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Abstract

The paper introduces a new way to construct dissipative solutions to a second order
variational wave equation. By a variable transformation, from the nonlinear PDE one ob-
tains a semilinear hyperbolic system with sources. In contrast with the conservative case,
here the source terms are discontinuous and the discontinuities are not always crossed
transversally. Solutions to the semilinear system are obtained by an approximation argu-
ment, relying on Kolmogorov’s compactness theorem. Reverting to the original variables,
one recovers a solution to the nonlinear wave equation where the total energy is a monotone
decreasing function of time.

1 Introduction

We consider the Cauchy problem for a nonlinear wave equation in one space dimension

utt − c(u)
(
c(u)ux

)
x

= 0 , (1.1)

with initial data
u(0, x) = u0(x) , ut(0, x) = u1(x) . (1.2)

The function c : IR 7→ IR+ , determining the wave speeds, is assumed to be smooth and
uniformly positive. As long as the solution remains smooth, it is well known that its energy

E(t)
.
=

1

2

∫ [
u2
t (t, x) + c2

(
u(t, x)

)
u2
x(t, x)

]
dx (1.3)

remains constant. It is thus natural to seek global solutions within the set of functions having
bounded energy, i.e. with u ∈ H1(IR) and ut, ux ∈ L2(IR) at a.e. time t. In this functional
space, the existence of globally defined weak solutions was first proved in [10, 11]. For smooth
initial data, formation of singularities was studied in [8].
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A different approach was introduced in [5], relying on a transformation of both independent
and dependent variables. In the new variables, the equation (1.1) is replaced by a semilinear
system, which always admits global smooth solutions (for smooth initial data). Going back to
the original variables, this method yields a family of solutions to the original equation (1.1),
continuously depending on the initial data (in appropriate norms). We recall here the main
properties of these global solutions, defined both forward and backward in time:

(P) The solution t 7→ u(t, ·) takes values in H1(IR) for every t ∈ IR. In the t-x plane, the
function u = u(t, x) is Hölder continuous with exponent 1/2. The map t 7→ u(t, ·) is
continuously differentiable as a map with values in Lploc, for all 1 ≤ p < 2. Moreover, it
is Lipschitz continuous w.r.t. the L2 distance, i.e.∥∥u(t, ·)− u(s, ·)

∥∥
L2 ≤ L |t− s| (1.4)

for some constant L and all t, s ∈ IR. The equation (1.1) is satisfied in integral sense:∫ ∫ [
φt ut −

(
c(u)φ

)
x
c(u)ux

]
dxdt = 0 (1.5)

for all test functions φ ∈ C1
c , continuously differentiable with compact support in the t-x

plane. Concerning the initial conditions at t = 0, the first equality in (1.2) is satisfied
pointwise, while the second holds in Lploc for p ∈ [1, 2[ .

The solutions constructed in [10, 11] are dissipative, with energy t 7→ E(t) which is nonin-
creasing. On the other hand, the solutions obtained in [5] are conservative in the sense that
the energy E(t) = E0 equals a fixed constant for almost all times t. At an exceptional set of
times of measure zero, one can still define a conserved energy in terms of a positive Radon
measure. However, this will not be absolutely continuous w.r.t. Lebesgue measure (for exam-
ple, it may contain Dirac masses). At these particular times, the integral in (1.3) accounts
only for the absolutely continuous part of the energy, and is thus strictly smaller than E0.

By putting the equation into a semilinear form, this variable change provides a transparent
way to understand singularity formation, and construct a semigroup of conservative solutions
continuously depending on the initial data. A natural question, which motivated the present
paper, is whether the same variable transformation can be used to generate a semigroup
of dissipative solutions. We recall that, in connection with the Camassa-Holm equation,
semigroups of conservative and dissipative solutions have been constructed respectively in [2]
and [3], based on a similar approach.

To implement such a program, the main difficulty can be explained as follows. Using charac-
teristic variables, one obtains a semilinear system whose right hand side is Lipschitz continuous
in the case of conservative solutions, but discontinuous in the case dissipative solutions. Be-
cause of these discontinuities, the existence of solutions does not follow from general theory
and must be studied with care. A guiding principle is that, if all discontinuities are crossed
transversally, then the Cauchy problem is still well posed. This is indeed what happens for
the Camassa-Holm equation [3]. However, in connection with (1.1) we now encounter a “bor-
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derline” situation, illustrated by the system with discontinuous right hand side

wY =

{
cos z − cosw if max{w, z} < π ,

0 if max{w, z} ≥ π ,

zX =

{
cosw − cos z if max{w, z} < π ,

0 if max{w, z} ≥ π .

As w approaches the discontinuity we have w ≈ π, and hence wY ≈ cos z + 1. This is strictly
positive, except when z ≈ ±π. This lack of transversality renders the system much harder to
study.

Our analysis shows that, assuming c′(u) > 0 for all u, global dissipative solutions of (1.1)
can indeed be constructed by solving a semilinear system with discontinuous right hand side.
However, in contrast with [2, 3, 5], solutions are not obtained as the unique fixed points
of a contractive transformation. Instead, the existence proof relies here on a compactness
argument, based on the Kolmogorov-Riesz theorem [9]. The drawback of this approach is that
it does not guarantee the uniqueness of solutions. We speculate that the issue of uniqueness
might be resolved by the analysis of characteristics, as in [1, 6].

The paper is organized as follows. In Section 2 we review the variable transformation in-
troduced in [5] and describe the new semilinear system with discontinuous right hand side,
which corresponds to dissipative solutions. At the end of this section we can state our main
results, on the global existence of solutions to the semilinear system and to the original wave
equation (1.1). Section 3 is the core of the paper. The discontinuous semilinear system is here
approximated by a family of Lipschitz continuous systems, admitting unique solutions. As
the approximation parameter ε → 0, a compactness argument yields a subsequence strongly
converging to an exact solution. In Section 4, returning to the original variables u(t, x), we
obtain the global existence of a weak solution to the nonlinear wave equation (1.1)-(1.2), for-
ward in time. The proof that this solution satisfies all properties (P) is very similar to the
one in [5], and we thus omit most of the details.

2 An equivalent semilinear system

We briefly review the variable transformations introduced in [BZ]. These reduce the quasilin-
ear wave equation (1.1) to a semilinear system, in characteristic variables. Throughout this
section, all equations are derived assuming that the solution is smooth. At a later stage we
will prove that the same equations remain meaningful and provide a solution to the original
equation (1.1) also for general initial data (u0, u1) ∈ H1 × L2. Define{

R
.
= ut + c(u)ux ,

S
.
= ut − c(u)ux ,

(2.1)

so that

ut =
R+ S

2
, ux =

R− S
2c

. (2.2)

If u is a smooth solution of (1.1), these variables satisfy
Rt − cRx = c′

4c(R
2 − S2),

St + cSx = c′

4c(S
2 −R2).

(2.3)
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We can thus regard R,S as the densities of backward and forward moving waves, respectively.
Multiplying the first equation in (2.3) by R and the second one by S, we obtain two balance
laws for R2 and S2, namely{

(R2)t − (cR2)x = c′

2c(R
2S −RS2) ,

(S2)t + (cS2)x = − c′

2c(R
2S −RS2) .

(2.4)

As a consequence, for a smooth solution u = u(t, x) the following quantities are conserved:

E
.
=

1

2

(
u2
t + c2u2

x

)
=
R2 + S2

4
, M

.
= −utux =

S2 −R2

4c
. (2.5)

Indeed {
Et + (c2M)x = 0 ,

Mt + Ex = 0 .
(2.6)

One can think of R2/4 and S2/4 as the energy densities associated with backward and forward
moving waves, respectively. Because of the sources on the right hand sides of (2.4), some energy
is transferred from forward to backward waves, or viceversa. However, the total amount of
energy remains constant. To deal with possibly unbounded values of R,S, it is convenient to
introduce a new set of dependent variables:

w
.
= 2 arctanR , z

.
= 2 arctanS , (2.7)

so that
R = tan

w

2
, S = tan

z

2
.

From (2.3) one derives the equations
wt − cwx =

2

1 +R2
(Rt − cRx) =

c′

2c

R2 − S2

1 +R2
,

zt + c zx =
2

1 + S2
(St + c Sx) =

c′

2c

S2 −R2

1 + S2
.

(2.8)

x  (s, t, x)

x

t

Y = const.

X = const.

(t,x)

s
x  (s, t, x)+

−

Figure 1: Forward and backward characteristics through the point (t, x).
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To reduce the system to a semilinear one, we perform a further change of independent variables.
Consider the equations for the forward and backward characteristics (Fig. 1):

ẋ+ = c(u) , ẋ− = − c(u) . (2.9)

The characteristics passing through a given point (t, x) will be denoted by

s 7→ x+(s, t, x) , s 7→ x−(s, t, x) , (2.10)

respectively. Let an initial data (u0, u1) ∈ H1 × L2 be given, as in (1.2). In turn, this
determines the functions R,S in (2.1) at time t = 0:

R(0, ·) = u1 + c(u0)u0,x ∈ L2(IR) ,

S(0, ·) = u1 − c(u0)u0,x ∈ L2(IR) .
(2.11)

As coordinates (X,Y ) of a point (t, x) we shall use the quantities

X
.
=

∫ x−(0,t,x)

0

(
1 +R2(0, x)

)
dx , Y

.
=

∫ 0

x+(0,t,x)

(
1 + S2(0, x)

)
dx . (2.12)

Notice that this implies

Xt − c(u)Xx = 0 , Yt + c(u)Yx = 0 , (2.13)

(Xx)t − (cXx)x = 0 , (Yx)t + (c Yx)x = 0 . (2.14)

We also observe that

Xx(t, x) = lim
h→0

1

h

∫ x−(0,t,x+h)

x−(0,t,x)

(
1 +R2(0, x)

)
dx ,

Yx(t, x) = lim
h→0

1

h

∫ x+(0,t,x+h)

x+(0,t,x)

(
1 + S2(0, x)

)
dx .

For any smooth function f , using (2.13)-(2.14) one finds{
ft + cfx = fXXt + fY Yt + cfXXx + cfY Yx = (Xt + cXx)fX = 2cXxfX ,
ft − cfx = fXXt + fY Yt − cfXXx − cfY Yx = (Yt − cYx)fY = − 2cYxfY .

(2.15)

We now introduce the further variables

p
.
=

1 +R2

Xx
, q

.
=

1 + S2

−Yx
. (2.16)

These quantities are related to the partial derivatives Xx, Yx by the identities

(Xx)−1 =
p

1 +R2
= p cos2 w

2
, (−Yx)−1 =

q

1 + S2
= q cos2 z

2
. (2.17)

Notice that, if the quantity 1 +R2 were exactly conserved along backward characteristics, we
would have

(1 +R2)t −
[
c(u)(1 +R2)

]
x

= 0 ,
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and hence p ≡ 1. In general, the variable p describes by how much the quantity 1 +R2 fails to
be conserved along backward characteristics. Similarly, q describes by how much the quantity
1 + S2 is not conserved along forward characteristics.

Starting with the nonlinear wave equation (1.1), using X,Y as independent variables we thus
obtain a semilinear hyperbolic system with smooth coefficients for the variables u,w, z, p, q.
Following [5], we consider the set of equations

wY = θ · c
′(u)

8c2(u)
(cos z − cosw) q ,

zX = θ · c
′(u)

8c2(u)
(cosw − cos z) p ,

(2.18)


pY = θ · c

′(u)
8c2(u)

[
sin z − sinw

]
pq ,

qX = θ · c
′(u)

8c2(u)

[
sinw − sin z

]
pq .

(2.19)

To obtain conservative solutions, the above equations should hold everywhere, with θ ≡ 1. On
the other hand, to construct dissipative solutions, we here choose

θ =

{
1 if max{w, z} < π ,
0 if max{w, z} ≥ π . (2.20)

Finally, the function u = u(X,Y ) can be recovered by integrating any of the two equations{
uY = sin z

4c q ,

uX = sinw
4c p .

(2.21)

Given initial data (u0, u1) ∈ H1 × L2 as in (1.2), the corresponding boundary data for the
system (2.18)–(2.21) is constructed as follows. We first observe that the line t = 0 corresponds
to a curve γ in the X-Y plane, say

Y = ϕ(X), X ∈ IR,

where Y
.
= ϕ(X) if and only if

X =

∫ x

0

(
1 +R2(0, x)

)
dx , Y = −

∫ x

0

(
1 + S2(0, x)

)
dx for some x ∈ IR .

We can use the variable x as a parameter along the curve γ. The assumptions on u0 and u1

imply that the corresponding functions R(0, ·) and S(0, ·) defined at (2.11) are both in L2.
The initial energy is computed by

E0
.
=

1

4

∫ [
R2(0, x) + S2(0, x)

]
dx < ∞. (2.22)

The two functions

X(x)
.
=

∫ x

0

(
1 +R2(0, x)

)
dx , Y (x)

.
=

∫ 0

x

(
1 + S2(0, x)

)
dx (2.23)

are well defined and absolutely continuous. Clearly, X is strictly increasing while Y is strictly
decreasing. Therefore, the map X 7→ ϕ(X) is continuous and strictly decreasing. From (2.22)
it follows

−X − 4E0 ≤ ϕ(X) ≤ −X + 4E0 . (2.24)
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As (t, x) ranges over the domain ]0,∞[×IR, the corresponding variables (X,Y ) range over the
domain

Ω+ .
=
{

(X,Y ) ; Y ≥ ϕ(X)
}
. (2.25)

Along the non-characteristic curve

γ
.
=
{

(X,Y ) ; Y = ϕ(X)
}
⊂ IR2

parameterized by x 7→
(
X(x), Y (x)

)
, we can now assign the boundary data (w̄, z̄, p̄, q̄, ū)∈ L∞

defined by 
w(X,ϕ(X)) = w̄(X) = 2 arctanR(0, x) ,
z(ϕ−1(Y ), Y ) = z̄(Y ) = 2 arctanS(0, x) ,
u(X,ϕ(X)) = ū(X) = u0(x),

{
p̄ ≡ 1 ,
q̄ ≡ 1 .

(2.26)

Our first main result provides the global existence of solutions to the discontinuous semilinear
system.

Theorem 1 (existence of solutions to the semilinear system). Let c = c(u) be a smooth
function satisfying

c(u) ≥ c0 > 0, c′(u) > 0 for all u ∈ IR. (2.27)

Then, for any (u0, u1) ∈ H1(IR)×L2(IR), the semilinear system (2.18)–(2.21), with boundary
data given by (2.26), (2.11), has a solution defined for all (X,Y ) ∈ Ω+.

In order to transform this solution back into the original variables, we set f = x and then
f = t in (2.15), and obtain

xX =
(1 + cosw)p

4
,

xY = −(1 + cos z)q

4
,


tX =

(1 + cosw)p

4c
,

tY =
(1 + cos z)q

4c
.

(2.28)

By a direct calculation one finds xXY = xY X and tXY = tY X . We can thus integrate the
above equations and recover (t, x) as functions of (X,Y ). In turn, this yields a function ũ(t, x)
implicitly defined by

ũ
(
t(X,Y ), x(X,Y )

) .
= u(X,Y ) . (2.29)

Theorem 2 (existence of dissipative solutions to the wave equation). Let c = c(u) be
a smooth function satisfying (2.27) and consider initial data (u0, u1) ∈ H1(IR)× L2(IR). Let
(w, z, u, p, q) be a solution to the discontinuous semilinear system (2.18)–(2.21) with boundary
data (2.26). Then the function ũ(t, x) in (2.29) is well defined, and provides a dissipative
solution to the Cauchy problem (1.1)-(1.2).

A proof of Theorem 1 will be given in Section 3, while Theorem 2 is proved in Section 4.
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3 Global solutions of the discontinuous semilinear system

The proof of Theorem 1 will be given in several steps.

1. To construct solutions (w, z, u, p, q) to the system (2.18)–(2.21) we use an approximation
technique. For any ε > 0, consider the system of PDEs

wY (X,Y ) = θε · c
′(u)

8c2(u)
(cos z − cosw) q + ε ,

zX(X,Y ) = θε · c
′(u)

8c2(u)
(cosw − cos z) p+ ε ,

(3.1)


pY = θε · c

′(u)
8c2(u)

[
sin z − sinw

]
pq ,

qX = θε · c
′(u)

8c2(u)

[
sinw − sin z

]
pq ,

(3.2)

uY =
sin z

4c(u)
q . (3.3)

Here the coefficient θε = θε(max{w, z}) is defined by setting

θε
.
=

{
1 if max{z, w} ≤ π,
0 if max{z, w} ≥ π + ε3,

(3.4)

and by requiring θε to be an affine function of max{z, w} on the interval [π, π+ε3]. Let initial
data (2.26) be given along the curve γ =

{
(X,Y ) ; Y = ϕ(X)

}
⊂ IR2. For convenience, we

extend it to the outer region {(X,Y ); Y < ϕ(X)} by letting u,w, p be constant along vertical
lines (where X is constant) and z, q be constant along horizontal lines (where Y is constant).
We observe that, for any ε > 0, the right hand sides of (3.1)-(3.2) and (3.3) are Lipschitz
continuous. Hence, given the initial data{

w(X,ϕ(X)) = w̄(X),
z(Y, ϕ−1(Y )) = z̄(Y ),

{
p(X,ϕ(X)) = 1,

q(Y, ϕ−1(Y )) = 1,
u(X,ϕ(X)) = ū(X)), (3.5)

this semilinear hyperbolic system admits a unique local solution, say (wε, zε, pε, qε, uε). Indeed,
this solution can be obtained as the unique fixed point of an integral transformation.

We claim that this solution is globally defined on the entire domain Ω+ = {(X,Y ); Y ≥ ϕ(X)}.
This is not immediately obvious because the equations (3.2) are quadratic w.r.t. p, q. For a
given M > 0, consider the domain

ΩM
.
= {(X,Y ) ; Y ≥ ϕ(X) , X ≤M , Y ≤M} ⊂ Ω+. (3.6)

To achieve the global existence on ΩM , it suffices to prove the uniform a priori bounds{
0 < C−1 ≤ p(X,Y ) ≤ C,
0 < C−1 ≤ q(X,Y ) ≤ C,

for all (X,Y ) ∈ ΩM , (3.7)

for some constant C depending on M .

Observe that (3.2) implies pY + qX = 0. Hence the differential form pdX − qdY has zero
integral along any closed curve in ΩM . For any (X,Y ) ∈ ΩM , consider the closed curve
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Γ = Γ1 ∪Γ2 ∪Γ3, where Γ1 is the portion of boundary γ between (ϕ−1(Y ), Y ) and (X,ϕ(X)),
Γ2 is the vertical segment from (X,ϕ(X)) to (X,Y ) and Γ3 is the horizontal segment from
(X,Y ) to (ϕ−1(Y ), Y ). Integrating pdX − qdY on Γ and using the initial data (3.5), one
obtains ∫ X

ϕ−1(Y )
p(X ′, Y ) dX ′ +

∫ Y

ϕ(X)
q(X,Y ′) dY ′ = X − ϕ−1(Y ) + Y − ϕ(X)

≤ 2 (|X|+ |Y |+ 4E0) ,

(3.8)

because of (2.24). To fix the ideas, assume

C0
.
= sup

u

c′(u)

8c2(u)
< +∞. (3.9)

Integrating the first equation of (3.2) along line segment from (X,ϕ(X)) to (X,Y ) and using
(2.24), (3.8), since p, q > 0 we obtain

p(X,Y ) = exp

(∫ Y

ϕ(X)
θ
c′

8c2
(sin z − sinw)q(X,Y ′) dY ′

)

≤ exp

(
2C0

∫ Y

ϕ(X)
q(X,Y ′) dY ′

)
(3.10)

≤ exp (8C0 (M + 2E0)) .

In the same way, we also obtain

p(X,Y ) = exp

(
−2C0

∫ Y

ϕ(X)
q(X,Y ′) dY ′

)
(3.11)

≥ exp (−8C0 (M + 2E0)) .

Together (3.10) and (3.11) yield the first estimate in (3.7). The second estimate is entirely
similar.

In turn, this implies that the maps

Y 7→ w(X,Y ), X 7→ z(X,Y )

are uniformly Lipschitz continuous on the domain ΩM , say with Lipschitz constant L.

2. Our next goal is to show that, as ε → 0, this sequence of approximations is compact in
L1
loc(IR

2). For this purpose, some a priori estimates are needed. Fix ε > 0 and consider the
corresponding solution (w, z, p, q, u) of (3.1)–(3.4). To shorten notation, in the following we
drop the the subscript ε. Define the maps

X 7→ Y π(X)
.
= inf{Y ∈ [0,M ] ; w(X,Y ) = π},

Y 7→ Xπ(Y )
.
= inf{X ∈ [0,M ] ; z(X,Y ) = π},

Observe that, for ε > 0 small enough, if Y π(X) < M , then

w(X,Y ) ≥ π + ε3 for all Y ≥ Y π(X) + ε. (3.12)
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Indeed, for Y ∈ [Y π(X), Y π(X) + ε] we have

wY (X,Y ) ≥ θε ·
c′(u)

8c2(u)
(1− cosw)q + ε ≥ ε

2
. (3.13)

As soon as w becomes greater than π + ε3 we have θε = 0 and wY = ε. This implies (3.12).

X

Y

0

ϕ(X)

π+ε
3

X

P
P

QQ

X
1

0
Y

2

1

1

2

2

z >

Figure 2: Estimating the difference w(X2, Y0)− w(X1, Y0).

3. The heart of the proof is provided by the next lemma.

Lemma 1. Given M > 0 there exists a constant C such that, for any ε ∈ ]0, 1], the solution of
(3.1)–(3.5) satisfies the following estimates. For any X1 < X2 ≤M and any Y0 ∈ [ϕ(X1) M ],
one has

|w(X1, Y0)− w(X2, Y0)|+ |p(X1, Y0)− p(X2, Y0)|+ |u(X1, Y0)− u(X2, Y0)|

≤ C

{
|w̄(X1)− w̄(X2)|+ |ū(X1)− ū(X2)|+ |X1 −X2|+ |ϕ(X1)− ϕ(X2)|

+meas
(
{Y ≤M ; [X1, X2] ∩ [Xπ(Y ), Xπ(Y ) + ε] 6= ∅}

)}1/2

.

(3.14)

Moreover, for Y1 < Y2 and any X0 ∈ [ϕ−1(Y1), M ], one has

|z(X0, Y1)− z(X0, Y2)|+ |q(X0, Y1)− q(X0, Y2)|

≤ C

{
|z̄(Y1)− z̄(Y2)|+ |ū(Y1)− ū(Y2)|+ |Y1 − Y2|+ |ϕ−1(Y1)− ϕ−1(Y2)|

+meas
(
{X ≤M ; [Y1, Y2] ∩ [Y π(X), Y π(X) + ε] 6= ∅}

)}1/2

.

(3.15)
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The above estimates can be explained with the aid of Figure 2. For i=1,2, consider the points
Pi = (Xi, ϕ(Xi)), Qi = (Xi, Y0). Then w(Qi) can be computed by solving the ODE in (3.1)
on the interval Y ∈ [ϕ(Xi), Y0], with initial data w = w̄ at Y = ϕ(Xi). For i = 1, 2, the right
hand sides of these ODEs are almost the same, except in the case where z(X1, Y ) < π but
z(X2, Y ) > π. This motivates the presence of the last term on the right hand side of (3.14)
and (3.15).

Proof of Lemma 1. For notational convenience, we lump together different variables and
write

α(X,Y )
.
= (w, p, u)(X,Y ), β(X,Y )

.
= (z, q)(X,Y ).

We first consider the easier case where

w(Xi, Y ) < π for all Y ≤ Y0, i = 1, 2 . (3.16)

Since the maps X 7→ β(X,Y ) are uniformly bounded and Lipschitz continuous on bounded
sets, we can find a constant κ such that

(i) If [X1, X2] ∩ [Xπ(Y ), Xπ(Y ) + ε] = ∅, then

∂

∂Y

∣∣∣α(X1, Y )− α(X2, Y )
∣∣∣ ≤ κ

(
|X1 −X2|+ |α(X1, Y )− α(X2, Y )|

)
. (3.17)

(ii) If [X1, X2] ∩ [Xπ(Y ), Xπ(Y ) + ε] 6= ∅, then

∂

∂Y

∣∣∣α(X1, Y )− α(X2, Y )
∣∣∣ ≤ κ. (3.18)

The differential inequalities (3.17)-(3.18) are complemented by the estimate on the initial data∣∣∣α(X1, ϕ(X1))− α(X2, ϕ(X1))
∣∣∣ ≤ ∣∣∣w̄(X1)− w̄(X2)

∣∣∣
+
∣∣∣p̄(X1)− p̄(X2)

∣∣∣+
∣∣∣ū(X1)− ū(X2)

∣∣∣+ κ|ϕ(X1)− ϕ(X2)| ,
(3.19)

for a suitable constant κ.

Using the differential inequalities (3.17)-(3.18) on the interval Y ∈ [ϕ(X1), Y0] together with
(3.19), by a Gronwall-type estimate we obtain

|w(X1, Y0)− w(X2, Y0)|+ |p(X1, Y0)− p(X2, Y0)|+ |u(X1, Y0)− u(X2, Y0)|

≤ C1

{
|w̄(X1)− w̄(X2)|+ |ū(X1)− ū(X2)|+ |X1 −X2|+ |ϕ(X1)− ϕ(X2)|

+meas
(
{Y ≤M ; [X1, X2] ∩ [Xπ(Y ), Xπ(Y ) + ε] 6= ∅}

)}
,

(3.20)

for a suitable constant C1. In the case where

z(X,Yi) ≤ π for all X ≤ X0, i = 1, 2 , (3.21)
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an entirely similar argument yields

|z(X0, Y1)− z(X0, Y2)|+ |q(X0, Y1)− q(X0, Y2)|

≤ C

{
|z̄(Y1)− z̄(Y2)|+ |ū(Y1)− ū(Y2)|+ |Y1 − Y2|+ |ϕ−1(Y1)− ϕ−1(Y2)|

+meas
(
{X ≤M ; [Y1, Y2] ∩ [Y π(X), Y π(X) + ε] 6= ∅}

)}
.

(3.22)

We now study the more difficult case where (3.16) does not hold. To fix the ideas, assume
that, for some Y∗ ∈ [ϕ(X1), Y0], we have

w(Xi, Y ) < π for all Y < Y∗, i = 1, 2 , w(X1, Y∗) = π. (3.23)

For Y0 ≥ Y∗, using the triangle inequality we can write

|α(X1, Y0)− α(X2, Y0)|

≤ |α(X1, Y0)− α(X1, Y∗)|+ |α(X1, Y∗)− α(X2, Y∗)|+ |α(X2, Y∗)− α(X2, Y0)|

= A1 +A2 +A3.

Recalling (3.12) we have the bound
A1 ≤ κε

for some constant κ. Moreover, by the previous arguments we already know that the estimate
(3.20) holds when Y0 is replaced by Y∗. This yields a bound on A2.

We now work toward an estimate of A3. Call

Y ∗
.
= sup{Y ∈ [Y∗, Y0] ; w(X2, Y ) < π} .

Since
|α(X2, Y0)− α(X2, Y

∗)| ≤ κε,

it suffices to estimate the difference |α(X2, Y
∗)− α(X2, Y∗)|.

The relevant equations in (3.1)–(3.3) are

wY =
c′(u)

8c2(u)
(cos z − cosw)q + ε ,

pY =
c′(u)

8c2(u)
(sin z − sinw)pq ,

uY =
sin z

4c(u)
q ,

(3.24)

with an initial data w(Y∗, X2) ≈ π. Since in these computations X = X2 is fixed, we shall
omit this variable and write w(Y ) = w(X2, Y ), z(Y ) = z(X2, Y ), etc. . . Roughly speaking,
two cases can occur:
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(i) sin z(Y ) ≈ 0. In this case wY , pY , uY ≈ 0. Hence all these functions remain almost
constant.

(ii) sin z(Y ) is not close to zero. In this case cos z(Y ) is much bigger than −1, hence wY (Y )
is strictly positive. Therefore, w(·) will increase, reaching π + ε3 within a short time.
After this happens, |αY (·)| ≤ 2ε, hence α remains almost constant.

In both cases, the difference |α(Y )− α(Y∗)| remains small.

Relying on the previous ideas, we now work out a rigorous proof. Set

δ
.
= π − w(Y∗).

Notice that δ is bounded by the right hand side of (3.20). Choose constants 0 < c0 < C0 such
that

c0 ≤
c′(u)

8c(u)
≤ C0 . (3.25)

From the first equation in (3.24) we deduce the lower bound

w(Y ) ≥ w(Y∗)− C0(1− cos(π − 2δ)) Y ∈ [Y∗, Y
∗] . (3.26)

In addition, we have 
|pY | ≤ C0

(
| sin z(Y )|+ | sin 2δ|

)
+ ε ,

|uY | ≤ C0 | sin z(Y )| .
(3.27)

δ ≥ w(Y ∗)− w(Y∗) ≥
∫ Y ∗

Y∗

c′(u)

8c2(u)
(cos z(Y )− cos(π − 2δ)) dY. (3.28)∫ Y ∗

Y∗

c′(u)

8c2(u)

(
cos z(Y ) + 1− δ2

)
dY ≤ δ. (3.29)

Using (3.25), from (3.29) we deduce∫ Y ∗

Y∗

| sin z(Y )| dY =

∫ Y ∗

Y∗

2
∣∣∣ sin z(Y )

2

∣∣∣ ∣∣∣ cos
z(Y )

2

∣∣∣ dY
≤ 2|Y ∗ − Y∗|1/2

(∫ Y ∗

Y∗

cos2 z(Y )

2
dY

)1/2

≤ C ′

(∫ Y ∗

Y∗

1 + cos z(Y ) dY

)1/2

≤ Cδ1/2

(3.30)
for some constants C ′, C. By (3.27) we thus have

|p(Y ∗)− p(Y∗)| ≤
∫ Y ∗

Y∗

|pY | dY ≤ C(δ1/2 + ε) (3.31)

and

|u(Y ∗)− u(Y∗)| ≤
∫ Y ∗

Y∗

|uY | dY ≤ Cδ1/2, (3.32)

possibly with a larger constant C. Since δ is bounded by the right hand side of (3.20), by a
suitable choice of C we obtain (3.14).

Using (3.22), a similar argument yields (3.15).
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4. Recalling the definition of the domain ΩM at (3.6), consider any rectangle [a, b] × [c, d] ⊂
ΩM , and let (ξ, ζ) be any vector such that [a+ ξ, b+ ξ]× [c+ ζ, d+ ζ] ⊂ ΩM .

Consider any solution of (3.1)–(3.5), for some ε ∈ ]0, 1]. Since the components w, p, u are
uniformly Lipschitz continuous w.r.t. Y , we have the easy estimate∫ b

a

∫ d

c
|α(X,Y )− α(X,Y + ζ)| dY dX ≤

∫ b

a
C |ζ| dX ≤ C(b− a)|ζ| . (3.33)

for some constant C.

Next, using (3.14) with X1
.
= X, X2

.
= X + ξ, we obtain∫ b

a

∫ d

c
|α(X,Y )− α(X + ξ, Y )| dY dX

≤ C (d− c)
∫ b

a

{∣∣w̄(X)− w̄(X + ξ)
∣∣+
∣∣ū(X)− ū(X + ξ)

∣∣+ |ξ|+
∣∣ϕ(X)− ϕ(X + ξ)

∣∣
+meas

(
{Y ≤M ; [X,X + ξ] ∩ [Xπ(Y ), Xπ(Y ) + ε] 6= ∅}

)}1/2

dX

≤ C ′
∫ b

a

(
A(X)1/2 +B(X)1/2

)
dX ,

(3.34)
where

A(X)
.
=
∣∣w̄(X)− w̄(X + ξ)

∣∣+
∣∣ū(X)− ū(X + ξ)

∣∣+ |ξ|+
∣∣ϕ(X)− ϕ(X + ξ)

∣∣,
B(X)

.
= meas

(
{Y ≤M ; [X,X + ξ] ∩ [Xπ(Y ), Xπ(Y ) + ε] 6= ∅}

)
.

Since the initial data w̄ is bounded and measurable, while p̄ ≡ 1 and ū, ϕ are continuous, there
exists some modulus of continuity ψ such that∫ b

a

(∣∣w̄(X)− w̄(X+ ξ)
∣∣+ ∣∣ū(X)− ū(X+ ξ)

∣∣+ |ξ|+ ∣∣ϕ(X)−ϕ(X+ ξ)
∣∣) dX ≤ ψ(|ξ|) . (3.35)

Calling A0
.
= ψ(|ξ|)

b−a , we have∫ b

a
A(X)1/2 dX =

∫
[a,b]∩{A≤A0}

A(X)1/2 dX +

∫
[a,b]∩{A>A0}

A(X)1/2 dX

≤
√
ψ(|ξ|) · (b− a) +

1√
A0

∫ b

a
A(X) dX ≤ 2

√
ψ(|ξ|) · (b− a).

(3.36)

To estimate the integral of B1/2 we observe that∫ b

a
B(X) dX ≤ (d− c)(|ξ|+ ε). (3.37)

The same arguments as in (3.36), with ψ(|ξ|) replaced by the right hand side of (3.37), now
yield ∫ b

a
B(X)1/2 dX ≤ 2

√
(d− c)(|ξ|+ ε) · (b− a). (3.38)
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Together, the estimates (3.33) and (3.36)-(3.38) yield a bound of the form∫ b

a

∫ d

c
|α(X,Y )− α(X + ξ, Y + ζ)| dY dX ≤ Φ(|ξ|+ |ζ|+ ε) (3.39)

for some continuous function Φ, with Φ(0) = 0. Entirely similar estimates hold for the
functions β = (z, q).

5. Given any sequence εn → 0, consider the corresponding approximate solutions U ε
.
=

(uε, wε, zε, pε, qε). In order to use the Kolmogorov-Riesz compactness theorem [9] and prove
that a subsequence U εn admits a subsequence converging in L1

loc(Ω
+), the following property

must be proved:

(P) For any ε > 0 there exists ρ > 0 such that, on any rectangle Q ⊂ Ω+, one has∫
Q
|U εn(X + ξ, Y + ζ)− U εn(X,Y )| dX dY ≤ ε (3.40)

whenever |ξ|+ |ζ| ≤ ρ, n ≥ 1.

By the previous step, we have an estimate of the form∫
Q

∣∣U εn(X + ξ, Y + ζ)− U εn(X,Y )
∣∣ dX dY ≤ Φ(|ξ|+ |ζ|+ εn). (3.41)

Choose ρ′ > 0 small enough so that Φ(2ρ′) < ε. If |ξ| + |ζ| < ρ′ then (3.40) holds for all
εn < ρ′. Since there are only finitely many functions U εn with εn ≥ ρ′, by choosing ρ ∈ ]0, ρ′]
small enough, we can guarantee that (3.40) holds whenever |ξ|+ |ζ| < ρ and U ε is one of these
finitely many functions with εn > ρ′.

6. Using the Riesz-Kolmogorov compactness theorem, we obtain a sequence ε→ 0 such that

(uε, wε, zε, pε, qε)(X,Y ) → (u,w, z, p, q)(X,Y ) for a.e. (X,Y ) ∈ Ω+.

By Lipschitz continuity, for any given M > 0 this implies:

• For a.e. X ∈ IR one has the uniform convergence (uε, wε, pε)(X,Y ) → (u,w, p)(X,Y ),
for all Y ∈ [ϕ(X),M ].

• For a.e. Y ∈ IR one has the uniform convergence (zε, qε)(X,Y ) → (z, q)(X,Y ), for all
X ∈ [ϕ−1(Y ),M ].

7. It remains to show that the limit functions (u,w, z, p, q) provide a solution to the set
of equations (2.18)–(2.21). This is nontrivial, because the right hand side of the equations
(2.18)–(2.21) is discontinuous at w = π or z = π. Comparing the functions θ, θε in (2.20) and
(3.4), one should be aware that general it is not true that θε → θ as ε→ 0. For example, this
convergence fails if wε = zε = π − ε.

Our proof is based on the following a priori estimate. For any given η, ε > 0, consider the set

Aη,ε
.
=
{

(X,Y ) ∈ ΩM ; max{wε(X,Y ), zε(X,Y )} ≥ π − η
}
.
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We claim that ∫ ∫
Aη,ε

(
|wεY |+ |pεY |+ |zεX |+ |qεX |

)
dXdY ≤ C η1/3, (3.42)

for some constant C, uniformly valid on the region where 0 < ε ≤ η. The idea of the proof
is quite simple: on the set where |w − z| is small the derivatives wY , pY , zX , qX are all close
to zero. On the other hand, the set where |w − z| is large has small measure. To simplify
notation, we here omit the superscript ε. More precisely, for any δ > 0 consider the sets

Sδ
.
=
{

(X,Y ) ∈ Aη,ε ; w ≤ z − δ ≤ z ≤ π
}
,

S′δ
.
=
{

(X,Y ) ∈ Aη,ε ; z ≤ w − δ ≤ w ≤ π
}
.

Observe that, for suitable constants 0 < c < C, we have

(i) zX(X,Y ) ≥ c · δ2 for all (X,Y ) ∈ Sδ .

(ii) If z(X,Y ) ≥ π − η, then{
zX(X ′, Y ) ≥ − C · η ,
z(X ′, Y ) ≥ π − Cη , for all (X ′, Y ) ∈ ΩM , X ′ ≥ X.

Entirely similar estimates hold for w,wY . From (i)-(ii) we deduce

meas(Sδ ∪ S′δ) = O(1) · η δ−2. (3.43)

Choosing δ = η1/3 we obtain(∫ ∫
Sδ∪S′δ

+

∫ ∫
Aη,ε\(Sδ∪S′δ)

)(
|wεY |+ |pεY |+ |zεX |+ |qεX |

)
dXdY

= O(1) · η δ−2 +O(1) · δ = O(1) · η1/3.

(3.44)

8. Thanks to (3.42), by choosing a further subsequence εn ↓ 0 and setting ηn = ε
1/3
n , we can

assume that ∫ ∫
Aηn,εm

(
|wεmY |+ |p

εm
Y |+ |z

εm
X |+ |q

εm
X |
)
dXdY ≤ C ε1/3

n ≤ 2−n (3.45)

for every m ≥ n ≥ 1.

Calling
A0

.
=
{

(X,Y ) ∈ ΩM ; max{w(X,Y ), z(X,Y )} ≥ π
}
,

for every n ≥ 1 we have the estimate∫ ∫
A0

(
|wY |+ |pY |+ |zX |+ |qX |

)
dXdY ≤

∫ ∫
Aηn,εm

(
|wY |+ |pY |+ |zX |+ |qX |

)
dXdY

≤ lim supm→∞
∫∫
Aηn−1,εm

(
|wεmY |+ |p

εm
Y |+ |z

εm
X |+ |q

εm
X |
)
dXdY ≤ 2−n+1.

(3.46)
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Hence the left hand side of (3.46) is zero.

9. To complete the proof, setting

B0
.
=
{

(X,Y ) ∈ ΩM ; max{w(X,Y ), z(X,Y )} < π
}
,

we need to show that ∫ ∫
B0

Λ(X,Y ) dXdY = 0, (3.47)

where Λ accounts for the differences between the right and left hand sides of (2.18)–(2.21).
More precisely:

Λ
.
=

∣∣∣∣wY − c′(u)

8c2(u)
(cos z − cosw) q

∣∣∣∣+

∣∣∣∣zX − c′(u)

8c2(u)
(cosw − cos z) p

∣∣∣∣
+

∣∣∣∣pY − c′(u)

8c2(u)
(sin z − sinw) pq

∣∣∣∣+

∣∣∣∣qX − c′(u)

8c2(u)
(sinw − sin z) pq

∣∣∣∣+

∣∣∣∣uY − sin z

4c

∣∣∣∣ .
(3.48)

Toward this goal, for any ν ≥ 1 call

Bν
.
=
{

(X,Y ) ∈ ΩM ; max{w(X,Y ), z(X,Y )} ≤ π − 2−ν
}
.

We can choose a sequence εn ↓ 0 such that

(uεn , wεn , zεn , pεn , qεn)(X,Y ) → (u,w, z, p, q)(X,Y ) for a.e. (X,Y ) ∈ Bν .

By Egoroff’s theorem, for any δ > 0, there exists a subset F ⊆ Bν with meas(F ) < δ and

(uεn , wεn , zεn , pεn , qεn) → (u,w, z, p, q) uniformly for any (X,Y ) ∈ Bν\F.

Then for any (X,Y ) ∈ Bν\F , there exists some ν1 > ν ≥ 1 such that

max{wεn(X,Y ), zεn(X,Y )} ≤ π − 2−ν1 .

It implies that

Bν\F ⊆ Bν1,εn
.
=
{

(X,Y ) ∈ ΩM ; max{wεn(X,Y ), zεn(X,Y )} ≤ π − 2−ν1
}
.

Let Λεn be the same form of Λ in (3.48) with (u,w, z, p, q) replaced by (uεn , wεn , zεn , pεn , qεn).
Equations (3.1)-(3.3) implies that Λεn = 2εn on Bν1,εn . Thus we obtain∫ ∫

Bν

Λ(X,Y ) dXdY =

∫ ∫
Bν\F

Λ(X,Y ) dXdY +

∫ ∫
F

Λ(X,Y ) dXdY

= lim
εn↓0

∫ ∫
Bν\F

Λεn(X,Y ) dXdY +

∫ ∫
F

Λ(X,Y ) dXdY

≤ lim
εn↓0

∫ ∫
Bν1,εn

Λεn(X,Y ) dXdY + Cδ

= Cδ.

(3.49)
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Hence ∫ ∫
Bν

Λ(X,Y ) dXdY = 0, (3.50)

for every ν ≥ 1. Letting ν → ∞ in (3.50) and using Lebesgue’s monotone convergence
theorem, we conclude (3.47).

4 Global existence of dissipative solutions

Going back to the original variables, we now prove that the limit function u provides a dissi-
pative solution to the original wave equation (1.1). The proof of Theorem 2 will be given in
several steps.

1. As in [5], by setting f = x and then f = t in (2.15), we obtain
xX =

(1 + cosw)p

4
,

xY = −(1 + cos z)q

4
,


tX =

(1 + cosw)p

4c
,

tY =
(1 + cos z)q

4c
.

(4.1)

Conversely, whenever cosw 6= −1 and cos z 6= −1, one has
Xx =

2

(1 + cosw)p
,

Yx = − 2

(1 + cos z)q
,


Xt =

2c

(1 + cosw)p
,

Yt =
2c

(1 + cos z)q
.

(4.2)

As in [5], we can recover (t, x) by integrating either one of the equations for x and for t in
(4.1). Indeed, from the equations (2.18)–(2.21) it follows that xXY = xY X and tXY = tY X for
a.e. X,Y .

2. For any (t̄, x̄), we now define u(t̄, x̄)
.
= u(X,Y ) where (X,Y ) is any point such that

x(X,Y ) = x̄ and t(X,Y ) = t̄. We claim that the above definition of u(t, x) is independent of
the choice of (X,Y ). Indeed (see Fig. 3), suppose that there are two different points (X1, Y1)
and (X2, Y2) such that

x(X1, Y1) = x(X2, Y2) = x̄ , t(X1, Y1) = t(X2, Y2) = t̄ . (4.3)

Two cases must be considered.

CASE 1: X1 ≤ X2, Y1 ≤ Y2. We then consider the set

Γx̄
.
= {(X,Y ); x(X,Y ) ≤ x̄}

with boundary ∂Γx̄. By (4.1), x(X,Y ) is increasing w.r.t. X and decreasing w.r.t. Y . This
boundary can thus be represented as the graph of a Lipschitz continuous function, namely

X − Y = φ(X + Y ).

We now construct the Lipschitz continuous curve γ as in Fig. 3, left, consisting of
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Figure 3: Proving that the map (t, x) 7→ u(t, x) is well defined.

- a horizontal segment joining (X1, Y1) with a point A = (XA, YA) on ∂Γx̄, with YA = Y1,

- a portion of the boundary ∂Γx̄,

- a vertical segment joining (X2, Y2) to a point B = (XB, YB) on ∂Γx̄, with XB = X2.

We can parameterize this curve in a Lipschitz continuous way, say γ : [ξ1, ξ2] 7→ IR2, using
the parameter ξ = X + Y . Observe that the map (X,Y ) 7→ (t, x) is constant along γ. By
(4.1) this implies (1 + cosw)Xξ = (1 + cos z)Yξ = 0, hence sinw ·Xξ = sin z · Yξ = 0. We now
compute

u(X2, Y2)− u(X1, Y1) =

∫
γ

(
uX dX + uY dY

)
=

∫ ξ2

ξ1

(
p sinw

4c
Xξ −

q sin z

4c
Yξ

)
dξ = 0 ,

proving our claim.

CASE 2: X1 ≤ X2, Y1 ≥ Y2. In this case, we consider the set

Γt̄
.
=
{

(X,Y ) ; t(X,Y ) ≤ t̄
}
,

and construct a curve γ connecting (X1, Y1) with (X2, Y2) as in Fig. 3, right. Details are
entirely similar to Case 1.

3. In this step we prove that the function u provides a weak solution to the original nonlinear
wave equation (1.1). According to (1.5), we need to show that∫ ∫

φt
[
(ut + cux) + (ut − cux)

]
−
(
c(u)φ

)
x

[
(ut + cux)− (ut − cux)

]
dxdt = 0 (4.4)

for every test function φ ∈ C∞c ([0,∞[×IR). We now express the double integral in terms of
the variables X,Y , using the change of variable formula

dxdt =
pq

2c(1 +R2)(1 + S2)
dXdY =

pq

2c
cos2 w

2
cos2 z

2
dXdY , (4.5)

see [5] for details. Since only the absolutely continuous part of the measure c′(u)u2
x is accounted

in the double integral (4.4), using (2.15) we obtain that (4.4) is equivalent to

0 =

∫ ∫
R
[
φt − (cφ)x)

]
+ S

[
φt + (cφ)x

]
dxdt

=

∫ ∫
−2cYxφYR+ 2cXxφXS + θc′φ(uXXx + uY Yx)(S −R) dxdt .

(4.6)
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Remark. The integrand in (1.5), or equivalently (4.6), contains the term c′(u)u2
x which

multiplies the test function φ. Computing the same integral in terms of X,Y , a straightforward
use of the change of variable formula would lead to a Radon measure. However, it is only the
absolutely continuous part of this measure that actually contributes to the integral (1.5), i.e.,
the part with max{w, z} < π. For this reason, in (4.6) we need to insert the additional factor
θ. We observe that, in the conservative case [5], this factor was not needed, because in that
case the corresponding Radon measure is already absolutely continuous with density c′(u)u2

x,
for a.e. time t.

Using (4.5) to change variables and the identities
1

1 +R2
= cos2 w

2
=

1 + cosw

2
,

1

1 + S2
= cos2 z

2
=

1 + cos z

2
,


R

1 +R2
=

sinw

2
,

S

1 + S2
=

sin z

2
,

(4.7)

the double integral in (4.6) can be written as∫ ∫ {
R

1 +R2
pφY +

S

1 + S2
qφX + θ

c′pq

8c2

(
sinw

1 + S2
− sin z

1 +R2

)
(S −R)φ

}
dXdY

=

∫ ∫ {
p sinw

2
φY +

q sin z

2
φX

+θ
c′pq

8c2

(
sinw sin z − sinw cos2 z

2
tan

w

2
− sin z cos2 w

2
tan

z

2

)
φ

}
dXdY

=

∫ ∫ {
p sinw

2
φY +

q sin z

2
φX + θ

c′pq

8c2

[
cos(w − z)− 1

]
φ

}
dXdY.

(4.8)

Since u,w, p are Lipschitz continuous functions of Y , while u, z, q are Lipschitz continuous
functions of X, after an integration by parts it suffices to check that the identity(

p sinw

2

)
Y

+

(
q sin z

2

)
X

= θ
c′pq

8c2

[
cos(w − z)− 1

]
(4.9)

holds at a.e. point (X,Y ). By (2.18) and (2.19) we have(
p sinw

2

)
Y

+

(
q sin z

2

)
X

= pY
sinw

2
+ p

(
sinw

2

)
Y

+ qX
sin z

2
+ q

(
sin z

2

)
X

= θ
c′pq

16c2

[
(sin z − sinw) sinw + cosw(cos z − cosw)

]
+ θ

c′pq

16c2

[
(sinw − sin z) sin z + cos z(cosw − cos z)

]
= θ

c′pq

8c2

[
cos(w − z)− 1

]
(4.10)

which implies (4.9) and hence (4.4). Therefore, the function u provides a weak solution to
(1.1).
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4. It remains to prove that the weak solution u is dissipative. Toward this goal, consider any
0 ≤ t1 < t2 and a large radius r > 0, and define

Ωr .
=
{

(X,Y ) ; X ≤ r, Y ≤ r, t1 ≤ t(X,Y ) ≤ t2
}
.

We can represent the above set as

Ωr .
=
{

(X,Y ) ; X ≤ r, Y ≤ r, φ1(X + Y ) ≤ X − Y ≤ φ2(X + Y )
}
,

for some functions φ1 < φ2, Lipschitz continuous with constant 1. With reference to Fig. 4,
assume that

x(A) = a, x(B) = b, x(C) = c, x(D) = d,

for some a < b and c < d. Moreover, let γ1, γ2 be the lower and upper portions of the
boundary of Ωr. From the equations (2.18)-(2.19) it follows that the 1-form

E dx− (cM2) dt =
(1− cosw)p

8
dX − (1− cos z)q

8
dY (4.11)

is closed. Therefore, the integral of the 1-form (4.11) along the boundary of Ωr is zero. In
particular, this yields∫

γ1

{
(1− cosw)p

8
dX − (1− cos z)q

8
dY

}
−
∫
γ2

{
(1− cosw)p

8
dX − (1− cos z)q

8
dY

}

=

∫
AC

(1− cosw)p

8
dX +

∫
BD

(1− cos z)q

8
dY ≥ 0 .

(4.12)

r
Ω

A

B

C

D
γ

1

2
γ

X

r

r0

Y

Figure 4: The set Ωr considered in step 4 of the proof. In the contour integrations at (4.12), the curve
γ1 is oriented from A to B, while γ2 is oriented from C to D.

We now observe that, at time t1, the total energy inside the interval [a, b] is computed by∫ b

a

1

2

[
u2
t (t1, x) + c2(u(t1, x))u2

x(t1, x)
]
dx

=

∫
γ1∩{w(X,Y )<π}

(1− cosw)p

8
dX −

∫
γ1∩{z(X,Y )<π}

(1− cos z)q

8
dY .

(4.13)
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An entirely similar formula yields the energy at time t2 inside the interval [c, d].

From the basic equations (2.18)–(2.20) one obtains the implications

w(X,Y ) = π =⇒ w(X,Y ′) = π and q(X,Y ′) = q(X,Y ) for all Y ′ ≥ Y,
z(X,Y ) = π =⇒ z(X ′, Y ) = π and p(X ′, Y ) = p(X,Y ) for all X ′ ≥ X.

(4.14)
Combining (4.13) with (4.12) and using (4.14) we now obtain∫ b

a

1

2

(
u2
t (t2, x) + c2(u(t2, x))u2

x(t2, x)
)
dx−

∫ d

c

1

2

(
u2
t (t1, x) + c2(u(t1, x))u2

x(t1, x)
)
dx

=

(∫
γ1

−
∫
γ1∩{w(X,Y )=π}

)
(1− cosw)p

8
dX −

(∫
γ1

−
∫
γ1∩{z(X,Y )=π}

)
(1− cos z)q

8
dY

−

(∫
γ2

−
∫
γ2∩{w(X,Y )=π}

)
(1− cosw)p

8
dX +

(∫
γ2

−
∫
γ2∩{z(X,Y )=π}

)
(1− cos z)q

8
dY

=

∫
γ1

{
(1− cosw)p

8
dX − (1− cos z)q

8
dY

}
−
∫
γ2

{
(1− cosw)p

8
dX − (1− cos z)q

8
dY

}

−
∫
γ1∩{w(X,Y )=π}

p

4
dX +

∫
γ1∩{z(X,Y )=π}

q

4
dY +

∫
γ2∩{w(X,Y )=π}

p

4
dX −

∫
γ2∩{z(X,Y )=π}

q

4
dY

≥ 0 .
(4.15)

Indeed, as shown in Fig. 5, by (4.14) it follows

0 ≤
∫
γ1∩{w(X,Y )=π}

p

4
dX ≤

∫
γ2∩{w(X,Y )=π}

p

4
dX ,

0 ≤ −
∫
γ1∩{z(X,Y )=π}

q

4
dY ≤ −

∫
γ2∩{z(X,Y )=π}

q

4
dY.

(4.16)

Letting r → +∞, we have a, c → −∞ while b, d → +∞. Hence (4.15) yields the desired
inequality on the total energy:

E(t2) =

∫ ∞
−∞

1

2

(
u2
t (t2, x) + c2(u(t2, x))u2

x(t2, x)
)
dx

≤
∫ ∞
−∞

1

2

(
u2
t (t1, x) + c2(u(t1, x))u2

x(t1, x)
)
dx = E(t1) ,

showing that the weak solution u = u(t, x) is dissipative.

Remark. Within the proof, we checked that the differential form (4.11) is closed. This might
suggest that, as in [5], our solution is still conservative. The key difference can be explained
as follows (see Fig. 6). The contour integral∫

γ1

{
(1− cosw)p

8
dX − (1− cos z)q

8
dY

}
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z = π

w = π

B

C

D
γ

1

X0

Y

2
γ

A

Figure 5: The set where w = π grows as Y increases. Similarly, the set where z = π grows as X
increases. By (4.14), this yields the inequalitites in (4.16).

τ

t

x

t

x

τ

Figure 6: Left: characteristic curves in a conservative solution. At time τ a positive amount of energy
is concentrated at a single point. However, for t > τ the energy measure is again absolutely continuous.
Right: the characteristics curves in a dissipative solution with the same initial data. When some of the
energy concentrates at one point, it remains inside the singular part of the energy measure µ(t) for all
subsequent times. The equations (2.18)–(2.21) imply that this singular part of the energy is formally
transported along characteristics. However it does not affect the solution u at any time t > τ .

yields the total energy at time t1 inside the interval [a, b]. In general, this energy is a positive
Radon measure µ(t1) on the real line. On the other hand the integral∫ b

a

1

2

[
u2
t (t1, x) + c2(u(t1, x))u2

x(t1, x)
]
dx

accounts only for the absolutely continuous part of this measure. In the solution constructed
in [5], the measure µ(t) is absolutely continuous for a.e. time t. Hence E(t) = E(0) for a.e. t.
On the other hand, in our dissipative solution the singular part of the energy measure (cor-
responding to w = π or z = π) is always increasing in time. Hence the absolutely continuous
part can only decrease.
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