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Abstract. We show the existence of the Braess paradox for a traffic network
with nonlinear dynamics described by the Lighthill–Whitham-Richards model

for traffic flow. Furthermore, we show how one can employ control theory
to avoid the paradox. The paper offers a general framework applicable to
time-independent, uncongested flow on networks. These ideas are illustrated
through examples.

1. Introduction

Consider the following scenario: We have a simple network consisting of two
routes connecting A to B, see Figure 1. Each route consists of two roads. Roads a
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Figure 1. Network consisting of two routes connecting A to B.
The route α consists of the roads a and b, the route β consists of
the roads c and d.

and d are identical, as are roads b and c. Traffic is unidirectional in the direction
from A to B. Travel time along roads a and d are given by ρ/100, where ρ is the
number of vehicles on that road, while the travel time is 45 for each of roads b and
c, irrespective of the number of vehicles on that road. In equilibrium, vehicles will
distribute evenly between the two routes connecting A and B, i.e., roads a & d and
b & c. Assuming that initially m = 4000 vehicles start from A, we find a travel
time of 65 along each of the two routes. Add a road e as given in Figure 2, and
assume that the travel time is zero along this road. Drivers will start using the new
road, reducing their travel time from 65 to 40. However, as more and more drivers
use the new road, their travel time will increase to 80. Now, no driver will have an
incentive to use the old roads, i.e., avoiding road e, as the travel time along those
roads will be 85. Thus all drivers are worse off than before, in spite of having a new
road. This is the Braess paradox in a nutshell: Adding a new road to a network
may make travel times worse for all. In both cases the equilibrium is a Wardrop
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Figure 2. A network consisting of three routes α, β, and γ con-
necting A to B. The route α comprises the roads a and b, the route
β comprises the roads c and d and, finally, the route γ consists of
the roads a, e, and d.

equilibrium (i.e., all routes used have the same travel time, and all unused routes
have longer travel times) as well as a Nash equilibrium.

This is the simplest example of the Braess paradox, introduced (with a different
example) by Braess in 1968 [3], see also [18]. This example and some generalizations
have been studied in, e.g., [10, 12, 23]. In spite of the unrealistic assumptions in the
prevalent example above, the paradox has turned out to be ubiquitous and intrinsic
to dynamical networks. The paradox also appears in other situations not modeling
traffic flow [24], see, e.g., [19] for an example involving mesoscopic electron systems,
and [7] for an example with mechanical springs. Furthermore, the paradox can be
reformulated in the context of game theory. In addition, there are well documented
examples of the paradox occurring in real-life traffic situations, e.g., in Seoul [2]
and Stuttgart [15, pp. 57–59], see also [27]. Not surprisingly, the paradox has been
well described also in general media, see, e.g., [16, 1, 25] and on Wikipedia as well
as YouTube. The extensive discussion about the Braess paradox makes a complete
reference list impossible, see, however, [9, 21, 22]. In this paper we only refer to
articles directly related to the research at hand.

Here we want to study the Braess paradox with a more realistic nonlinear dy-
namics. More specifically, we want to model unidirectional traffic along roads by
a macroscopic model where only densities of vehicles are considered. We believe
this to be novel. In this class of models, introduced by Lighthill–Whitham [17] and
Richards [20] (hereafter denoted the LWR model), vehicles, described by a density
ρ rather than individually, drive with a velocity determined by the density alone;
higher density yields slower speed while low density lets vehicles approach the speed
limit. At a maximum density with bumper-to-bumper vehicles, traffic comes to a
halt. The dynamics is well described by the nonlinear partial differential equation

(1.1) ∂tρ+ ∂x
(

ρ v(ρ)
)

= 0,

see, e.g., [14, pp. 11–18]. The function q(ρ) = ρv(ρ) is denoted the flux function,
or, in the context of traffic flow, the fundamental diagram. It is in general a concave
function that equals zero when ρ vanishes and when ρ equals the maximum possible
road density. Hyperbolic conservation laws, as equations of the type (1.1) are called,
have been used to study traffic on a network, starting with Holden and Risebro [13],
see, e.g., the book by Garavello and Piccoli [11]. Related results on a game theoretic
approach to network traffic through the LWR model, see [4, 5]. For general theory
concerning hyperbolic conservation laws we refer to [14].

However, the Braess paradox describes an equilibrium situation, and it is not
relevant to include time variation. Rather, we want to study stationary solutions
where the velocity is a given function of the density of vehicles on the road. At a
junction, the differential equation (1.1) will in general, if the two roads have different
properties, establish a complicated wave pattern, creating waves that emanate from
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the junction in both directions. However, in the equilibrium situation, this cannot
happen, as it would create time-dependent waves. Thus, we will set up the example
in such a way that no waves are created at junctions.

In this paper we analyze the same simple network as described above, but with
much more realistic dynamics. More general examples are of course possible using
the same methods. However, calculations become more cumbersome and less trans-
parent, and we here focus on presenting the ideas of the model, exemplified on the
simple network in Figures 1 and 2. For another approach to the Braess paradox,
see, e.g., [8].

The prevalence of the Braess paradox is unwanted, and one would like to take
measures to prevent its occurrence. In the example in the present paper, we use
the velocity of the road e as a control parameter. By properly adjusting the speed
limit on road e, one can force the Braess paradox to disappear, and make the social
optimum coincide with the Nash equilibrium.

This can be illustrated in the simple example in the beginning of the introduction.
Given a “benevolent dictator” who wants to reduce the total travel time and reach
the social optimum, a short calculation shows that, with m = 4000, 1750 vehicles
should follow each of the routes a & b and c & d, and the remaining 500 vehicles
should follow the route a, e, and d. Although a social optimum, this situation is
neither a Wardrop nor a Nash equilibrium.

This paper offers a framework applicable to general networks. The input is, in
addition to the network itself, the length and velocity fields of each road as well as
the influx. We assume that traffic is in the uncongested, or free, phase. This will
prevent waves from emanating from the junctions.

2. A dynamic version of the Braess paradox

2.1. Notation and basic definitions. Below, we denote R+ = [0,+∞) and Sn =
{ϑ ∈ [0, 1]n |

∑

j ϑj ≤ 1} is the standard simplex in R
n. The sphere centered at ϑ

with radius r is denoted by Br(ϑ).
Two points A and B are connected through a network of roads. Along each road,

traffic is described through the LWR model (1.1). At each junction, the total flow
exiting the junction equals the incoming one, so that the total quantity of vehicles
is conserved.

The macroscopic description obtained solving (1.1) along each road also provides
the full microscopic portrait of the network. Indeed, once ρ = ρ(t, x) is known along
the road r connecting, say, the junction at A to that at B, the single vehicle leaving
from A at time to travels along r according to

(2.1)







ẋ = v
(

ρ(t, x(t))
)

,

x(to) = A .

The travel time τr(to) along the road a is then implicitly defined by

(2.2) x
(

τr(to)
)

= B .

To compute τr(to), in general, one has first to provide (1.1) with initial and bound-
ary data, then solve the resulting initial-boundary value problem to obtain ρ =
ρ(t, x), use this latter expression to solve the ordinary differential equation (2.1)
and finally solve the equation (2.2). Observe that the right-hand side in the ordi-
nary differential equation in (2.1) is in general discontinuous, nevertheless in the
present setting it is well-posed, see [6]. In the present stationary framework, this
procedure can be pursued explicitly, as we detail below in Example 2.6. Remark
that, in a stationary regime, all travel times are independent of the starting time
to.
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For the above travel times to be a reliable measure of the network efficiency,
it is necessary that they are independent from any particular initial data. Also
the standard initial-boundary value problem for (1.1) with zero initial density on
the whole network is unsatisfactory, since it would give results that depend on
the transient period necessary to fill the network. We are thus bound to select
stationary solutions, assigning a constant inflow at A for all times t ∈ R. Moreover,
to allow for stationary solutions, we also assume that the total flow incoming at
any junction never exceeds the total capacity of the roads exiting that junction.

In the general LWR model (1.1), the flux function q = q(ρ) is a concave function
that vanishes at zero density and at ρM , the maximum density. The flux has a
unique maximum for some value ρm ∈ (0, ρM ). As usual, we refer to densities below
ρm as the uncongested, or free, phase, and for densities above ρm as the congested
phase. In the remaining part of the paper, to obtain stationary solutions, we need
to remain in the free phase only, so that ρ ∈ [0, ρm] throughout the network. In
order to simplify the notation we will use the normalization ρm = 1 for all roads.
We will not make any assumptions on, or reference to, q above this value. Hence,
on the flow function we pose the following assumption:

(q): q ∈ C3([0, 1];R+), q(0) = 0, q′ > 0 and q′′ ≤ 0.

Clearly, if q satisfies (q), then the speed law v(ρ) = q(ρ)/ρ is well-defined, continu-
ous, strictly positive and weakly decreasing, see Lemma A.1. As a result, the travel
along a road segment is a convex and increasing function of the inflow.

Lemma 2.1. Let q satisfy (q) with q′′′ ≤ 0 and call ϕ = q(1). Then, the travel
time τ(ϑ), which is defined by x

(

τ(ϑ)
)

= B where

x solves

{

ẋ = v
(

ρ(t, x(t))
)

,

x(0) = A,
and ρ solves

{

∂tρ+ ∂xq(ρ) = 0,

q
(

ρ(t, A)
)

= ϑϕ,

is of class C2([0, 1];R+), weakly increasing and convex.

The proof follows directly from Lemma A.3.

When γ is a route consisting of the adjacent roads r1, r2, r3, . . ., the travel time
τγ(to) along γ is then defined as the sum

∑

i τri of the travel times of all roads.
A network consists of several routes connecting A to B. To describe it, we

enumerate each single road (or edge) and construct the matrix Γ setting

Γij =

{

1 the road ri belongs to the route γj ,

0 otherwise.

We now assign a constant total inflow ϕ at A and call ϑi the fraction of the drivers
that reach B along the route γj .

A single road may well belong to more than one route, so that the flow along
the road ri is ϕΓiϑ = ϕ

∑

i Γijϑj and the travel time along that road results to be
τri(Γiϑ). The total travel time τi along the ith route is in general a function of all
partition parameters, more precisely

τγj
(ϑ) =

∑

i

Γij τri(Γiϑ).

From a global point of view, it is natural to evaluate the quality of a network
through the mean global travel time1 T (ϑ) =

∑

j ϑj τγj
(ϑ) or, using matrix notation

τr(Γϑ) = [τr1(Γ1ϑ) · · · τrn(Γnϑ)], we find

(2.3) T (ϑ) = τr(Γϑ) Γ ϑ .

1Also called average latency of the system or social cost of the network.
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We call globally optimal2 a state ϑG ∈ Sn that minimizes T over Sn, i.e., ϑG =
argminϑ∈Sn T (ϑ). This social optimum state conforms to Wardrop’s Second prin-
ciple, see [26, p. 345].

Proposition 2.2. Let all road travel times τr1 , . . . , τrm be of class C2([0, 1];R+),
weakly increasing and convex. Then, the map T is in C2([0, 1];R+) is convex.

The proof is deferred to the Appendix.
For brevity, we call relevant those travel times τi such that ϑi 6= 0.

Definition 2.3. A state ϑ̄ ∈ Sn is an equilibrium state if all relevant travel times
coincide, i.e., for all i, j ∈ {1, . . . , n}

if ϑ̄i 6= 0 and ϑ̄j 6= 0, then τi(ϑ̄) = τj(ϑ̄) = τ̄ ,

the common value τ̄ of the travel times being the equilibrium time.

In other words, at equilibrium all drivers need the same time to go from A to B.
A common criterion for optimality goes back to Pareto.

Definition 2.4. An equilibrium state ϑP ∈ Sn is a local Pareto point if there
exists a positive δ such that for all ϑ ∈ Bδ(ϑ

P ) ∩ Sn if there exists a j such that
τγj

(ϑ) < τγj
(ϑP ), then there exists also a k such that τγk

(ϑ) > τγk
(ϑP ).

In other words, no (small) perturbation of a Pareto point may reduce all travel
times.

However, from a “selfish” point of view, each driver aims at reducing his/her
own travel time. It is then natural to introduce the following definition.

Definition 2.5. An equilibrium state ϑN ∈ Sn is a local Nash point if there exists
a positive δ such that for all ε ∈ (0, δ] and all j, k = 1, . . . , n,

if ϑN + εej − εek ∈ Sn, then τγj
(ϑN + εej − εek) > τγk

(ϑN ) ,

where ej is the unit vector directed along the jth axis.

In other words, it is not convenient for ε drivers to change from route k to route
j, for any j, k = 1, . . . , n.

Example 2.6. Consider the simple case of the network in Figure 3, and assume
that its dynamics is described as follows:

Road Length Density Model Flow

a 3/2 ρ ∂tρ+ ∂x
(

ρ v(ρ)
)

= 0 q(ρ) =
(

−1 +
√
1 + 8ρ

)

/4

b 1 R ∂tR+ ∂x
(

RV (R)
)

= 0 Q(R) = −1 +
√
1 +R

The maximal inflow ϕ at A that, for any ϑ ∈ [0, 1], can be partitioned in ϑϕ

along a and (1 − ϑ)ϕ along b is min
{

q(1), Q(1)
}

=
√
2 − 1. With this constant

inflow as left boundary data in (1.1), the resulting (stationary) densities are

ρ = (1 + 2ϑϕ)ϑϕ along road a, and R =
(

2 + (1− ϑ)ϕ
)

(1− ϑ)ϕ along road b .

The corresponding constant traffic speeds

v(ρ) = (1 + 2ϑϕ)−1 along road a, and V (R) = (2 + (1− ϑ)ϕ)−1 along road b,

inserted in (2.1), lead to the following travel times on the two roads:

τa(ϑ) = 3(1 + 2ϑϕ)/2 along road a, and τb(1− ϑ) = 2 + (1− ϑ)ϕ along road b .

Finally, the mean global travel time defined at (2.3) is

T (ϑ) = 2 + ϕ− 1 + 4ϕ

2
ϑ+ 4ϑ2 ϕ .

2Also called social optimum for the system.
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Figure 3. A simple network connecting A to B where the globally
optimal state differs from the Nash optimal one.

According to Definition 2.5, we have a unique Nash point at ϑN and a unique
globally optimal state at ϑG, where

ϑN =

{

0, ϕ ∈ [0, 1/6),
1+2ϕ
8ϕ , ϕ ∈ [1/6,

√
2− 1],

ϑG =

{

0, ϕ ∈ [0, 1/12),
1+4ϕ
16ϕ , ϕ ∈ [1/12,

√
2− 1].

Clearly, ϑN is also a Pareto point according to Definition 2.4. Note that the globally
optimal state may well differ from the Nash optimal one and both depend on the
total inflow ϕ, see Figure 4.

0.0 0.2 0.4 0.6 0.8 1.0

ϑ

1.6

1.8

2.0

2.2

2.4

2.6

τ

Travel times
τα
τβ

T

Figure 4. Travel times of the situation described in Example 2.6
with ϕ = 0.4, so that ϑN = 0.5625 and ϑG = 0.40625.

2.2. The case of four roads. Consider the network in Figure 1. The network is
given by two routes, denoted α and β, connecting A and B. The route α consists of
roads a and b, the route β consists of roads c and d. Roads a and d have the same
length ℓ and the same fundamental diagram q. Similarly, roads b and c share the
same length L and the same flow density relation. Traffic is always assumed to be
unidirectional from A to B, and no obstructions, e.g., traffic lights, are encountered
at the junctions.

Along each road, the dynamics of traffic is described by the LWR model (1.1)
with flux functions that lead to the travel times

τa(ϑ) = τd(ϑ) and τb(ϑ) = τd(ϑ) ,
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so that the travel time τα(ϑ) along the route α and τβ(1−ϑ) along the route β, are

τα(ϑ) = τa(ϑ) + τb(ϑ) and τβ(1− ϑ) = τa(1− ϑ) + τb(1− ϑ) .

Then, ϑ 7→ τα(ϑ) is (weakly) increasing, while ϑ 7→ τβ(1−ϑ) is (weakly) decreasing.
Since τα(1/2) = τβ(1/2), we have that ϑN = 1/2 is a Nash (and also Pareto) point
for this system. It is easy to verify that (ϑN , ϑN ) is also globally optimal, since it
is the argument that minimizes T (ϑ1, ϑ2) over the simplex S2.

2.3. The case of five roads. We now introduce a new road in Figure 1, passing
to the network described in Figure 2. The new road e, which has the direction
from a to d, has length ℓ̃ and its dynamics is characterized by a flow function
q̃ satisfying (q). The presence of the road e allows us to consider the route γ
connecting A to B consisting of the roads a, e, and d. For all ϑ1, ϑ2 ∈ [0, 1] such
that ϑ1+ϑ2 ≤ 1, we now let the inflow ϑ1 ϕ enter α, ϑ2 ϕ enter β and the remaining
(1− ϑ1 − ϑ2)ϕ enter γ. The travel times along the three routes are then:

(2.4)

τα(ϑ1, ϑ2) = τa(1− ϑ2) + τb(ϑ1),

τβ(ϑ1, ϑ2) = τb(ϑ2) + τa(1− ϑ1),

τγ(ϑ1, ϑ2) = τa(1− ϑ2) + τe(1− ϑ1 − ϑ2) + τa(1− ϑ1) .

Observe that τα(ϑ, ϑ) = τβ(ϑ, ϑ).
The mean global travel time is

(2.5) T (ϑ1, ϑ2) = ϑ1 τα(ϑ1, ϑ2) + ϑ2 τβ(ϑ1, ϑ2) + (1− ϑ1 − ϑ2) τγ(ϑ1, ϑ2) .

2.4. The Braess paradox. We now compare the travel times obtained in the two
cases described by Figures 1 and 2. To this end, observe that the travel times τ IVα
and τ IVβ in the case of four roads, and referring to Figure 1, are obtained from those
in the 5 roads case setting

τ IVα (ϑ) = τα(ϑ, 1− ϑ) and τ IVβ (ϑ) = τβ(ϑ, 1− ϑ).

Theorem 2.7. Let the travel times τa, τb, τe ∈ C0([0, 1];R+) be non decreasing and
assume that τa or τb are not constant. If the travel times defined in (2.4) satisfy

(2.6) τα(1/2, 1/2) < τγ(0, 0) < τα(0, 0),

then:

• ϑN ≡ (0, 0) is the unique local Nash point for the network with five roads
in Figure 2;

• the corresponding equilibrium time τγ(0, 0) is worse than the globally opti-
mal configuration for the network with four roads in Figure 1.

Under the above conditions we have the occurrence of the Braess paradox.

Observe that the point ϑP ≡ (1/2, 1/2) is the unique Pareto point for the five
roads networks.

Condition (2.6) allows us to construct several examples illustrating the Braess
paradox.

Example 2.8. With the notation in Figure 2, choose

Road Length Density Flow
a, d 1 ρ q(ρ)= ln(1 + ρ)
b, c 1 R Q(R)=RV (V ∈R)
e 1 ρ̃ q̃(ρ̃)= ρ̃ ṽ (ṽ ∈R)

Condition (2.6) then becomes

eϕ − 1

ϕ
<

1

V
− 1

ṽ
<

2

ϕ
(eϕ − eϕ/2),
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and, for any ϕ ∈
(

0,min{ln 2, V, ṽ}
]

, it can easily be met for suitable V , ṽ, see
Figure 5.
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Figure 5. Contour plots of the travel times related to Example 2.8
with V = 0.33, ṽ = 0.5, ℓ = L = ℓ̃ = 1, ϕ = 0.05. Above, τα and
τβ ; below τγ and the global travel time T . The color scales to
the right are the same in all figures and display the maximal and
minimal values of the diagrams to their left.

3. Control theory for the novel road — or how to cope with the

Braess paradox

Our next aim is proving that in the case of the network in Figure 2, a carefully
chosen speed limit imposed on the novel road γ makes the Nash optimal state
coincide with the globally optimal one.

We use the same notation as in Section 2.4, but we use the travel time τ̃ along
the e road as control parameter. Equivalently, we impose that the speed along the
road γ is ṽ, so that

(3.1) τe(ϑ1, ϑ2) = τ̃ .

The next theorem says that there exists an optimal control.

Theorem 3.1. Let the travel time τa, τb ∈ C0([0, 1];R+) be non decreasing and
convex, one of the two being strictly convex. Then, there exists a constant travel
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time τ̃ ∈ R
+ such that the network in Figure 2 admits a partition (ϑ∗, ϑ∗) which is

a Nash optimal state and also globally minimizes the mean global travel time.

Thus, by carefully selecting the travel time, or, equivalently, adjusting the max-
imum speed, one can avoid the occurrence of the Braess paradox. Moreover, the
Nash equilibrium is steered to become globally optimal.

Appendix A. Technical details

Lemma A.1. Let q satisfy (q). Then, the speed v = v(ρ) defined by

v(ρ) =

{

q′(0) ρ = 0
q(ρ)/ρ ρ > 0

is well-defined, continuous in [0, ρm], strictly positive and weakly decreasing.

Proof. Continuity follows from l’Hôpital’s rule. By straightforward computation
we find

v′(ρ) =

{

ρ q′(ρ)−q(ρ)
ρ2 ρ > 0 ,

1
2 q

′′(0) ρ = 0 ,
v′′(ρ) =

{

q′′(ρ)
ρ − 2 q′(ρ)

ρ2 + 2 q(ρ)
ρ3 ρ > 0 ,

1
3q

′′′(0) ρ = 0 .

By the concavity of q, we have q′(0) ≥ q(ρ)/ρ ≥ q′(ρ), implying that v′ ≤ 0. �

Lemma A.2. Let q satisfy (q). Then, the map ρ : ϑ 7→ ρ(ϑ) defined by

q
(

ρ(ϑ)
)

= ϑϕ

satisfies:

(1) ρ ∈ C2([0, 1]; [0, 1]) and ρ(0) = 0;
(2) ρ′(ϑ) > 0 and ρ′′(ϑ) > 0 for all ϑ ∈ [0, 1];
(3) if q is strictly convex, then ρ′′(ϑ) > 0 for all ϑ ∈ [0, 1].

Proof. Existence and regularity of ρ are immediate. Moreover, by (q) and q(ρ(ϑ)) =
ϑϕ, it follows that

ρ(0) = 0 , ρ′(ϑ) =
ϕ

q′
(

ρ(ϑ)
) > 0 and ρ′′(ϑ) = −ϕ2 q′′

(

ρ(ϑ)
)

(

q′
(

ρ(ϑ)
)

)3 ≥ 0 ,

and the latter inequality is strict as soon as q is strictly convex. �

Lemma A.3. Let q satisfy (q). Then, the map ϑ 7→ 1/v
(

ρ(ϑ)
)

is weakly increas-

ing. If, moreover, q′′′(ρ) ≤ 0 for all ρ ∈ [0, 1], then the map ϑ 7→ 1/v
(

ρ(ϑ)
)

is
convex.

Proof. We find

d

dϑ

(

1

v
(

ρ(ϑ)
)

)

= −v′
(

ρ(ϑ)
)

ρ′(ϑ)
(

v
(

ρ(ϑ)
)

)2 ≥ 0 .

Moreover, using the explicit expressions above,

d

dϑ

(

1

v
(

ρ(ϑ)
)

)

= −v′
(

ρ(ϑ)
)

ρ′(ϑ)
(

v
(

ρ(ϑ)
)

)2

= −

ρ(ϑ) q′(ρ(ϑ))−q(ρ(ϑ))
(ρ(ϑ))

2

ϕ

q′(ρ(ϑ))
(

q(ρ(ϑ))
)

2

(ρ(ϑ))
2
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=









1

q
(

ρ(ϑ)
)

q′
(

ρ(ϑ)
) − ρ(ϑ)

(

q
(

ρ(ϑ)
)

)2









ϕ,

d2

dϑ2

(

1

v
(

ρ(ϑ)
)

)

= −2
ρ′(ϑ)ϕ

(

q
(

ρ(ϑ)
)

)3

×





1

2

(

q
(

ρ(ϑ)
)

q′
(

ρ(ϑ)
)

)2

q′′
(

ρ(ϑ)
)

+ q
(

ρ(ϑ)
)

− ρ(ϑ) q′
(

ρ(ϑ)
)



 .

Call f(ρ) = 1
2

(

q(ρ)
q′(ρ)

)2

q′′(ρ) + q(ρ)− ρ q′(ρ). Observe that f(0) = 0 and

f ′(ρ) =
1

2

(

q(ρ)

q′(ρ)

)2

q′′′(ρ) +

(

q(ρ)− ρ q′(ρ)
)

q′′(ρ)

q′(ρ)
− q(ρ)

(

q′′(ρ)
)2

(

q′(ρ)
)3 ≤ 0,

thereby completing the proof. �

The assumption that q′′′(ρ) ≤ 0 is sufficient, but not necessary, to obtain con-
vexity of the travel time.

Proof of Proposition 2.2. Observe that if f ∈ C2(R+;R) is convex and increasing,
then also the map x 7→ x f(x) is convex and increasing. By Lemma A.2, for all
i = 1, . . . ,m, the map ξ 7→ τri(ξ) ξ is convex for ξ ∈ [0, 1]. Hence, also the map
ϑ 7→ ∑

i τri(ϑi)ϑi is convex for ϑ ∈ [0, 1]n. Since Γij ∈ {0, 1}, also the map
ϑ 7→ T (ϑ) is convex. �

Proof of Theorem 2.7. By Definition 2.5, the configuration ϑN with ϑN
1 = ϑN

2 = 0
is clearly an equilibrium, the only relevant time being the equilibrium

τ̄ = τγ(0, 0) = 2τa(1) + τe(1) = 2
ℓ

v
(

ρ(1)
) +

ℓ̃

ṽ
(

ρ̃(1)
) .

By (2.6), it is also a Nash point, since τa(0, 0) = τβ(0, 0) > τ̄ and, by continuity,
the same inequality holds in a neighborhood of ϑN .

Assume there exists an other equilibrium point ϑ̄ in the interior of S2. Then, by
symmetry, ϑ̄1 = ϑ̄2 and, by Definition 2.5,

(A.1) τb(ϑ̄1)− τa(1− ϑ̄1) = τe(1− 2ϑ̄1) .

By assumption, the left-hand side above is a strictly increasing function of ϑ1, while
the right-hand side is weakly decreasing, so that

τe(1− 2ϑ̄1) ≤ τe(1)

< τb(0) + τa(0)− 2τa(1) by (2.6)

≤ τb(0) + τa(0)− 2τa(0)

≤ τb(0)− τa(0)

≤ τb(ϑ̄1)− τa(1− ϑ̄1),

which contradicts (A.1). To complete the proof of the uniqueness of the Nash
points, consider the configuration (0, 1). In this case, the only relevant time is
τα(0, 1) and

τα(1, 0) = τa(1) + τb(1) > τa(0) + τb(0) = τβ(1, 1),

proving that (1, 0) is not a Nash point. The case of (0, 1) is entirely analogous.
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Finally, observe that the globally optimal time for the case of four roads is
τα(1/2, 1/2) = τb(1/2, 1/2) and the leftmost bound in (2.6) allows to complete the
proof. �

Lemma A.4. Let the travel time τa, τb ∈ C0([0, 1];R+) be non decreasing and
convex, at least one of the two being strictly convex. Then, there exists a map
Θ ∈ C0(R+; [0, 1/2]) such that the partition

(

Θ(ϑ),Θ(ϑ)
)

is the point of global
minimum of the mean travel time T defined in (2.5), (2.4), (3.1) over Sn.

Proof. The travel time T is convex by Proposition 2.2. By symmetry, its minimum
is attained at a point (ϑ, ϑ) and if ϑ ∈ (0, 1/2), then this point satisfies d

dϑT (ϑ, ϑ) =
0. Straightforward we find

T (ϑ, ϑ) = 2(1− ϑ) τa(1− ϑ) + 2ϑ τb(ϑ) + (1− 2ϑ)τ̃e ,

d

dϑ
T (ϑ, ϑ) = 2

(

−τa(1− ϑ)− (1− ϑ)τ ′a(1− ϑ) + τb(ϑ) + ϑ τ ′b(ϑ) + τ̃
)

,

d2

dϑ2
T (ϑ, ϑ) = 2

(

2τ ′a(1− ϑ) + (1− ϑ)τ ′′a (1− ϑ) + 2τ ′b(ϑ) + ϑτ ′′b (ϑ)
)

,

hence d2

dϑ2T (ϑ, ϑ) > 0, which shows that the map ϑ 7→ T (ϑ, ϑ) is strictly convex.
Hence it admits a unique point of minimum Θ(τ̃) in (0, 1/2). The standard Implicit
Function Theorem ensures that Θ is continuous. �

Lemma A.5. Let the travel time τa, τb ∈ C0([0, 1];R+) be non decreasing and
convex, at least one of the two being strictly convex. Then, there exists a map
T̃ ∈ C0([0, 1/2];R+) such that assigning the travel time T̃ (ϑ) on road e makes the
configuration (ϑ, ϑ) the unique local Nash point in the sense of Definition 2.5.

Proof. Given ϑ ∈ [0, 1/2], we seek a τ̃ such that (ϑ, ϑ) is an equilibrium point. To
this aim, we solve

τa(ϑ, ϑ) = τb(ϑ, ϑ) τa(ϑ, ϑ) = τγ(ϑ, ϑ) .

By symmetry consideration, to former equality is certainly satisfied for any ϑ ∈
[0, 1/2]. The latter is equivalent to:

τa(1− ϑ) + τb(ϑ) = 2τa(1− ϑ) + τ̃ .

Therefore, we set

T̃ (ϑ) =

{

τb(ϑ)− τa(1− ϑ) if τb(ϑ) ≥ τa(1− ϑ),

0 if τb(ϑ) < τa(1− ϑ).

By construction, (ϑ, ϑ) is an equilibrium configuration in the sense of Definition 2.3,

once the travel time τ̃ along the road e is set equal end T̃ (ϑ).
When ϑ ∈ (0, 1/2), to prove that (ϑ, ϑ) is a local Nash point, thanks to the

present symmetries, it is sufficient to check that for all small ε > 0 we have

τα(ϑ+ ε, ϑ) > τγ(ϑ, ϑ),

τα(ϑ+ ε, ϑ− ε) > τβ(ϑ, ϑ),

τγ(ϑ− ε, ϑ) > τα(ϑ, ϑ),

or, equivalently,

τb(ϑ+ ε)− τb(ϑ) + τa(1− ϑ)− τa(1− ϑ− ε) > 0,

τa(1− ϑ+ ε)− τa(1− ϑ− ε) + τb(ϑ+ ε)− τb(ϑ− ε) > 0,

τa(1− η + ε)− τa(1− ϑ) > 0,

and all these inequalities hold by the monotonicity of the travel times. �
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Proof of Theorem 3.1. Let Θ and T̃ be the maps defined in Lemma A.4 and Lemma A.5,
respectively. Define

Υ: [0, 1/2] → [0, 1/2] by Υ = Θ ◦ T̃ ,

and call ϑ∗ a fixed point for Υ. By construction, (ϑ∗, ϑ∗) is a local Nash point,

once τ̃∗ = T̃ (ϑ∗) is fixed as the travel time along road e. �
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