat partile method for (1.3) whih an be applied in the ontext of numeris. On the other hand,the disrete model (1.1) an be also interpreted as a disrete Lagrangian formulation of (1.3), whih makesour result meaningful from a physial point of view.The main novelty with respet to previous results in the literature is that our result is purely onstrutive,in the sense that it an be onsidered as an alternative tool to solve a salar onservation law. No propertyof the limiting solution is used, exept the uniqueness of entropy solutions in [31, 37℄ whih is used to provethat the sheme has a unique limit. Furthermore, di�erently from [3℄, we do not shrink the length of thevehiles to zero and we do not let the size of the highway or the number of vehiles under onsideration tendto in�nity. In fat, our approximation algorithm rather lets the number of platoons under onsideration tendto in�nity, but keeps both the length of the highway and the total length L of the vehiles onstant. Finally,another important di�erene from [3℄ is that our approah allows to handle vauum regions. This introduesfurther tehnial di�ulties that are rigourously treated and solved in the present paper.Although the literature on nonlinear onservation laws is extremely rih of e�etive numerial shemes (wemention here the pioneering work of Glimm [24℄ for systems, and the wave-front traking algorithm proposedby Dafermos in [17℄ and improved later on by Di Perna [21℄ and Bressan [10℄, see [11℄ and the referenestherein for more details), to our knowledge the rigorous approximation of an entropy solution to a salaronservation law by the empirial solution to an ODE system of lagrangian partiles in the spirit of (1.1) hasnot been overed yet. The reent paper [15℄ provides preliminary results, but it does not ontain the neededestimates to justify the limiting proedure.Our approah di�ers from most of the numerial approahes to the solution to a salar onservation lawin that it interprets the mirosopi limit as a mean �eld limit of a system of interating partiles withnearest neighbour type interation, in the spirit of (loally and non-loally) interating partiles systems instatistial mehanis, probability, kineti theory, mathematial biology, et. In this sense, our result anbe ast in the framework of large (deterministi) partile limits with appliation to several ontexts in �uidmehanis, see e.g. the lassial referenes [22, 35, 38℄. In one spae dimension, a key result in the ontext ofdeterministi approximations is the one by Russo [45℄, whih applies to the linear di�usion equation, in whihthe di�usion operator is replaed by a nearest neighbour interation term (see also later generalizations tononlinear di�usion in [34℄). We also mention here the paper by Brenier and Grenier [8℄, whih provides apartile justi�ation of the pressureless Euler system (and a partile approximation for a salar onservationlaw, although with a ompletely di�erent approah and interpretation). Our approah an be onsidered asmore in the spirit of [45℄, applied to a salar onservation law of tra� type.The existing numerial method for salar onservation laws whih most resembles our partile method isprobably the wave-front traking algorithm, in whih the solution is approximated by a pieewise onstantpro�le whih is disontinuous on a �nite number of moving fronts. Suh a struture naturally suggests thetotal variation as the natural quantity to look at in order to perform e�ient uniform estimates, and thespae L
1 as the natural environment to set up the problem and to measure the error in the approximationproedure. In our ase, the approximating sequene is a linear ombination of Dira's deltas. Therefore,a measure topology is needed to ompare the approximating solution and its limit. Our hoie (whih will



4 M. DI FRANCESCO AND M.D. ROSINIappear as the most natural one) for suh a topology is (a saled version of) the 1�Wasserstein distane,see [1, 49℄.The main advantage in using the Wasserstein distane relies on its identi�ation with the L
1�topology inthe spae of pseudo-inverses of umulative distributions. Roughly speaking, let ρ be the solution to (1.3) andlet

F (t, x) :=

ˆ x

−∞

ρ(t, x) dx ∈ [0, L],be its primitive. The pseudo inverse variable
X(t, z) := inf {x ∈ R : F (x) > z} , z ∈ [0, L[ ,formally satis�es the Lagrangian PDE

Xt(t, z) = v

(

1

Xz(t, z)

)

.Now, if we replae the z�derivative of X by a forward �nite di�erene
Xz ≈

X(t, z + ℓ)−X(t, z)

ℓ
,and assume that X is pieewise onstant on intervals of length ℓ, the ODE system (1.1) is immediatelyreovered, with the struture

X(t, z) =
∑

i

xi(t)χ[iℓ,(i+1)ℓ[(z).We shall explain the above formal omputation more in detail in Setion A in the Appendix.The use of pseudo-inverse variables and Wasserstein distanes in the framework of salar onservationlaws is not totally new. In [12℄, a ontration estimate in the so-alled ∞�Wasserstein distane for genuinelynonlinear salar onservation laws was derived. The ase of non-dereasing solution was treated earlier in [7℄.As far as the LWR model is onerned, we also remark here that in [36℄ a simpli�ed version of the model (1.3)is derived by introduing as new variable the umulative number of vehiles passing through a loation x attime t starting from the passage of some referene vehile, see [2, 19℄ for reent developments of this theory.From the tehnial point of view, our onvergene result relies �rst of all on proving that the empirialmeasure (1.2) has the same (weak) N → +∞ limit as the pieewise onstant approximation
ρ̂N(t, x) =

N−1
∑

i+1

yi(t)χ[xi(t),xi+1(t)[, yi(t) :=
ℓ

xi+1(t)− xi(t)
,in whih yi(t) is the disrete lagrangian version of the density. The most important step, however, liesin providing strong L

1 ompatness of ρ̂N . This task is performed in two di�erent ways. In the ase of
BV initial data, we are able to provide a diret estimate of the total variation of the disrete density (seeProposition 2.5). On the other hand, our main result onerns with the ase of general L∞ data: in thisase, a key estimate on the partile model (see Lemma 2.4), whih an be onsidered as a disrete version ofthe Oleinik ondition for the salar onservation law, allows to provide strong ompatness even if the initialtotal variation is unbounded. In some sense, this proves that the one-sided Lipshitz regularizing e�et ofthe salar onservation law (1.3) is somehow an intrinsi property of the disrete Lagrangian formulation ofthe model. We defer to [25℄ and the referenes therein for general results on the regularizing e�et for salaronservation laws.For numerial purposes, the use of disrete Oleinik onditions has been addressed before for the Lax-Friedrihs and Godunov shemes in [9, 26, 37, 47℄. There is also a similar result for seond order systemsin [6℄. The striking novelty in our approah is the fat that our disrete Oleinik ondition is only posedin terms of the veloity �eld, whereas the lassial Oleinik ondition is stated in terms of the derivativeof the �ux, see [29℄. This is due to the fat that the disrete model is a Lagrangian one, and is thereforeharaterised by the veloity law. The advantage of having the disrete one-sided Lipshitz ondition in terms



RIGOROUS DERIVATION OF THE LWR MODEL FROM THE FTL MODEL 5of the veloity is that we an also onsider veloity laws with degenerate slopes at ρ = 0. An interestingnumerial feature (whih is however quite natural when onsidering partile approximations) is that thedisrete approximation ρ̂N for the density has no vauum regions in the interior of its support, no matterwhether or not the (ontinuum) initial ondition is made up by more than one hump. Finally, let us mentionthat our disrete density ρ̂N is always disontinuous on at most N+1 fronts, unlike in the wave front trakingapproximation in whih the number of jumps may inrease in time.Our paper is strutured as follows. We introdue the (ontinuum) LWR model (1.3) and the (disrete)FTL model (1.1) in detail, in subsetions 1.1 and 1.2 respetively. In Subsetion 1.3 we reall the basis onthe Wasserstein distane in one spae dimension. We set up the approximating sheme and state our mainresult in Setion 2. The preise statement of the main result is ontained in Theorem 1.3 and its proof is splitinto the subsetions 2.1, 2.2, 2.3, and 2.4. More preisely, Subsetion 2.1 is devoted to the proof of the weakonvergene of our approximating sheme, in Subsetion 2.2 we prove the two basi ompatness estimatesmentioned above, in Subsetion 2.3 we provide the needed time-ontinuity and prove strong ompatness in
L
1, and �nally in Subsetion 2.4 we prove that the limit is the unique entropy solution in the Oleinik-Kruºkoventropy sense [31, 37℄.1.1. The LWR model. The LWR model is the �rst and most popular equilibrium model for tra� �ows.It was independently introdued by Lighthill, Whitham [33℄ and Rihards [41℄. It is based on the assumptionthat the veloity of the vehiles depends only on their loal density, and that the number of vehiles isonserved, namely that the total number of vehiles on a given segment of the road x ∈ [a, b] only varies dueto the inoming �ux in x = a and the outgoing �ux in x = b. With these assumptions the model is expressedby the following Cauhy problem for a salar onservation law

ρt + [ρ v(ρ)]x = 0, t > 0, x ∈ R, (1.4a)
ρ(0, x) = ρ̄(x), x ∈ R, (1.4b)where ρ = ρ(t, x) ∈ [0, 1] is the (dimensionless) normalized density of vehiles in x ∈ R at time t ≥ 0, v is the(mean) veloity and ρ̄ is the initial distribution of the vehiles with ompat support.The veloity law ρ 7→ v(ρ) is de�ned on [0, 1] and with values in [0, vmax], with vmax > 0 being themaximum speed orresponding to a free highway. Typially, lower veloities orrespond to higher densities,namely ρ 7→ v(ρ) is a non-inreasing funtion with v(0) = vmax. Moreover, in order not to allow a vehile tomove in ase of maximum density, one presribes v(1) = 0. The tra� �ux funtion

f(ρ) := ρ v(ρ)is typially assumed to be onave with f(0) = f(1) = 0. Sine f(0) = 0 and for the �nite speed ofpropagation lim|x|→+∞ ρ(t, x) = 0, we have that the total spae L := ‖ρ(t)‖
L1(R;[0,1]) oupied by all vehilesat time t is time independent, namely L = ‖ρ̄‖

L1(R;[0,1]) for all t ≥ 0.Aording to the theory of nonlinear onservation laws, see e.g. [11, 18, 46℄, solutions to (1.4) may developdisontinuities in a �nite time, also for regular initial data. For this reason, one has to onsider weak solutions
ρ to (1.4), more preisely ρ in L

∞
(

[0,+∞[ ;L1 (R; [0, 1])
) that satisfy (1.4) in the sense of distributions,namely

ˆ

R

ˆ +∞

0

[

ρ(t, x)ϕt(t, x) + f (ρ(t, x))ϕx(t, x)

]

dt dx+

ˆ

R

ρ̄(x)ϕ(0, x) dx = 0 (1.5)for all ϕ ∈ C
∞
c

([0,+∞[× R;R). The hoie of L1 (R; [0, 1]) as the funtional spae to deal with the x�regularity appears as the most reasonable one in order to obtain existene of weak solutions when theapproximating proedure is performed via a vanishing visosity argument, see e.g. [18, Setion 6.3℄. How-ever, the spae BV (R; [0, 1]) is more reminisent of the typial struture of solutions featuring shoks andrarefation waves, and turns out to be a natural hoie when the problem is e.g. solved by the polygonalapproximation algorithm also known as the wave-front traking algorithm [17℄, see also [11℄ and the referenestherein.



6 M. DI FRANCESCO AND M.D. ROSINIIt is well known that the notion of weak solution introdued above is not enough to provide uniqueness ofsolutions to (1.4). The onept of entropy solution formulated in [31, 32, 37℄ (see also [18℄ and the referenestherein), provides the most natural and e�ient way to single out a unique (physially relevant) solutionto (1.4). Suh onept an be be formulated in several ways, also depending on the regularity of ρ, the mostgeneral one being the one proposed by Kruºkov [31℄, whih holds for a reasonably wide lass of �uxes (namely
ρ 7→ f(ρ) being loally Lipshitz) and in arbitrary spae dimension.De�nition 1.1 (Entropy solutions). Assume that the �ux ρ 7→ f(ρ) is loally Lipshitz. A funtion ρ in
L
∞

(

[0,+∞[ ;L1 (R; [0, 1])
) is an entropy solution to (1.4) if it satis�es the entropy inequality

ˆ

R

ˆ +∞

0

[

|ρ(t, x) − k|ϕt(t, x) + sgn (ρ(t, x)− k) [f (ρ(t, x))− f(k)]ϕx(t, x)

]

dt dx

+

ˆ

R

ϕ(0, x)|ρ̄(x) − k|dx ≥ 0 (1.6)for all ϕ ∈ C
∞
c ([0,+∞[× R;R) with ϕ ≥ 0, and for all onstants k ∈ R.Clearly, any entropy solution is a weak solution to (1.4) in the sense of (1.5). Moreover uniqueness followsfrom (1.6).Theorem 1.1 (Kruºkov [31℄). Assume that the �ux f is loally Lipshitz. Then, for any given initialondition ρ̄ in L

∞ with 0 ≤ ρ̄ ≤ 1 a.e. and with ompat support, there exists a unique entropy solutionto (1.4) in the sense of De�nition 1.1.It is easy to hek that any funtion ρ satisfying the entropy inequality (1.6) satis�es also the followingproperty of (weak) L1�ontinuity in time
lim

T→0+

1

T

ˆ T

0

ˆ

|x|≤r

|ρ(t, x)− ρ̄(x)| dxdt = 0for all r > 0. However, depending on the way we attempt at onstruting entropy solutions, an importantissue is related with deteting the trae at t = 0 in a strong enough topology. This is often the ase when theapproximating sheme laks of ompatness when t approahes zero. A theorem due to Chen and Rasle [13℄states that the uniqueness of the entropy solution is preserved also for a notion of entropy solution relaxedat t = 0, provided the �ux f satis�es a.e. a genuine nonlinearity ondition.Theorem 1.2 (Chen and Rasle [13℄). Assume there exists no nontrivial interval on whih f is a�ne. If ρ̄ isin L
∞ with 0 ≤ ρ̄ ≤ 1 a.e. and with ompat support, then there exists a unique ρ in L

∞
(

[0,+∞[ ;L1 (R; [0, 1])
)weak solution to (1.4) in the sense of (1.5) that satis�es also

ˆ

R

ˆ +∞

0

[

|ρ(t, x)− k|ϕt(t, x) + sgn(ρ(t, x) − k)[f (ρ(t, x))− f(k)]ϕx(t, x)

]

dt dx ≥ 0 (1.7)for all ϕ ∈ C
∞
c

(]0,+∞[× R;R) with ϕ ≥ 0, and for all onstants k ∈ R. Moreover, ρ is the unique entropysolution in the sense of De�nition 1.1.Let us �nally reall that, for C1��uxes f whih are onave or onvex, another lassial tool to uniquelydetermine all weak solutions by their L∞�initial values is the so alled Oleinik-type ondition [29℄
ˆ

R

ˆ +∞

0

f ′(ρ(t, x))ϕx(t, x) dt dx ≥ −

ˆ

R

ˆ +∞

0

1

t
ϕ(t, x) dt dx (1.8)for all ϕ ∈ C

∞
c ([0,+∞[× R;R) with ϕ ≥ 0, and for all t > 0. Moreover, if f ′ has Lipshitz ontinuousinverse, then (1.8) implies that ρ(t, ·) has loally bounded total variation for all t > 0 even if the initialdatum is not in BV.



RIGOROUS DERIVATION OF THE LWR MODEL FROM THE FTL MODEL 71.2. The FTL model. Mirosopi models of vehiular tra� are typially based on the so alled Follow-The-Leader (FTL) model, that is the subjet of this setion.Consider a single lane road parameterized by x ∈ R, with tra� moving in the diretion of inreasing x,with N+1 ordered Referene Vehiles (RVs). Denote by t 7→ xi(t) the position of the i�th RV for i = 0, . . . , N .Then, aording to the FTL model, the evolution of the tra� along the road is desribed indutively by thefollowing Cauhy problem for an ODE system
ẋN (t) = vmax, (1.9a)
ẋi(t) = v

(

ℓ

xi+1(t)− xi(t)

)

, i = 0, . . . , N − 1, (1.9b)
xi(0) = x̄i, i = 0, . . . , N, (1.9)where v ∈ C

1([0, 1]; [0, vmax]) is the veloity map, x̄0 < . . . < x̄N are the initial positions of the RVs, ℓ > 0 isthe length of eah RV, and vmax is the maximum veloity, reahed by vehiles with free road ahead, i.e. onlyby the leading vehile xN . Coherently with the de�nition of ℓ, we assume that
x̄i+1 − x̄i ≥ ℓ, i = 0, . . . , N − 1. (1.10)System (1.9) an be solved indutively starting from i = N . Indeed, from (1.9a), we immediately deduethat

xN (t) = x̄N + vmax t.Then, we an ompute t 7→ xi(t) one we know t 7→ xi+1(t). In fat, aording with the system (1.9) theveloity of the i�th RV depends on its distane from the (i + 1)�th RV alone via the smooth veloity map
v, that is assumed to be non-inreasing and with v(1) = 0. The latter assumption an be interpreted as
ẋi(t) = 0 when xi+1(t)− xi(t) = ℓ, namely, if at time t the vehiles xi(t) and xi+1(t) are bumper-to-bumper,then the i�th RV is not moving. As we will see in the next lemma, this ensures that xi+1(t) − xi(t) ≥ ℓ,
i = 0, . . . , N − 1, for all times t ≥ 0 and, therefore, that (1.9) admits a global-in-time solution.Lemma 1.1 (Disrete maximum priniple, [43℄). For all i = 0, . . . , N − 1, we have

ℓ ≤ xi+1(t)− xi(t) ≤ x̄N − x̄0 + vmax t for all times t ≥ 0. (1.11)Proof. The upper bound is obvious. Hene, it is su�ient to prove the lower bound. Consider the Cauhyproblem obtained from (1.9) by substituting v with its extension V : [0,+∞[ → [0, vmax] de�ned by V :=
v χ[0,1] (note that the extension on ]−∞, 0[ is not of interest as the argument of v is always detahed fromzero). Denote by (X0, . . . , XN) the orresponding solution. By (1.10) we have that Xi+1(0) − Xi(0) ≥ ℓ.Assume by ontradition that there exists i ∈ {0, . . . , N − 1} and t2 > t1 ≥ 0 suh that Xi+1(t1)−Xi(t1) = ℓandXi+1(t)−Xi(t) < ℓ for all t ∈ ]t1, t2]. Sine t 7→ Xi+1(t)−Xi(t) isC1, we have that Ẋi+1(t1)−Ẋi(t1) < 0.On the other hand, by (1.9) we have that for all t ∈ [t1, t2]

Ẋi+1(t)− Ẋi(t) = V

(

ℓ

Xi+2(t)−Xi+1(t)

)

≥ 0 if i = 0, . . . , N − 2,

ẊN (t)− ẊN−1(t) = vmax > 0 if i = N − 1,but this is a ontradition. Hene Xi+1(t) −Xi(t) ≥ ℓ for all t ≥ 0. As a onsequene of the uniqueness ofthe solution to (1.9), we have that (X1, . . . , XN) is in fat also the solution of (1.9) with the original v. ⋄



8 M. DI FRANCESCO AND M.D. ROSINI1.3. Notation and preliminaries on measure distanes. In this setion we reall basi properties ofpseudo-inverse operators that we shall use extensively in the rest of the paper. We defer to [49℄ for furtherdetails.For a �xed L > 0, introdue the pseudo-inverse operators
X : L∞ (R; [0, L]) → L

∞ ([0, L[ ;R) ,

F : L∞ ([0, L[ ;R) → L
∞ (R; [0, L]) ,de�ned by

X [F ] (z) := inf {x ∈ R : F (x) > z} for z ∈ [0, L[ ,

F [X ] (x) := meas {z ∈ [0, L] : X(z) ≤ x} for x ∈ R,and onsider the spae
ML := {ρ Radon measure on R with ompat support : ρ ≥ 0, ρ(R) = L} .For a given ρ ∈ ML, we denote xρmin := min (spt(ρ)) and xρmax := max (spt(ρ)), and by Fρ : R → [0, L] itsumulative distribution, namely Fρ(x) := ρ (]−∞, x]). We observe that Fρ ∈ L

∞ (R; [0, L]) is non-dereasing,right-ontinuous with Fρ(x) = 0 for all x ≤ xρmin and Fρ(x) = L for all x ≥ xρmax. Therefore we an de�neits pseudo-inverse Xρ := X [Fρ]. Clearly, Xρ ∈ L
∞ ([0, L[ ; [xρmin, x

ρ
max]) is non-dereasing, right-ontinuouswith Xρ(0) = xρmin. By abuse of notation, we shall adopt the notation ρ to denote an absolutely ontinuousmeasure in ML with L

1�density ρ.Lemma 1.2 (Change of variable). If ρ ∈ ML, then for all ϕ ∈ C
0(R;R) we have

ˆ

R

ϕ(x) dρ(x) =

ˆ L

0

ϕ (Xρ(z)) dz.We reall that, for L = 1, the one-dimensional 1�Wasserstein distane between ρ1, ρ2 ∈ M1 (de�ned interms of optimal plans in the Monge-Kantorovih problem, see e.g. [49℄) an be de�ned as
d1(ρ1, ρ2) := ‖Fρ1

− Fρ2
‖
L1(R;R) = ‖Xρ1

−Xρ2
‖
L1([0,1];R).For a general stritly positive L, we introdue the saled 1�Wasserstein distane between ρ1, ρ2 ∈ ML as

dL,1(ρ1, ρ2) := ‖Fρ1
− Fρ2

‖
L1(R;R) = ‖Xρ1

−Xρ2
‖
L1([0,L];R). (1.12)Indeed, straightforward omputation yields

dL,1(ρ1, ρ2) = Ld1(ρ1/L, ρ2/L).The distane dL,1 inherits all the topologial properties of the 1�Wasserstein distane for probability measures.In partiular, a sequene (ρn)n∈N in ML onverges to ρ ∈ ML in dL,1 if and only if
lim

n→+∞

ˆ

R

ϕ(x) dρn(x) =

ˆ

R

ϕ(x) dρ(x),for all ϕ ∈ C
0(R;R) growing at most linearly at in�nity.1.4. Statement of the main result. In this subsetion we state our main result, whih provides a rigorousdesription of the unique entropy solution ρ to the Cauhy problem (1.4) as the limit for N that goes toin�nity of a density assoiated to the mirosopi model (1.9) to be onstruted as desribed below.We shall work under the standing assumption on the initial datum(In) The initial datum ρ̄ is in ML ∩ L

∞(R;R) and 0 ≤ ρ̄ ≤ 1 almost everywhere.In some ases we shall require the stronger ondition(InBV) The initial datum ρ̄ is in ML ∩BV(R; [0, 1]).As for the veloity funtion v, we shall require throughout the paper(V1) v ∈ C
1([0, 1]; [0, vmax]), v stritly dereasing on [0, 1], vmax > 0.



RIGOROUS DERIVATION OF THE LWR MODEL FROM THE FTL MODEL 9(V2) v(0) = vmax and v(1) = 0.The assumption (V1) is a minimal requirement for having a unique loal solution to the system (1.9).Assumption (V2) is a su�ient ondition to guarantee that suh solution is globally de�ned, as seen inLemma 1.1. From the modelling point of view, ondition (V2) is a natural requirement, as it presribes speedzero at maximal density. The monotoniity ondition in (V1) is also a natural requirement for a tra� model(all vehiles drive faster in lower densities).In some ases, we shall use the extra assumption(V3) ρ v′′(ρ) + v′(ρ) ≤ 0 for all ρ ∈ [0, 1].Notie that the assumption (V3) implies in partiular that the �ux ρ 7→ f(ρ) is stritly onave. On theother hand, (V3) is a slightly striter requirement than strit onavity, but is veri�ed in many examples ofveloities arising in tra� �ow models.Remark 1.1 (Examples of veloities). Clearly, the prototype for the veloity v(ρ) = vmax (1− ρ) by Green-shields [28℄ satis�es the assumptions (V1), (V2), (V3). The same holds for the Pipes-Munjal veloity [40℄
v(ρ) = vmax (1− ρα) α > 0,in whih the onavity of the �ux ρ v(ρ) degenerates at ρ = 0. Further examples of speed-density relationsthat satisfy (V1), (V2), (V3) an be obtained by a slight modi�ation of the Greenberg model [27℄

v(ρ) = vmax

[

log

(

1 + α

α

)]−1

log

(

1 + α

ρ+ α

)

, α > 0,or of the Underwood model [48℄
v(ρ) = vmax

e−ρ − e−1

1− e−1
.We shall denote by x̄min < x̄max the extremal points of the onvex hull of the support of ρ̄, namely

⋂

[a,b]⊇spt(ρ̄) [a, b] = [x̄min, x̄max].We now introdue our atomization sheme. Let n be a positive integer su�iently large. We split the totallength of vehiles L := ‖ρ̄‖
L1(R;R) in Nn := 2n platoons of length ℓn := 2−nL as follows. We set

x̄n0 := x̄min, (1.13a)and reursively
x̄ni := sup

{

x ∈ R :

ˆ x

x̄n

i−1

ρ̄(y) dy < ℓn

}

, i = 1, . . . , Nn. (1.13b)It is easily seen that x̄nNn
= x̄max, x̄nNn−i = x̄n+m

Nn+m−2mi, and sine 0 ≤ ρ̄ ≤ 1 a.e. we have
ℓn =

ˆ x̄n

i+1

x̄n

i

ρ̄(y) dy ≤ x̄ni+1 − x̄ni , i = 0, . . . , Nn − 1.Thus the ondition (1.10) is satis�ed with ℓ = ℓn, and we an take the values x̄n0 , . . . , x̄nNn
as the initialpositions of the (Nn + 1) referene vehiles in the n�depending version of the follow-the-leader (1.9)

ẋnNn
(t) = vmax, (1.14a)

ẋni (t) = v

(

ℓn
xni+1(t)− xni (t)

)

, i = 0, . . . , Nn − 1, (1.14b)
xni (0) = x̄ni , i = 0, . . . , Nn. (1.14)The existene of a global-in-time solution to (1.14) follows from Lemma 1.1. Moreover, from (1.14a) weimmediately dedue that

xnNn
(t) = x̄max + vmax t.



10 M. DI FRANCESCO AND M.D. ROSINIBy introduing in (1.14) the new variable
yni (t) :=

ℓn
xni+1(t)− xni (t)

, i = 0, . . . , Nn − 1, (1.15)we obtain
ẏnN−1 = −

(ynN−1)
2

ℓn

[

vmax − v(ynN−1)
]

, (1.16a)
ẏni = −

(yni )
2

ℓn

[

v(yni+1)− v(yni )
]

, i = 0, . . . , Nn − 2, (1.16b)
yni (0) = ȳni :=

ℓn
x̄ni+1 − x̄ni

, i = 0, . . . , Nn − 1. (1.16)Observe that ℓn/ [x̄max − x̄min + vmax t] ≤ yni (t) ≤ 1 for all t ≥ 0 in view of Lemma 1.1. The quantity yni anbe seen as a disrete version of the density of ars in Lagrangian oordinates, and the ODEs (1.16a)�(1.16b)are a disrete Lagrangian version of the salar onservation law (1.4a).We are now ready to state the main result of this paper.Theorem 1.3. Let ρ̄ satisfy the ondition (In) and v the ondition (V1) and (V2). Assume further thateither
• ρ̄ satis�es (InBV),or
• v satis�es (V3).De�ne the pieewise onstant (with respet to x) density

ρ̂n(t, x) :=

Nn−1
∑

i=0

yni (t)χ[xni (t), x
n
i+1(t)

[(x), (1.17)and the empirial measure
ρ̃n(t, x) := ℓn

Nn−1
∑

i=0

δxni (t)
(x). (1.18)Then the sequene (ρ̂n)n∈N onverges to the unique entropy solution ρ of the Cauhy problem (1.4) almosteverywhere and in L

1

loc
([0,+∞[× R; [0, 1]). Moreover, the sequene (ρ̃n)n∈N onverges to ρ in the topologyof L1

loc
([0,+∞[ ; dL,1). 2. Proof of the main resultOur strategy for the proof of Theorem 1.3 an be resumed as follows:(i) Following the notation introdued in Subsetion 1.3, we set F̂n = Fρ̂n and X̂n = X [F̂n], respetively
F̃n = Fρ̃n and X̃n = X [F̃n], as the umulative distribution of ρ̂n, respetively ρ̃n, and its pseudoinverses. Introdue the disrete Lagrangian density

ρ̌n = ρ̂n ◦ X̂n.(ii) We �rst prove that the sequene of pieewise onstant pseudo-inverse distributions (X̃n)n∈N has astrong limit X in L
1

loc
([0,+∞[×[0, L];R), whih is equivalent to having (ρ̃n)n∈N onverging to a mea-sure ρ in the L

1

loc
([0,+∞[; dL,1) topology. At the same time, we shall also prove that (X̂n)n∈N on-verges in L

1

loc
([0,+∞[×[0, L];R) to the same limitX , i.e. (ρ̂n)n∈N onverges to ρ in L

1

loc
([0,+∞[; dL,1).



RIGOROUS DERIVATION OF THE LWR MODEL FROM THE FTL MODEL 11(iii) We then prove that the limit pseudo-inverse funtion X has di�erene quotients bounded below by 1.This fat allows to prove that the limit measure ρ in (ii) is atually in L
∞ and is a.e. bounded by 1.At the same time, we easily infer weak�∗ onvergene of (ρ̌n)n∈N to a limit ρ̌ in L

∞. It remainsto prove that ρ̌ ◦ F = ρ̃, and that suh limit is the unique entropy solution to (1.4). This requiresstronger estimates on ρ̂n.(iv) A diret proof of a uniform BV estimate for ρ̂n an be performed in the ase of ML ∩ BV initialdatum. In the ase of general ML ∩ L
∞ initial datum we shall prove that the disrete Lagrangiandensity ρ̌n satis�es a (uniform) disrete version of the Oleinik ondition, whih implies automatiallya BV uniform estimate for ρ̌n, and hene for ρ̂n. This step ruially requires ondition (V3) on v.(v) The de�nition of weak solution (1.5) for ρ follows from the n→ +∞ limit of the formulation of (1.14)as a PDE
X̃n

t = v(ρ̌n). (2.1)(vi) We �nally reover the entropy ondition (1.6) in the disrete setting, and use the strong L
1 ompat-ness to pass it to the limit.2.1. Weak onvergene of the approximating sheme. Throughout this subsetion we shall assumethat v satis�es (V1) and (V2). Let ρ̂n and ρ̃n be de�ned as in (1.17) and (1.18) respetively. We have that

ρ̂n(t), ρ̃n(t) ∈ ML for all t ≥ 0. Thus we an onsider the umulative distributions assoiated to ρ̂n and ρ̃n(reall that ρ̃n is an empirial measure)
F̂n(t, x) :=

ˆ x

−∞

ρ̂n(t, y) dy, F̃n(t, x) := ρ̃n(]−∞, x]),and their pseudo-inverses
X̂n := X

[

F̂n
]

, X̃n := X
[

F̃n
]

,extended to z = L by taking X̂n(t, L) = xnNn
(t) = X̃n(t, L). By de�nition, see �gures 1 and 2, for all t ≥ 0,PSfrag replaements
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Figure 1. Maps of the form, respetively from the left, (1.17), (2.2) and (2.3) with n(= 3)and t(≥ 0) omitted.
z ∈ [0, L] and x ∈ R we have
F̂n(t, x) =

Nn−1
∑

i=0

[

i ℓn + yni (t) [x− xni (t)]

]

χ[
xni (t), x

n
i+1(t)

[(x) + Lχ[
xnNn

(t),+∞
[(x), (2.2)

X̂n(t, z) =

Nn−2
∑

i=0

[

xni (t) +
z − i ℓn
yni (t)

]

χ
[i ℓn, (i + 1) ℓn[

(z) +

[

xnNn−1(t) +
z − L+ ℓn
ynNn−1(t)

]

χ
[L− ℓn, L]

(z), (2.3)
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Figure 2. Maps of the form, respetively from the left, (1.18), (2.4) and (2.5) with n(= 3)and t(≥ 0) omitted.
F̃n(t, x) =

Nn−2
∑

i=0

ℓn (i+ 1)χ[
xni (t), x

n
i+1(t)

[(x) + Lχ[
xnNn−1(t),+∞

[(x), (2.4)
X̃n(t, z) =

Nn−1
∑

i=0

xni (t)χ[i ℓn, (i + 1) ℓn[
(z) + xnNn

(t)χ
{L}

(z). (2.5)Observe that for any �xed t ≥ 0

• z 7→ X̂n(t, z) and x 7→ F̂n(t, x) are pieewise linear ontinuous and non-dereasing;
• F̂n(t) : [xn0 (t), x

n
Nn

(t)] → [0, L] and X̂n(t) : [0, L] → [xn0 (t), x
n
Nn

(t)] are stritly inreasing and areinverse funtions of eah other in the lassial sense;
• z 7→ X̃n(t, z) and x 7→ F̃n(t, x) are pieewise onstant with Nn jumps of disontinuity, right ontin-uous and non-dereasing;
• F̂n(t, x) ≤ F̃n(t, x) for any x ∈ R and X̃n(t, z) ≤ X̂n(t, z) for any z ∈ [0, L];
• F̃n+1(t, x) ≤ F̃n(t, x) for any x ∈ R and X̃n(t, z) ≤ X̃n+1(t, z) for any z ∈ [0, L];
• ρ̂n(t, x) = F̂n

x (t, x) for all x 6= xni (t), i = 1, . . . , Nn, while ρ̃n = F̃n
x in the sense of distributions.

PSfrag replaementsρ̌1
zL7L

8
3L
4

5L
8

L

2
3L
8

L

4
L

8Figure 3. Map of the form (2.6) with n(= 3) and t(≥ 0) omitted.



RIGOROUS DERIVATION OF THE LWR MODEL FROM THE FTL MODEL 13For later use, see Figure 3, we introdue also the disrete Lagrangian density
ρ̌n(t, z) := ρ̂n

(

t, X̂n(t, z)
)

=

Nn−1
∑

i=0

yni (t)χ[i ℓn, (i + 1) ℓn[
(z) (2.6)and observe that

X̃n
t (t, z) = v (ρ̌n(t, z)) , t > 0, z ∈ [0, L]. (2.7)As a �rst step, we want to prove that (X̃n)n∈N and (X̂n)n∈N have the same unique limit in L

1

loc
([0,+∞[×[0, L];R).Proposition 2.1 (De�nition of X). There exists a unique X ∈ L

∞ ([0,+∞[× [0, L] ;R), monotone non-dereasing and right ontinuous with respet to z, suh that
(X̂n)n∈N and (X̃n)n∈N onverge to X in L

1

loc ([0,+∞[× [0, L] ;R) ,and for any t, s > 0

TV [X(t)] ≤ |x̄max − x̄min + vmax t|, (2.8a)
‖X(t)‖

L∞([0,L];R) ≤ max {|x̄min|, |x̄max + vmax t|} , (2.8b)
ˆ L

0

|X(t, z)−X(s, z)|dz ≤ vmax L |t− s|. (2.8)Moreover, (X̃n)n∈N onverges to X a.e. on [0,+∞[× [0, L].Proof. Fix T > 0, and let n > 0.
• Step 1: X̃

n → X. Sine z 7→ X̃n(t, z) is non-dereasing with X̃n(t, 0) = xn0 (t) ≥ x̄n0 = x̄min and
X̃n(t, L) = x̄max + vmax t, we have that

TV
[

X̃n(t)
]

≤ |x̄max − x̄min + vmax t|,
∥

∥

∥
X̃n(t)

∥

∥

∥

L∞([0,L];R)
≤ max{|x̄min|, |x̄max + vmax t|}.Moreover, if s < t, then by (1.14b) and (2.5)

ˆ L

0

∣

∣

∣
X̃n(t, z)− X̃n(s, z)

∣

∣

∣
dz =

Nn−1
∑

i=0

ℓn [x
n
i (t)− xni (s)] =

Nn−1
∑

i=0

ℓn

[
ˆ t

s

v (yni (τ)) dτ

]

≤ vmax L (t− s) .Therefore, by applying Helly's theorem in the form [11, Theorem 2.4℄, up to a subsequene, (X̃n)n∈N onvergesin L
1

loc
([0,+∞[× [0, L] ;R) to a funtion X right ontinuous w.r.t. z and satisfying (2.8). Finally, sine

X̃n+1(t, z) ≤ X̃n(t, z) for all t ≥ 0 and z ∈ [0, L], the whole sequene (X̃n)n∈N onverges to X and a.e. on
[0,+∞[× [0, L].
• Step 2: X̂

n → X. By de�nition, see (1.15), (2.3) and (2.5), we have for all t ∈ [0, T ]

ˆ L

0

∣

∣

∣
X̂n(t, z)− X̃n(t, z)

∣

∣

∣
dz =

Nn−1
∑

i=0

yni (t)
−1

ˆ (i+1) ℓn

i ℓn

[z − i ℓn] dz

=
ℓn
2

Nn−1
∑

i=0

[

xni+1(t)− xni (t)
]

=
ℓn
2

[

xnNn
(t)− xn0 (t)

]

≤
ℓn
2

[

x̄max − x̄min + vmax T
]

,and the proof is omplete as (X̃n)n∈N onverges to X in view of Step 1. ⋄In the next lemma we prove that X inherits the maximum priniple property satis�ed by X̃n proven inLemma 1.1.



14 M. DI FRANCESCO AND M.D. ROSINILemma 2.1. For all t ≥ 0 and for a.e. z1, z2 ∈ [0, L] with z1 < z2 we have
z2 − z1 ≤ X(t, z2)−X(t, z1) ≤ x̄max − x̄min + vmax t. (2.9)Proof. The upper bound is obvious. Take 0 ≤ z1 < z2 ≤ L. For n > 0 su�iently large, we an take

i, j ∈ {0, 1, . . . , Nn} suh that i < j, i ℓn ≤ z1 < (i+1) ℓn and ℓn j ≤ z2 < ℓn (j+1). By (2.5) and Lemma 1.1we have
X̃n(t, z2)− X̃n(t, z1)

z2 − z1
≥

xnj (t)− xni (t)

(j + 1) ℓn − i ℓn
≥

(j − i) ℓn
(j + 1) ℓn − i ℓn

= 1−
1

j − i+ 1
≥ 1−

1

(z2 ℓ
−1
n − 1)− z1 ℓ

−1
n + 1

= 1−
ℓn

z2 − z1
.By letting n go to in�nity we onlude the proof. Indeed, limn→+∞ ℓn/[z2 − z1] = 0 and (X̃n)n∈N onvergesto X a.e. on [0,+∞[× [0, L] in view of Proposition 2.1. ⋄Proposition 2.2 (De�nition of F ). (F̂n)n∈N and (F̃n)n∈N onverge to F := F [X ] in L
1

loc
([0,+∞[×R; [0, L]).Moreover, (F̃n)n∈N onverges to F a.e. on [0,+∞[× R.Proof. We �rst observe that by Lemma 2.1 for any �xed t ≥ 0, the map z 7→ X(t, z) is stritly inreasingand for all z ∈ [0, L]

z +X(t, 0) ≤ X(t, z) ≤ x̄max + vmax t− L+ z.Thus, F is well de�ned. The onvergene of (F̂n)n∈N and (F̃n)n∈N to F follows from the basi property (1.12)of the saled Wasserstein distane and from Proposition 2.1. Indeed, for any T > 0 we have
lim

n→+∞

ˆ T

0

ˆ

R

∣

∣

∣
F̂n(t, x) − F (t, x)

∣

∣

∣
dxdt = lim

n→+∞

ˆ T

0

ˆ L

0

∣

∣

∣
X̂n(t, z)−X(t, z)

∣

∣

∣
dz dt = 0,

lim
n→+∞

ˆ T

0

ˆ

R

∣

∣

∣
F̃n(t, x) − F (t, x)

∣

∣

∣
dxdt = lim

n→+∞

ˆ T

0

ˆ L

0

∣

∣

∣
X̃n(t, z)−X(t, z)

∣

∣

∣
dz dt = 0.Finally, (F̃n)n∈N onverges to F a.e. on [0,+∞[×R beause F̃n+1(t, x) ≤ F̃n(t, x) for all t ≥ 0 and x ∈ R. ⋄Lemma 2.2. For all t ≥ 0 and for a.e. x1, x2 ∈ R with x1 < x2 we have

0 ≤ F (t, x2)− F (t, x1) ≤ x2 − x1. (2.10)Proof. Fix x1 < x2 and denote z1 = F (t, x1) ≤ z2 = F (t, x2). Sine the lower bound is obvious, it is su�ientto prove that
z2 − z1 ≤ x2 − x1.If z1 = z2, then there is nothing to prove. Assume therefore that z1 6= z2 and �x η ∈ ]0, z2 − z1[. Byde�nition, X(t, z) = X [F ](t, z) = inf{x ∈ R : F (t, x) > z}. Sine F (t, x2) = z2 > z2 − η, we have that

X(t, z2 − η) ≤ x2. Moreover, X(t, z1) ≥ x1 beause z 7→ X(t, z) is stritly inreasing and right ontinuous.Therefore, by Lemma 2.1 we have
x2 − x1 ≥ X(t, z2 − η)−X(t, z1) ≥ z2 − η − z1.Sine η > 0 is arbitrary, we have z2 − z1 ≤ x2 − x1. ⋄Proposition 2.3 (De�nition of ρ). For any t ≥ 0, let ρ(t) be the distributional derivative of x 7→ F (t, x),with F de�ned in Lemma 2.1. Then:

• ρ(t, ·) ∈ ML for all t ≥ 0,
• 0 ≤ ρ(t, x) ≤ 1 for a.e. t ≥ 0 and x ∈ R,
• (ρ̃n)n∈N and (ρ̂n)n∈N onverge to ρ in the topology of L1

loc
([0,+∞[ ; dL,1),



RIGOROUS DERIVATION OF THE LWR MODEL FROM THE FTL MODEL 15Proof. For any �xed t ≥ 0, by Lemma 2.2 we have that x 7→ F (t, x) is a Lipshitz funtion with Lip (F (t)) ≤
1. Hene its weak derivative ρ(t) is well de�ned in the spae of distributions and is essentially boundedwith ‖ρ(t)‖

L∞(R;R) ≤ 1. Moreover, x 7→ F (t, x) is non-dereasing, and therefore ρ(t) ≥ 0 a.e. in R. ByProposition 2.1 and (1.12) we easily obtain that for any T > 0

lim
n→+∞

ˆ T

0

dL,1 (ρ̂
n(t), ρ(t)) dt = lim

n→+∞

ˆ T

0

ˆ L

0

∣

∣

∣
X̂n(t, z)−X(t, z)

∣

∣

∣
dz dt = 0,

lim
n→+∞

ˆ T

0

dL,1 (ρ̃
n(t), ρ(t)) dt = lim

n→+∞

ˆ T

0

ˆ L

0

∣

∣

∣
X̃n(t, z)−X(t, z)

∣

∣

∣
dz dt = 0.Thus, ρ satis�es also the last ondition and ρ(t) ∈ ML. ⋄Lemma 2.3 (De�nition of ρ̌). There exists ρ̌ in L

∞([0,+∞[×[0, L];R) suh that, up to a subsequene,
(ρ̌n)n∈N onverges weakly-* in L

∞([0,+∞[×[0, L];R) to ρ̌.Proof. It is su�ient to observe that for any n > 0 we have ‖ρ̌n‖
L∞([0,+∞[×[0,L];R) ≤ 1 beause, by Lemma 1.1,

‖yni ‖L∞([0,+∞[;R) ≤ 1. ⋄We onlude this subsetion by heking that the sheme is onsistent with the presribed initial onditionin the limit.Proposition 2.4. The sequenes (ρ̃n|t=0)n∈N and (ρ̂n|t=0)n∈N both onverge to ρ̄ in the dL,1�Wassersteindistane.Proof. By de�nitions (1.17) and (1.18) we have that
ρ̂n(0, x) =

Nn−1
∑

i=0

ȳni χ[x̄ni , x̄
n
i+1

[(x), ρ̃n(0, x) = ℓn

Nn−1
∑

i=0

δx̄ni
(x).Therefore Fρ̂n|t=0

= F̂n|t=0, Fρ̃n|t=0
= F̃n|t=0 and by (1.12), (1.16) we have

dL,1(ρ̃
n|t=0, ρ̂

n|t=0) =
∥

∥

∥
F̃n|t=0 − F̂n|t=0

∥

∥

∥

L1(R;R)
=

Nn−2
∑

i=0

ˆ x̄n

i+1

x̄n

i

[

ℓn − ȳni [x− x̄ni ]

]

dx

= ℓn

Nn−2
∑

i=0

ˆ x̄n

i+1

x̄n

i

x̄ni+1 − x

x̄ni+1 − x̄ni
dx ≤ ℓn [x̄max − x̄min] .Hene, it is su�ient to prove that (ρ̃n|t=0)n∈N onverges to ρ̄ in the dL,1�Wasserstein distane. By (1.13)we have that

dL,1(ρ̃
n|t=0, ρ̄) =

∥

∥

∥
F̃n|t=0 − Fρ̄

∥

∥

∥

L1(R;R)
=

Nn−2
∑

i=0

ˆ x̄n

i+1

x̄n

i

[

ℓn (i+ 1)−

ˆ x

−∞

ρ̄(y) dy

]

=

Nn−2
∑

i=0

ˆ x̄n

i+1

x̄n

i

[

ℓn −

ˆ x

x̄n

i

ρ̄(y) dy

]

dx ≤ ℓn [x̄max − x̄min]and this onludes the proof. ⋄



16 M. DI FRANCESCO AND M.D. ROSINI2.2. BV estimates and disrete Oleinik ondition. Let us sum up what we have proven so far. Thefamily of empirial measures (ρ̃n)n∈N onverges in the saled 1�Wasserstein sense to a limit ρ, with ρ ∈
L
∞ ([0,+∞[ ;ML) and 0 ≤ ρ ≤ 1 almost everywhere. Moreover, the empirial measure ρ̃n has a pseudo-inverse distribution funtion X̃n satisfying the PDE

X̃n
t (t, z) = v (ρ̌n(t, z)) , (t, z) ∈ [0,+∞[×[0, L],with the family (ρ̌n)n∈N being weakly�∗ ompat in L

∞ ([0,+∞[×[0, L]; [0, 1]). The Wasserstein topology isa proper tool to pass to the limit the time derivative term in the above PDE, as this term is linear. Buton the other hand, the weak�∗ topology is too weak to pass to the limit v(ρ̌n) for a general nonlinear v.Moreover, there is the additional di�ulty of having to hek that the two limits are related in some sense.A typial way to overome the di�ulty stated above is to provide a BV estimate for the approximatingsequene (ρ̌n)n∈N. We takle this task in two ways. First of all, we perform a diret estimate of the totalvariation of ρ̌n, and prove that suh a quantity dereases in time, and is therefore uniformly bounded providedthe initial datum ρ̄ is BV. However, this result is only partly satisfatory, as it is well known that the solution
ρ to (1.4a) is BV even for an initial datum in L

1∩L
∞. We shall therefore prove that a uniform BV estimateof ρ̌n is available for an initial datum in L

1 ∩ L
∞ provided the additional property (V4) of v is presribed.The latter task is performed by a one-sided estimate of the di�erene quotients of ρ̌n, in the spirit of adisrete version of the lassial Oleinik-type ondition (1.8), whih an be onsidered as the main tehnialahievement of this paper.We start with the following proposition.Proposition 2.5 (BV ontrativity for BV initial data). Assume v satis�es (V1) and (V2). If ρ̄ satis�es(InBV), then for any n ∈ N

TV [ρ̂n(t)] = TV [ρ̌n(t)] ≤ TV [ρ̄] for all t ≥ 0.Proof. For notational simpliity, we shall omit the dependene on t and n whenever not neessary. Byonstrution, see (1.15) and (1.17), we have that
TV [ρ̂(0)] = ȳ0 + ȳN−1 +

N−2
∑

i=0

|ȳi − ȳi+1|

=

 x̄1

x̄min

ρ̄(y) dy +

 x̄max

x̄N−1

ρ̄(y) dy +

N−2
∑

i=0

∣

∣

∣

∣

∣

 x̄i+1

x̄i

ρ̄(y) dy −

 x̄i+1

x̄i+2

ρ̄(y) dy

∣

∣

∣

∣

∣

≤ TV [ρ̄] .Moreover
d

dt
TV [ρ̂(t)] =

d

dt

[

y0 + yN−1 +

N−2
∑

i=0

|yi − yi+1|

]

= ẏ0 + ẏN−1 +

N−2
∑

i=0

sgn [yi − yi+1] [ẏi − ẏi+1]

=

[

1 + sgn [y0 − y1]

]

ẏ0 +

[

1− sgn [yN−2 − yN−1]

]

ẏN−1 +

N−2
∑

i=1

[

sgn [yi − yi+1]− sgn [yi−1 − yi]

]

ẏi.We laim that the latter right hand side above is ≤ 0. Indeed, assumptions (V1) and (V2) together with (1.16)imply
[

1 + sgn [y0 − y1]

]

ẏ0 = −

[

1 + sgn [y0 − y1]

]

y20
ℓ
[v(y1)− v(y0)] ≤ 0,

[

1− sgn [yN−2 − yN−1]

]

ẏN−1 = −

[

1− sgn [yN−2 − yN−1]

]

y2N−1

ℓ
[vmax − v(yN−1)] ≤ 0,
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[

sgn [yi − yi+1]− sgn [yi−1 − yi]

]

ẏi = −

[

sgn [yi − yi+1]− sgn [yi−1 − yi]

]

y2i
ℓ
[v(yi+1)− v(yi)] ≤ 0.Therefore, TV [ρ̂(t)] ≤ TV [ρ̄] for all t ≥ 0. Finally, sine ρ̌n = ρ̂ ◦ X̂, ρ̌n is pieewise onstant and on i ℓ hasthe same traes as ρ̂ on xi, the statement for ρ̌n follows easily. ⋄We now perform our disrete Oleinik-type ondition, whih holds for general initial data in L

1 ∩ L
∞.Lemma 2.4 (Disrete Oleinik-type ondition). Assume v satis�es (V1), (V2), and (V3), and let ρ̄ satisfy(In). Then, for any i = 0, . . . , Nn − 2 we have

t yni (t)
[

v
(

yni+1(t)
)

− v (yni (t))
]

≤ ℓn for all t ≥ 0. (2.11)Proof. For notational simpliity, we shall omit the dependene on t and n whenever not neessary. Let
zi := t yi [v (yi+1)− v (yi)] , i = 0, . . . , N − 2,

zN−1 := t yN−1 [vmax − v(yN−1)] .

• Step 0: zN−1 ≤ ℓ. By (1.16a) and (V1)
żN−1 = yN−1 [vmax − v(yN−1)] + t ẏN−1 [vmax − v(yN−1)]− t yN−1 v

′(yN−1) ẏN−1

= yN−1 [vmax − v(yN−1)]−
t y2N−1

ℓ
[vmax − v(yN−1)]

2
+
t v′(yN−1) y

3
N−1

ℓ
[vmax − v(yN−1)]

≤ yN−1 [vmax − v(yN−1)]
[

1−
zN−1

ℓ

]

.Sine zN−1(0) = 0, from the above estimate we get zN−1(t) ≤ ℓ for all t ≥ 0.
• Step 1: zi+1 ≤ ℓ ⇒ zi ≤ ℓ. Let i ∈ {0, . . . , N − 3} and assume zi+1 ≤ ℓ. From (1.16b) and (V1) we get

żi = yi [v (yi+1)− v (yi)] + t ẏi [v (yi+1)− v (yi)] + t yi [v
′(yi+1) ẏi+1 − v′(yi) ẏi]

= yi [v (yi+1)− v (yi)]−
t y2i
ℓ

[v(yi+1)− v(yi)]
2

+ t yi

[

−
v′(yi+1) y

2
i+1

ℓ
[v(yi+2)− v(yi+1)] +

v′(yi) y
2
i

ℓ
[v(yi+1)− v(yi)]

]

= yi [v (yi+1)− v (yi)]−
yi
ℓ
[v(yi+1)− v(yi)] zi −

v′(yi+1) yi yi+1

ℓ
zi+1 +

v′(yi) y
2
i

ℓ
zi.Sine sgn+ [zi] = sgn+ [v (yi+1)− v (yi)] = sgn+ [yi − yi+1] for all t > 0, from the assumption on zi+1 weeasily obtain

d

dt
[zi]+ = yi [v (yi+1)− v (yi)]+ −

yi
ℓ
[v(yi+1)− v(yi)]+ [zi]+

−
v′(yi+1) yi yi+1

ℓ
sgn+[zi] zi+1 +

v′(yi) y
2
i

ℓ
[zi]+

≤ yi [v (yi+1)− v (yi)]+

[

1−
[zi]+
ℓ

]

− v′(yi+1) yi yi+1 sgn+[zi] +
v′(yi) y

2
i

ℓ
[zi]+.Condition (V3) implies that the funtion y 7→ y v′(y) is non-inreasing, whih gives

d

dt
[zi]+ ≤ yi [v (yi+1)− v (yi)]+

[

1−
[zi]+
ℓ

]

− v′(yi) y
2
i sgn+[zi] +

v′(yi) y
2
i

ℓ
[zi]+

= yi

[

[v (yi+1)− v (yi)]+ − v′(yi) yi

] [

1−
[zi]+
ℓ

]

.Now, as v′ ≤ 0, and sine zi(0) = 0, we get that zi(t)+ ≤ ℓ for all t ≥ 0.
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• Step 2: zN−2 ≤ ℓ. From analogous omputations as in previous step, we get

d

dt
[zN−2]+ = yN−2 [v (yN−1)− v (yN−2)]+ −

yN−2

ℓ
[v(yN−1)− v(yN−2)]+ [zN−2]+

−
v′(yN−1) yN−2 yN−1

ℓ
sgn+[zN−2] zN−1 +

v′(yN−2) y
2
N−2

ℓ
[zN−2]+,and we an use the monotoniity of y 7→ y v′(y) and Step 0 to get

d

dt
[zN−2]+ ≤ yN−2 [v (yN−1)− v (yN−2)]+

[

1−
[zN−2]+

ℓ

]

− v′(yN−2) y
2
N−2 sgn+[zN−2] +

v′(yN−2) y
2
N−2

ℓ
[zN−2]+

= yN−2

[

[v (yN−1)− v (yN−2)]+ − v′(yN−2) yN−2

] [

1−
[zN−2]+

ℓ

]

.Again, v′ ≤ 0 and zN−2(0) = 0 imply that zN−2(t)+ ≤ ℓ for all t ≥ 0.
• Conlusion. The estimate (2.11) is proven reursively: Step 2 provides the �rst step with i = N − 2,whereas Step 1 proves that the estimate holds for all i ∈ {0, . . . , N − 3}. ⋄Corollary 2.1. Assume v satis�es (V1), (V2), and (V3), and let ρ̄ satisfy (In). Then, for any i ∈ {0, . . . , N−
2} we have

v (ρ̂n (t, xni (t)))− v
(

ρ̂n
(

t, xni+1(t)
))

≤
xni+1(t)− xni (t)

t
for all t > 0. (2.12)Proof. The statement follows from Lemma 2.4 and from the de�nitions of ρ̂N and yi. ⋄In the following proposition we prove uniform bounds on the total variation of v (ρ̌n) and v (ρ̂n). Let usemphasize that the regularising e�et L∞ 7→ BV implies that the BV estimate neessarily blows up as tց 0.Proposition 2.6 (UniformBV estimates for v (ρ̌n) and v (ρ̂n)). Assume v satis�es the properties (V1), (V2),and (V3), and let ρ̄ satisfy (In). Let δ > 0. Then(i) the sequene (v (ρ̂n))n∈N is uniformly bounded in L

∞ ([δ,+∞[ ; BV(R; [0, vmax]));(ii) the sequene (v (ρ̌n))n∈N is uniformly bounded in L
∞ ([δ,+∞[ ; BV([0, L]; [0, vmax])).More preisely, for any n ∈ N

TV [v(ρ̂n(t))] = TV [v(ρ̌n(t))] ≤ Cδ for all t ≥ δ,where Cδ :=
[

3 vmax + 2 |x̄max|+|x̄min|
δ

].Proof. For notational simpliity, we shall omit the dependene on n. We set
σ̂(t, x) := v(ρ̂(t, x)) +

1

t

N−1
∑

i=0

xi(t)χ
[xi(t), xi+1(t)[

(x) for all x ∈ R.We laim that, for any �xed t ≥ 0, the map x 7→ σ̂(t, x) is a pieewise onstant, non-dereasing funtion on
[x0(t), xN (t)[. To see this, we �rst notie that the map x 7→ σ̂(t, x) is onstant on the interval [xi(t), xi+1(t)[,
i = 0, . . . , N − 1. On the other hand, σ̂(t) is non-dereasing on the potential disontinuity points xi(t),
i = 1, . . . , N − 1, in view of (2.12). Now, from (1.14) and the disrete maximum priniple in Lemma 1.1 weknow that for any x ∈ [x0(t), xN (t)[

x̄min

t
≤ σ̂(t, x) ≤ vmax +

1

t
[x̄max + vmax t] = 2vmax +

x̄max

t
.
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∞ ([δ,+∞[ ;BV(R;R)) with

sup
t≥δ

TV [σ̂(t)] ≤

[

2vmax +
|x̄max|+ |x̄min|

δ

]

.Therefore, also v(ρ̂) is uniformly bounded in L
∞ ([δ,+∞[ ;BV(R;R)) beause by triangular inequality

TV [v(ρ̂(t))] ≤ TV [σ̂(t)] + TV

[

1

t

N−1
∑

i=0

xi(t)χ
[xi(t), xi+1(t)[

]

= TV [σ̂(t)] +
1

t
|x̄max − x̄min + vmax t| ≤ Cδ,for t ≥ δ. Finally, sine ρ̌n = ρ̂ ◦ X̂, ρ̌n is pieewise onstant and on i ℓ has the same traes as ρ̂ on xi, thestatement for ρ̌n follows easily. ⋄2.3. Time ontinuity and ompatness.Proposition 2.7 (Uniform L

1�ontinuity in time of ρ̌n). For any δ > 0 we have
ˆ L

0

|ρ̌n(t, z)− ρ̌n(s, z)| dz ≤ [Cδ + vmax] |t− s| for all t, s ≥ δ,with Cδ de�ned in Proposition 2.6.Proof. By (1.16), we ompute for t > s > δ,
ˆ L

0

|ρ̌n(t, z)− ρ̌n(s, z)| dz =

Nn−1
∑

i=0

ℓn |y
n
i (t)− yni (s)| =

Nn−1
∑

i=0

ℓn

∣

∣

∣

∣

ˆ t

s

ẏni (τ) dτ

∣

∣

∣

∣

=

Nn−2
∑

i=0

∣

∣

∣

∣

ˆ t

s

yni (τ)
2
[

v
(

yni+1(τ)
)

− v (yni (τ))
]

dτ

∣

∣

∣

∣

+

ˆ t

s

ynNn−1(τ)
2
[

vmax − v
(

ynNn−1(τ)
)]

dτ.Therefore, by Lemma 1.1
ˆ L

0

|ρ̌n(t, z)− ρ̌n(s, z)|dz

≤

ˆ t

s

[

Nn−2
∑

i=0

yni (τ)
2
∣

∣v
(

yni+1(τ)
)

− v (yni (τ))
∣

∣+ ynNn−1(τ)
2
[

vmax − v
(

ynNn−1(τ)
)]

]

dτ

≤

ˆ t

s

[

Nn−2
∑

i=0

∣

∣v
(

yni+1(τ)
)

− v (yni (τ))
∣

∣+ vmax

]

dτ ≤

ˆ t

s

[

TV [v (ρ̌n(τ))] + vmax

]

dτ.Then it is su�ient to apply the estimate in Proposition 2.6 to omplete the proof. ⋄Proposition 2.8 (Uniform Wasserstein time ontinuity of ρ̂n). For any n ∈ N we have
dL,1 (ρ̂

n(t), ρ̂n(s)) ≤ 2L vmax |t− s| for all s, t ≥ 0.Proof. By (1.12), (1.15) and (1.14), we ompute for any t > s ≥ 0

dL,1 (ρ̂
n(t), ρ̂n(s)) =

∥

∥

∥
X̂n(t)− X̂n(s)

∥

∥

∥

L1([0,L];R)
=

Nn−1
∑

i=0

ˆ (i+1) ℓn

i ℓn

[

X̂n(t, z)− X̂n(s, z)
]

dz

=

Nn−1
∑

i=0

ˆ (i+1) ℓn

i ℓn

[

xni (t) +
z − i ℓn
yni (t)

− xni (s)−
z − i ℓn
yni (s)

]

dz
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=

Nn−1
∑

i=0

ℓn [x
n
i (t)− xni (s)] +

Nn−1
∑

i=0

[

yni (t)
−1 − yni (s)

−1
]

ˆ (i+1) ℓn

i ℓn

(z − i ℓn) dz

=

Nn−1
∑

i=0

ℓn

ˆ t

s

v (yni (τ)) dτ +

Nn−1
∑

i=0

ℓ2n
2

ˆ t

s

d

dτ

[

yni (τ)
−1

]

dτ

≤ L vmax (t− s) +
ℓn
2

ˆ t

s

[

Nn−2
∑

i=0

[

v
(

yni+1(τ)
)

− v (yni (τ))
]

+ vmax − v
(

ynNn−1(τ)
)

]

dτ

= L vmax (t− s) +
ℓn
2

ˆ t

s

[

vmax − v (yn0 (τ))

]

dτ

≤
[

1 + 2−n−1
]

L vmax (t− s) ≤ 2L vmax (t− s)and this onludes the proof. ⋄We now reall a generalization of Aubin-Lions lemma, whih uses the Wasserstein distane as a replaementof a negative Sobolev norm, proven in [44, Theorem 2℄, whih we present here in a version adapted to ourase. In order to have the paper self-ontained, we �rst reall the preise statement of [44, Theorem 2℄ (seealso the adapted version in [20℄).Theorem 2.1 (Theorem 2 from [44℄). On a separable Banah spae X, let be given(F) a normal oerive integrand F : X → [0,+∞], i.e., F is lower semi-ontinuous and its sublevels arerelatively ompat in X;(g) a pseudo-distane g : X × X → [0,+∞], i.e., g is lower semi-ontinuous, and if ν, µ ∈ X are suhthat g(ν, µ) = 0, F[ν] < +∞ and F[µ] < +∞, then ν = µ.Let further U be a set of measurable funtions ν : ]0, T [ → X, with a �xed T > 0. Under the hypotheses that
sup
ν∈U

ˆ T

0

F [ν(t)] dt < +∞ and lim
h↓0

[

sup
ν∈U

ˆ T−h

0

g (ν(t+ h), ν(t)) dt

]

= 0, (2.13)Then U is strongly relatively ompat in L
1(]0, T [ ;X).Theorem 2.2 (Generalized Aubin-Lions lemma). Let T, L > 0 and I ⊂ R be a bounded open onvex interval.Assume w : R → R is a Lipshitz ontinuous and stritly monotone funtion. Let (ρn)n∈N be a sequene in

L
∞ (]0, T [× R;R) ∩ML suh that(1) ρn : ]0, T [ → L

1 (R;R) is measurable for all n ∈ N;(2) spt (ρn(t)) ⊆ I for all t ∈ ]0, T [ and n ∈ N;(3) supn∈N

´ T

0

[

‖w (ρn(t))‖
L1(I;R) +TV [w (ρn(t))]

]

dt < +∞;(4) there exists a onstant C depending only on T suh that dL,1 (ρ
n(s), ρn(t)) ≤ C |t− s| for all s, t ∈

]0, T [ and n ∈ N.Then, (ρn)n∈N is strongly relatively ompat in L
1(]0, T [× R;R).Proof. We want to use Theorem 2.1 with

X := L
1 (I;R) , F[ν] := ‖w(ν)‖

L1(I;R) +TV [w(ν)] , U := (ρn)n∈N, g(ν, µ) :=

{

dL,1(ν, µ) if ν, µ ∈ ML,

+∞ otherwise.We �rst have to prove that F, g and U satisfy the orresponding hypotheses in Theorem 2.1.(F) Assume that (νn)n∈N onverges to ν in L
1 (I;R). Sine w is Lipshitz ontinuous, (w(νn))n∈N

onvergesto w(ν) in L
1 (I;R). Hene, for the lower semi-ontinuity of the total variation w.r.t. the L

1�norm, see [23,Theorem 1 on page 172℄, we have that TV [w(ν)] ≤ lim infn→+∞ TV [w(νn)]. Thus F [ν] ≤ lim infn→+∞ F [νn]



RIGOROUS DERIVATION OF THE LWR MODEL FROM THE FTL MODEL 21and F is l.s.. in X. Finally, onsider a sequene (νn)n∈N belonging to a sublevel of F, namely supn∈N F [νn] <
+∞. For the ompatness of BV in L

1 on bounded open onvex intervals and for basi properties of the L1�onvergene, see [23, Theorem 4 on page 176 and Theorem 5 on page 21℄, up to a subsequene (w(νn))n∈Nonverges to w̄ in L
1 and a.e. on I. Sine w is ontinuous and stritly monotone, (νn)n∈N is uniformlybounded in L

∞ (onsequene of the uniform bound on the total variation) and onverges to ν̄ := w−1(w̄)a.e. on I and therefore, by the Lebesgue dominated onvergene theorem, the onvergene is also in L
1.(g) Proeeding as before and applying lower semi-ontinuity of the 1�Wasserstein distane w.r.t. the L1�normgive that g is l.s.. in X×X. Finally, if F[ν] < +∞, F[µ] < +∞ and g(µ, ν) = 0, then w(µ), w(ν) are in BV,

ν, µ ∈ ML, and dL,1 (µ, ν) = 0. Hene we have µ = ν.(U) Conditions in (2.13) follow diretly from the hypotheses (3) and (4).Hene we an apply Theorem 2.1 and obtain the onvergene in L
1(]0, T [ × I;R). Finally, realling thehypothesis (2) onludes the proof. ⋄2.4. Convergene to entropy solutions. In the next proposition we ollet the previous ompatnessresults to get strong onvergene.Proposition 2.9. Let ρ̌ be de�ned as in Lemma 2.3 and ρ as in Proposition 2.3. Under the assumptions inTheorem 1.3 we have that(i) the sequene (ρ̌n)n∈N onverges to ρ̌ almost everywhere and strongly in L

1

loc
on ]0,+∞[× [0, L];(ii) the sequene (ρ̂n)n∈N onverges to ρ almost everywhere and strongly in L

1

loc
on ]0,+∞[× R;(iii) if ρ̄ satis�es also (InBV), then the sequene (ρ̌n)n∈N onverges to ρ̌ strongly in L

1

loc
on [0,+∞[× [0, L].Proof. We already know from Proposition 2.3 that both (ρ̂n)n∈N and (ρ̃n)n∈N, de�ned respetively by (1.17)and (1.18), onverge in the topology of L

1

loc
([0,+∞[ ; dL,1) to the density ρ ∈ L

∞ ([0,+∞[ ;ML) with
0 ≤ ρ ≤ 1. From Proposition 2.1 we know that both (X̂n)n∈N and (X̃n)n∈N, de�ned respetively by (2.3)and (2.5), onverge strongly in L

1

loc
([0,+∞[× [0, L] ;R) to X ∈ L

∞ ([0,+∞[× [0, L] ;R), the pseudo-inverseof F , the umulative distribution of ρ. Finally, from Lemma 2.3 we know that (ρ̌n)n∈N, de�ned by (2.6),onverges to ρ̌ weakly-* in L
∞([0,+∞[×[0, L];R).

• Step 1. Strong onvergene of (ρ̌n)n∈N for general initial datum in ML ∩ L
∞.Let ρ̄ satisfy (In). For any �xed δ > 0, we know from Proposition 2.6 that (v(ρ̌n))n∈N

is uniformly boundedin L
∞ ([δ,+∞[ ; BV([0, L]; [0, vmax])). Furthermore, from Proposition 2.7 we easily obtain that

ˆ L

0

|v(ρ̌n(t, z))− v(ρ̌n(s, z))| dz ≤ Lip (v) [Cδ + vmax] |t− s| for all t, s ≥ δ.Therefore, we an one again apply Helly's theorem in the form [11, Theorem 2.4℄ to get that (v(ρ̌n))n∈Nis strongly ompat in L
1

loc
([δ,+∞[× [0, L]; [0, vmax]). Hene, by the monotoniity of v and the uniquenessof the limit in the L

1

loc
([δ,+∞[ ; dL,1) topology, up to a subsequene (ρ̌n)n∈N onverges strongly in L

1

loc
anda.e. on [δ,+∞[× [0, L] to ρ̌. Finally, sine δ > 0 is arbitrary, the proof of (i) is omplete.

• Step 2. Strong onvergene of (ρ̂n)n∈N for general initial datum in ML ∩ L
∞.Let ρ̄ satisfy (In) and �x T, δ > 0 with δ < T . We want to prove that (ρn)n∈N with ρn(t, x) := ρ̂n(t + δ, x)satis�es the hypotheses of Theorem 2.2 with I = ]x̄min − 1, x̄max + vmax (T + δ) + 1[ and w = v. The hypothe-ses (1) and (2) are satis�ed beause by de�nition (1.17) we have that ‖ρ̂n(t)‖

L1(R;R) = L and spt (ρ̂n(t)) ⊂ Ifor all t ∈ [0, T + δ]. By Proposition 2.6, the hypothesis (3) holds true beause
ˆ T+δ

δ

[

‖v (ρ̂n(t))‖
L1(I;R) +TV [v (ρ̂n(t))]

]

dt ≤ [vmax |I|+ Cδ]T.Finally, the hypothesis (4) follows diretly from Proposition 2.8. Hene, we an apply Theorem 2.2 to obtainthat (ρ̂n)n∈N is strongly ompat in L
1(]δ, T [× R;R). By the uniqueness of the limit in the L

1(]δ, T [ ; dL,1)topology, up to a subsequene (ρ̂n)n∈N onverges strongly in L
1 and a.e. on ]δ, T [ × R to ρ. Finally, sine

T > δ > 0 are arbitrary, the proof of (ii) is omplete.
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• Step 3. Strong onvergene for initial datum in BV.Let ρ̄ satisfy (InBV). The result in Proposition 2.5 ensures that both (ρ̂n)n∈N and (ρ̌n)n∈N are uniformlybounded in L

∞([0,+∞[; BV(R; [0, 1])). Hene, we an repeat the proof of Proposition 2.7 (we omit thedetails) to obtain that
ˆ L

0

|ρ̌n(t, z)− ρ̌n(s, z)|dz ≤ [Lip (v)TV(ρ̄) + vmax] |t− s| for all t, s ≥ 0.Therefore, Helly's theorem implies the desired ompatness. Moreover, we an use Theorem 2.2 with w beingthe identity funtion on [0, 1], and obtain the desired ompatness of ρ̂n. ⋄We now prove that the two limits ρ̌ and ρ are related.Proposition 2.10. Let F be the umulative distribution of ρ as de�ned in Proposition 2.2. Then
ρ̌ (t, F (t, x)) = ρ(t, x) for a.e. (t, x) in spt(ρ).Proof. By de�nition (2.6) and Lemma 1.2, for any ϕ ∈ C

∞
c ([0, T ]× R;R) we have

ˆ T

0

ˆ L

0

ρ̌n(t, z)ϕ
(

t, X̂n(t, z)
)

dz dt =

ˆ T

0

ˆ L

0

ρ̂n
(

t, X̂n(t, z)
)

ϕ
(

t, X̂n(t, z)
)

dz dt

=

ˆ T

0

ˆ

R

ρ̂n(t, x)2 ϕ(t, x) dxdt.By extrating the a.e. onvergent subsequene provided in Proposition 2.9, we an send n→ +∞ in the aboveidentity and use the Lebesgue dominated onvergene theorem (as the support of ρ̌n and ρ̂n are uniformlybounded w.r.t. n) to get̂
T

0

ˆ L

0

ρ̌(t, z)ϕ (t,X(t, z)) dz dt =

ˆ T

0

ˆ

R

ρ(t, x)2 ϕ(t, x) dxdt.By hanging variable z = F (t, x) in the �rst integral above, we get
ˆ T

0

ˆ

R

ρ̌ (t, F (t, x)) ρ(t, x)ϕ(t, x) dxdt =

ˆ T

0

ˆ

R

ρ(t, x)2 ϕ(t, x) dxdt, (2.14)and this ends the proof. ⋄In the next proposition we prove that ρ is a weak solution in the sense of (1.5).Proposition 2.11. The limit funtion ρ de�ned in Proposition 2.3 is a weak solution in the sense of (1.5).Proof. Let ϕ ∈ C
∞
c

([0,+∞[× R;R). By (1.14), (2.5) and (2.6), for all n we have
ˆ +∞

0

ˆ L

0

[

v (ρ̌n(t, z))ϕx

(

t, X̃n(t, z)
)

]

dz dt =

Nn−1
∑

i=0

ˆ +∞

0

ˆ (i+1) ℓn

i ℓn

[

v (yni (t))ϕx (t, x
n
i (t))

]

dz dt

=

Nn−1
∑

i=0

ˆ +∞

0

ˆ (i+1) ℓn

i ℓn

[

ẋni (t)ϕx (t, x
n
i (t))

]

dz dt =

Nn−1
∑

i=0

ˆ +∞

0

ˆ (i+1) ℓn

i ℓn

[

d

dt
ϕ (t, xni (t))− ϕt (t, x

n
i (t))

]

dt

= −

ˆ L

0

ϕ
(

0, X̃n(0, z)
)

dz −

ˆ +∞

0

ˆ L

0

ϕt

(

t, X̃n(t, z)
)

dz dt.Sine (X̃n)n∈N and (ρ̌n)n∈N onverge strongly in L
1([0, T ]× [0, L];R), and in view of Proposition 2.4, we getby sending n→ +∞

ˆ +∞

0

ˆ L

0

[

ϕt (t,X(t, z)) + v (ρ̌(t, z))ϕx (t,X(t, z))

]

dz dt+

ˆ L

0

ϕ (0, Xρ̄(z)) dz = 0.



RIGOROUS DERIVATION OF THE LWR MODEL FROM THE FTL MODEL 23We now apply the hange of variable x = X(t, z), see Lemma 1.2, and obtain
ˆ +∞

0

ˆ

R

[

ρ(t, x)ϕt(t, x) + ρ(t, x) v (ρ̌ (t, F (t, x)))ϕx(t, x)

]

dxdt+

ˆ

R

ρ̄(x)ϕ(0, x) dx = 0.Finally, by Proposition 2.10 we have ρ̌ (t, F (t, x)) = ρ(t, x) a.e. on spt(ρ), and therefore ρ satis�es (1.5). ⋄We are now ready to omplete the proof of our main result.Proof of Theorem 1.3. In view of Theorem 1.2, the entropy inequality (1.7) is su�ient in order to show that
ρ is the unique entropy solution in the sense of De�nition 1.1.Let ϕ ∈ C∞

c (]0,+∞[×R;R) with ϕ ≥ 0 and k ≥ 0 be a onstant. We shall prove that the limit ρ satis�esthe entropy inequality (1.7). We onsider the quantity
ˆ +∞

0

ˆ

R

[

|ρ̂n(t, x)− k|ϕt(t, x) + sgn(ρ̂n(t, x) − k) [f(ρ̂n(t, x)) − f(k)]ϕx(t, x)

]

dxdt

=B0 +BN +

Nn−1
∑

i=0

Ii,with
B0 :=

ˆ +∞

0

ˆ xn

0 (t)

−∞

[

k ϕt(t, x) + f(k)ϕx(t, x)

]

dxdt,

BN :=

ˆ +∞

0

ˆ +∞

xn

Nn
(t)

[

k ϕt(t, x) + f(k)ϕx(t, x)

]

dxdt,

Ii :=

ˆ +∞

0

ˆ xn

i+1(t)

xn

i
(t)

[

|yni (t)− k|ϕt(t, x) + sgn(yni (t, x) − k) [f(yni (t, x)) − f(k)]ϕx(t, x)

]

dxdt.For simpliity in the notation, from now on we shall drop the n index and the (t, x) dependeny, exept inases in whih t = 0. Moreover we de�ne yN ≡ 0. We next observe by (1.14) that
d

dt

[
ˆ xi+1

xi

ϕdx

]

= v(yi+1)ϕ(t, xi+1)− v(yi)ϕ(t, xi) +

ˆ xi+1

xi

ϕt dx, (2.15)
d

dt

[
ˆ x0

−∞

ϕdx

]

= v(y0)ϕ(t, x0) +

ˆ x0

−∞

ϕt dx, (2.16)
d

dt

[
ˆ +∞

xN

ϕdx

]

= −vmaxϕ(t, xN ) +

ˆ +∞

xN

ϕt dx. (2.17)In view of (2.16) and (2.17), the terms B0 and BN an be rewritten as follows
B0 =

ˆ +∞

0

k [v(k)− v(y0)]ϕ(x0) dt, BN =

ˆ +∞

0

k [vmax − v(k)]ϕ(xN ) dt.As for the term Ii, we have for i = 0, . . . , N − 1

Ii =

ˆ +∞

0

|yi − k|

{

d

dt

[

ˆ xi+1

xi

ϕdx

]

− v(yi+1)ϕ(xi+1) + v(yi)ϕ(xi)

}

dt

+

ˆ +∞

0

sgn(yi − k) [f(yi)− f(k)] [ϕ(xi+1)− ϕ(xi)] dt.By (1.16), we ompute the term
ˆ +∞

0

|yi − k|
d

dt

[
ˆ xi+1

xi

ϕdx

]

dt = −

ˆ +∞

0

[
ˆ xi+1

xi

ϕdx

]

d

dt
|yi − k| dt
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= −

ˆ +∞

0

sgn(yi − k)

[

−
y2i
ℓ
[v(yi+1)− v(yi)]

] [
ˆ xi+1

xi

ϕdx

]

dt

=

ˆ +∞

0

sgn(yi − k) yi [v(yi+1)− v(yi)]

[
 xi+1

xi

ϕdx

]

dt.Hene, we have
N−1
∑

i=0

Ii−1 =

N
∑

i=1

ˆ +∞

0

Ji dt+

N
∑

i=1

ˆ +∞

0

Ki ϕ(xi) dt+

ˆ +∞

0

Lϕ(t, x0) dt−

ˆ +∞

0

M ϕ(t, xN ) dt,with
Ji := sgn(yi−1 − k) yi−1 [v(yi)− v(yi−1)]

[

 xi

xi−1

ϕdx− ϕ(xi)

]

,

Ki := sgn(yi−1 − k) yi−1 [v(yi)− v(yi−1)] + |yi − k| v(yi)− sgn(yi − k)[f(yi)− f(k)],

− |yi−1 − k| v(yi) + sgn(yi−1 − k) [f(yi−1)− f(k)] ,

L := |y0 − k| v(y0)− sgn(y0 − k) [f(y0)− f(k)] ,

M := k vmax − f(k).We observe that
BN −

ˆ +∞

0

Mϕ(t, xN ) dt = 0.We now ompute L. If k < y0, we have
L = k [v(k)− v(y0)] ≥ 0,as v is non inreasing. Therefore, for k < y0

B0 +

ˆ +∞

0

Lϕ(t, x0) dx = 2

ˆ +∞

0

k [v(k)− v(y0)]ϕ(x0) dt ≥ 0.Similarly, for k ≥ y0 we have
L = k [v(y0)− v(k)] ≥ 0,whih gives

B0 +

ˆ +∞

0

Lϕ(t, x0) dx = 0.We now ompute the term Ki for i = 1, . . . , N . After some easy manipulations, we get
Ki = k [v(k)− v(yi)] {sgn(yi − k)− sgn(yi−1 − k)} .We onsider all the possible ases for k. If either k < min{yi, yi−1}, or k > max{yi, yi−1}, then we easily get

Ki = 0. If yi ≤ k ≤ yi−1, then Ki = 2k[v(yi)−v(k)] ≥ 0 as v is non inreasing. Finally, if yi−1 ≤ k ≤ yi, then
Ki = 2k[v(k)− v(yi)] ≥ 0. In all ases, we get Ki ≥ 0 for all i = 1, . . . , N . Putting all the terms together, weget

ˆ +∞

0

ˆ

R

[

|ρ̂− k|ϕt + sgn(ρ̂− k) [f(ρ̂)− f(k)]ϕx

]

dxdt ≥

N
∑

i=1

ˆ +∞

0

Ji dt. (2.18)



RIGOROUS DERIVATION OF THE LWR MODEL FROM THE FTL MODEL 25We now estimate the terms Ji. For some δ > 0, assuming that the support of ϕ is ontained in the strip
t ∈ [δ, T ], we have by Proposition 2.6

∣

∣

∣

∣

∣

N
∑

i=1

ˆ +∞

0

Ji dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

i=1

ˆ +∞

0

sgn(yi−1 − k) yi−1 [v(yi)− v(yi−1)]

[

 xi

xi−1

ϕdx− ϕ(xi)

]

dt

∣

∣

∣

∣

∣

≤

ˆ +∞

0

N
∑

i=1

[

y2i−1

ℓ
|v(yi)− v(yi−1)|

ˆ xi

xi−1

|ϕ(x)− ϕ(xi)| dx

]

dt

≤ Lip(ϕ)

ˆ T

δ

sup
i=1,...,N

[

y2i−1 (xi − xi−1)
2

ℓ

]

N
∑

i=1

|v(yi)− v(yi−1)| dt

≤ ℓLip(ϕ)T sup
t≥δ

TV [v(ρ̂n(t))] ≤ ℓLip(ϕ)T Cδ.As a onsequene
lim

n→+∞

N
∑

i=1

ˆ +∞

0

Ji dt = 0and letting n go to in�nity in (2.18) we obtain the entropy inequality (1.7). ⋄2.5. Conluding remarks. We onlude this paper with the some tehnial remarks whih help motivatingour hoies in the strategy of the proof at several stages in the paper.
• In the ase of v suh that v′ ≤ −c < 0, then the Oleinik-type estimate (2.12) gives a one sidedestimate for ρ̂nx in the sense of distributions. Suh an estimate an be then passed to the limit veryeasily, and one obtains an analogous estimate for the limit. In this way, one an hek that the limit
ρ is an entropy solution in muh easier way than the above proof. In the general ase of v′ possiblydegenerating, suh a strategy fails. Indeed, surprisingly enough the Oleinik estimate one gets in thelimit from (2.12) is not equivalent (in general) to the estimate (1.8). For this reason, we preferredgetting the entropy ondition in the Kruºkov sense rather than the one sided Lipshitz ondition.This strategy allows in partiular to get the entropy ondition in the limit also in the ase of v notsatisfying (V3) and ρ̄ satisfying (InBV).

• In the ase of linear veloity v, e.g. v(ρ) = vmax(1− ρ), the onvergene to a weak solution (1.5) anbe obtained without the need of the BV estimates, as the veloity term in (2.7) is linear. This issomehow intrinsi in using a Lagrangian desription.
• In order to get ontinuity in time for the sequene ρ̂n, the most natural try would be getting L

1�ontinuity. Enouraged by the L
1 time equi-ontinuity of ρ̌n, we have attempted at proving suha property in many ways without suess. This is the reason why use the generalized Aubin-Lionslemma, whih allows to take advantage of the Wasserstein equi-ontinuity of ρ̂n, and still get thesame L

1�ompatness in the end. The only drawbak of this strategy is that we an't get any L
1time ontinuity for the limit.

• As pointed out in the introdution, the proposed Lagrangian approah has the advantage of providinga pieewise onstant approximation with a non inreasing number of jumps. The prie to pay forsuh a simpli�ation is that we lose the lassial shok struture at a mirosopi level. Indeed, aspointed out in [15, 43℄, the expliit solution to the FTL system even for simple Riemann�type initialonditions is not immediate. On the other hand, this aspet gives an added value to our result, as weshow that shoks and rarefation waves are still ahieved in the marosopi limit, despite not beingeasily detetable at the mirosopi level.



26 M. DI FRANCESCO AND M.D. ROSINIAppendix A. Heuristi derivation of the FTL model from the LWR modelIn this appendix we formally provide our derivation from the LWR model (1.4) of a disrete approximatingmodel of the form (1.9).Let ρ be an entropy solution of (1.4) in the sense of De�nition 1.1 and κ := Rρ. We assume for simpliitythat ρ is ompatly supported. The total spae oupied by the vehiles present in ]−∞, x] at time t ≥ 0 is
F (t, x) :=

ˆ x

−∞

ρ(t, y) dy. (A.1)Clearly, F takes values in [0, L], where L := ‖ρ̄‖
L1(R;[0,1]), and for any �xed t ≥ 0 the map x 7→ F (t, x) isontinuous and non-dereasing, F (t,−∞) = 0 and F (t,+∞) = L. The result in the next proposition showsthat (1.4a) is equivalent to requiring that the weak partial derivatives of F with respet to time and spaeommute in the sense of distributions.Proposition A.1 ([16℄). The partial derivatives of F satisfy in the sense of distributions

Fx = ρ, Ft = −f (ρ) . (A.2)Proof. The �rst equality in (A.2) is obvious. For any test funtion ψ ∈ C
∞
c (]0,+∞[ × R;R) we have thatby (1.5)

ˆ

R

ˆ

R+

F (t, x) ∂tψx(t, x) dt dx =

ˆ

R

ˆ

R+

F (t, x) ∂xψt(t, x) dt dx

= −

ˆ

R

ˆ

R+

ρ(t, x)ψt(t, x) dt dx =

ˆ

R

ˆ

R+

f (ρ(t, x))ψx(t, x) dt dx.This shows that for any t ≥ 0, the map x 7→ [Ft(t, x) + f (ρ(t, x))] is onstant (as a distribution). Thereforethere exists c ∈ L
1

loc
([0,+∞[ ;R) suh that
ˆ

R

ˆ +∞

0

[

F (t, x)ϕt(t, x)− f (ρ(t, x))ϕ(t, x) + c(t)ϕ(t, x)

]

dt dx = 0.Choose now, for any integer k ∈ N,
ϕ(t, x) = η(t)ψ(x − k),where η ∈ C

∞
c

(]0,+∞[ ;R) and ψ ∈ C
∞
c
(R; [0,+∞[) suh that ‖ψ‖

L1(R;R) = 1. We get
0 =

ˆ

R

ˆ +∞

0

[

F (t, x) η̇(t)− f (ρ(t, x)) η(t) + c(t) η(t)

]

ψ(x− k) dt dx

=

ˆ

R

ˆ +∞

0

[

F (t, x+ k) η̇(t)− f (ρ (t, x+ k)) η(t) + c(t) η(t)

]

ψ(x) dt dx.By Lebesgue dominated onvergene theorem, we an send k to +∞ and get
0 =

ˆ

R

ˆ +∞

0

[

L η̇(t) + c(t) η(t)

]

ψ(x) dt dx =

ˆ +∞

0

c(t) η(t) dt,and the above expression on the right hand side an be easily made nonzero by suitably hoosing η, unless
c(t) = 0 for a.e. t ≥ 0, whih proves the assertion. ⋄For any t ≥ 0 the map x 7→ F (t, x) is stritly inreasing on the intervals where the density x 7→ ρ(t, x) isnot zero and otherwise it is onstant. Therefore we an introdue X := X [F ], the pseudo-inverse of F . Now,assume for simpliity that ρ (t, x) > 0 for all (t, x) ∈ spt(ρ) = {(t, x) ∈ R+ × R : a(t) ≤ x ≤ b(t)}. Then, forany t ≥ 0 by Proposition A.1 we have that x 7→ F (t, x) is stritly inreasing on spt (ρ(t)). This implies that
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X [F ] is the inverse of F on the support of ρ, namely F (t,X(t, z)) = z on (t, z) ∈ R+ × [0, L], and, assumingthat all the derivatives below are well de�ned, we have that

Fx (t,X(t, z)) = ρ (t,X(t, z)) > 0 for a.e. (t, z) ∈ R+ × [0, L] .Therefore,
1 =

d

dz
F (t,X(t, z)) = Fx (t,X(t, z))Xz(t, z),

0 =
d

dt
F (t,X(t, z)) = Ft (t,X(t, z)) + Fx (t,X(t, z))Xt(t, z),whih yields, one again by Proposition A.1, that X(t, z) is indeed a solution of the PDE

Xt(t, z) = v

(

1

Xz(t, z)

)

. (A.3)The initial ondition X(0, z) is determined bŷ
X(0,z)

−∞

ρ̄(y) dy = z.The omputation above is only rigorous on the sets in whih ρ (t, x) > 0.The last step needed in order to (formally) reognize the disrete model (1.9) in (A.3) is by replaing the
z�derivative of X in (A.3) by the (forward) �nite di�erenes

Xz ≈
X(t, z + ℓ)−X(t, z)

ℓ
, (A.4)whih gives

Xt(t, z) ≈ v

(

ℓ

X(t, z + ℓ)−X(t, z)

)

.Then the desired model (1.9) is obtained by assuming that X(t) is pieewise onstant on intervals of measure
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