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Abstract

We study the Cauchy problem for a multidimensional scalar conserva-
tion law on the Bohr compactification of Rn. The existence and uniqueness
of entropy solutions are established in the general case of merely continu-
ous flux vector. We propose also the necessary and sufficient condition for
the decay of entropy solutions as time t → +∞.

1 Introduction.

Let AP (Rn) be the algebra of Bohr almost periodic functions. These functions
can be described as uniform limits of trigonometric polynomials on Rn ( i.e., finite
sums

∑
aλe

2πiλ·x, with i2 = −1, λ ∈ Rn ). Denote by CR the cube

{ x = (x1, . . . , xn) ∈ Rn | |x|∞ = max
j=1,...,n

|xj| ≤ R/2 }, R > 0

and let

N1(u) = lim sup
R→+∞

R−n

∫

CR

|u(x)|dx

be the mean L1-norm of a function u(x) ∈ L1
loc(Rn). Recall ( see [1, 6] ) that Besi-

covitch space B1(Rn) is the closure of trigonometric polynomials in the quotient
space B1(Rn)/B1

0(Rn), where

B1(Rn) = {u ∈ L1
loc(Rn) | N1(u) < +∞}, B1

0(Rn) = {u ∈ L1
loc(Rn) | N1(u) = 0}.

The space B1(Rn) is equipped with the norm ‖u‖1 = N1(u) (we identify classes
in the quotient space and their representatives). The space B1(Rn) is a Banach
space, it is isomorphic to the completeness of the space AP (Rn) of Bohr almost
periodic functions with respect to the norm N1.

It is known [1] that for each u ∈ B1(Rn) there exist the mean value

−
∫

Rn

u(x)dx
.
= lim

R→+∞
R−n

∫

CR

u(x)dx
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and, more generally, the Bohr-Fourier coefficients

aλ = −
∫

Rn

u(x)e−2πiλ·xdx, λ ∈ Rn.

The set
Sp(u) = { λ ∈ Rn | aλ 6= 0 }

is called the spectrum of an almost periodic function u. It is known [1] that
the spectrum Sp(u) is at most countable. Denote by M(u) the smallest additive
subgroup of Rn containing Sp(u) (notice that M(u) is always countable whenever
it is different from the zero subgroup).

Now we consider the Cauchy problem for the conservation law

ut + divxϕ(u) = 0 (1.1)

with initial data
u(0, x) = u0(x) ∈ L∞(Rn). (1.2)

The flux vector ϕ(u) is supposed to be only continuous:

ϕ(u) = (ϕ1(u), . . . , ϕn(u)) ∈ C(R,Rn).

Recall the notion of entropy solution of (1.1), (1.2) in the sense of S.N. Kruzhkov
[3].

Definition 1.1. A bounded measurable function u = u(t, x) ∈ L∞(Π) is called
an entropy solution (e.s. for short) of (1.1), (1.2) if for all k ∈ R

|u− k|t + divx[sign(u− k)(ϕ(u)− ϕ(k))] ≤ 0 (1.3)

in the sense of distributions on Π (in D′(Π));

ess lim
t→0

u(t, ·) = u0 in L1
loc(Rn).

Condition (1.3) means that for all non-negative test functions f = f(t, x) ∈
C1

0(Π) ∫

Π

[|u− k|ft + sign(u− k)(ϕ(u)− ϕ(k)) · ∇xf ]dtdx ≥ 0

(here · denotes the inner product in Rn).
It is known that e.s. always exists (see [4, 7, 8] ) but, in the case under

consideration when the flux functions are merely continuous, this e.s. may be
nonunique (see examples in [4, 5]).

In recent preprint [9] problem (1.1), (1.2) was studied in the case when u0 ∈
B1(Rn) ∩ L∞(Rn). The following results were established.
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Theorem 1.1. Let u(t, x) be an e.s. of problem (1.1), (1.2). Then, after possible
correction on a set of null measure, u(t, ·) ∈ C([0, +∞),B1(Rn)) ∩ L∞(Π) and for
all t > 0 M(u(t, ·)) ⊂ M(u0).

Theorem 1.2 (decay property). Assume that

∀ξ ∈ M(u0), ξ 6= 0 the functions u → ξ · ϕ(u)

are not affine on non-empty intervals (1.4)

(the linear non-degeneracy condition). Let u(t, x) be an e.s. of problem (1.1),
(1.2). Then

lim
t→+∞

−
∫

Rn

|u(t, x)− C|dx = 0, where C = −
∫

Rn

u0(x)dx. (1.5)

Moreover, condition (1.4) is exact: if it fails, then there exists an initial function
u0 ∈ B1(Rn) ∩ L∞(Rn) such that Sp(u0) ⊂ M(u0) and the e.s. of (1.1), (1.2)
does not satisfy the decay property (1.5).

2 The Bohr compactification of Rn. Some aux-

iliary lemmas.

In the present paper we look at the problem (1.1), (1.2) from another point.
Namely, we will consider this problem for functions u(t, x) defined for x ∈ Bn,
where Bn is the Bohr compactification of Rn. This is a compact group, which can
be identified with the spectrum of the algebra AP (Rn). There is a continuous
homomorphism of the groups in : Rn → Bn uniquely determined by the identity
f̂(in(x)) = f(x) for all f ∈ AP (Rn), where f → f̂ is the Gelfand transform. It
is known that the homomorphism in has a null kernel (i.e., it is an embedding)
and its image in(Rn) is dense in Bn. Denote by m the Haar measure on Bn. This
measure represents the mean value functional, that is, for every almost periodic
function v(x) ∈ AP (Rn)

∫

Bn

v̂(x)dm(x) = −
∫

Rn

v(x)dx. (2.1)

In particular,
∫

Bn

|v̂(x)|dm(x) =

∫

Bn

|̂v(x)|dm(x) = −
∫

Rn

|v(x)|dx.

It follows from this identity that the Gelfand transform admits extension to an
isomorphism B1(Rn)→L1(Bn,m). We keep the notation u → û and the name
of Gelfand transform for such isomorphism. It turns out that under the Gelfand
transform the space B1(Rn) ∩ L∞(Rn) corresponds to the space L∞(Bn, m).
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Lemma 2.1. An almost periodic function u(x) belongs to the space B1(Rn) ∩
L∞(Rn) if and only if û(x) ∈ L∞(Bn,m).

Proof. It follows from the property of Gelfand transform that ĥ(u) = h(û) for
every u = u(x) ∈ AP (Rn), h = h(u) ∈ C(R). If u(x) ∈ B1(Rn) then we can find
a sequence ur ∈ AP (Rn) such that ur → u in B1(Rn) as r →∞ (for instance we
can take the Bochner-Fejér approximations, see [1, 6]). Since

‖ûr − û‖L1(Bn,m) = ‖ur − u‖B1(Rn) →
r→∞

0,

then ûr → û in L1(Bn,m) as r → ∞. If h(u) is globally Lipschitz continuous,
then h(ur) → h(u) in B1(Rn), h(ûr) → h(û) in L1(Bn,m) as r →∞. The former

relation implies that h(ûr) = ĥ(ur) → ĥ(u) in L1(Bn,m) as r →∞, and we claim

that ĥ(u) = h(û). In particular, it follows from (2.1) that

−
∫

Rn

h(u(x))dx =

∫

Bn

h(û(x))dm(x).

Taking in this relation h(u) = (|u| −M)+ .
= max(0, |u| −M), M ≥ 0, we arrive

at

−
∫

Rn

(|u(x)| −M)+dx =

∫

Bn

(|û(x)| −M)+dm(x). (2.2)

If u(x) ∈ B1(Rn) ∩ L∞(Rn), and M = ‖u‖∞ then it follows from (2.2)
that (|û(x)| − M)+ = 0, that is, |û(x)| ≤ M m-a.e. in Bn. This
means that û ∈ L∞(Bn,m), ‖û‖∞ ≤ M . Conversely, if û ∈ L∞(Bn,m),

M = ‖û‖∞, then −
∫

Rn

(|u(x)| −M)+dx = 0. We introduce the function v(x) =

max(−M, min(M, u(x))) ∈ B1(Rn)∩L∞(Rn). Evidently, N1(u−v) = −
∫

Rn

(|u(x)|−
M)+dx = 0. Therefore, u = v in B1(Rn), and we conclude that u ∈ B1(Rn) ∩
L∞(Rn), as required.

Remark that, as one can realize from the proof of Lemma 2.1,

‖û‖∞ = inf{ ‖v‖∞ | v ∈ L∞(Rn), v = u in B1(Rn) }.

Let ρ(s) ∈ C0(R) be a nonnegative function such that

∫ +∞

−∞
ρ(s)ds = 1. We

introduce the approximate unity δν(s) = νρ(νs), ν ∈ N. If v(t) ∈ L∞(R),
then almost all t ∈ R are Lebesgue points of v(t), which implies that for such t

lim
ν→∞

∫

R
|v(t)− v(s)|δν(t− s)ds = 0. Integrating this relation over t ∈ R (with the

help of Lebesgue dominated convergence theorem), we obtain that

lim
ν→∞

∫

R2

|v(t)− v(s)|χ(t)δν(t− s)dtds = 0 (2.3)
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for every function χ(t) ∈ L1(R). Moreover, if ω(r) is a continuous nonnegative
function on [0, +∞) such that ω(0) = 0, then

lim
ν→∞

∫

R2

ω(|v(t)− v(s)|)χ(t)δν(t− s)dtds = 0, (2.4)

cf. the proof of Corollary 2.2 below.
We need also the following well-known property of almost periodic functions.

Lemma 2.2. Let v(x) ∈ B1(Rn) and g(y) ∈ C0(Rn). Then

lim
R→+∞

R−n

∫

Rn

v(x)g(x/R)dx = C−
∫

Rn

v(x)dx, (2.5)

where C =

∫

Rn

g(y)dy.

Proof. Let k > 0 be so large that supp g is included in the cube Ck, and M =
‖g‖∞. Then

lim sup
R→+∞

R−n

∣∣∣∣
∫

Rn

v(x)g(x/R)dx

∣∣∣∣ ≤

Mkn lim sup
R→+∞

(kR)−n

∫

CkR

|v(x)|dx = Mkn‖v‖B1(Rn).

The above relation implies that both parts of equality (2.5) are continuous with
respect to v ∈ B1(Rn). Since trigonometric polynomials are dense in B1(Rn), it is
sufficient to prove (2.5) for functions v(x) = e2πiλ·x, λ ∈ Rn. For such functions,
making the change y = x/R, we obtain

R−n

∫

Rn

v(x)g(x/R)dx =

∫

Rn

e2πiRλ·yg(y)dy →
R→+∞

{
0, λ 6= 0,
C, λ = 0

= C−
∫

Rn

v(x)dx,

since e2πiRλ·y ⇀
R→+∞

0 weakly-∗ in L∞(Rn) if λ 6= 0. The proof is complete.

Let Λ = {λj}N
j=1 be an at most countable subset of Rn, consisting of vectors

independent over the field of rationales Q. Here N ∈ N ∪ {∞}. We define the
corresponding sequence of Bochner-Fejér kernels

Φr(x) =
∑

k̄∈ZNr ,|k̄|∞<(r+1)!

Nr∏
j=1

(
1− |kj|

(r + 1)!

)
e

2πi
r!

PNr
j=1 kjλj ·x =

1

((r + 1)!)Nr

Nr∏
j=1

sin2(π(r + 1)λj · x)

sin2(πλj · x/r!)
,

where Nr = N if N < ∞, Nr = r, otherwise.
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Lemma 2.3. Let v(x) ∈ B1(Rn), and Φr(x), r ∈ N be the sequence of Bochner-
Fejér kernels corresponding to the basis Λ of Q-linear subspace H of Rn generated
by Sp(v). Then

lim
r→∞

−
∫

Rn

(
−
∫

Rn

|v(x)− v(y)|Φr(x− y)dy

)
dx = 0. (2.6)

Proof. For a positive ε we can choose a trigonometric polynomial w(x) =∑

λ∈Λ

aλe
2πiλ·x such that Λ = Sp(w) ⊂ Sp(v) and

‖v − w‖B1(Rn) = −
∫

Rn

|v(x)− w(x)|dx < ε/2.

Since, evidently,

||v(x)− v(y)| − |w(x)− w(y)|| ≤ |v(x)− w(x)|+ |v(y)− w(y)|
while Φr ≥ 0, then ∣∣∣∣−

∫

Rn

(
−
∫

Rn

|v(x)− v(y)|Φr(x− y)dy

)
dx−

−
∫

Rn

(
−
∫

Rn

|w(x)− w(y)|Φr(x− y)dy

)
dx

∣∣∣∣ ≤

−
∫

Rn

(
−
∫

Rn

|v(x)− w(x)|Φr(x− y)dy

)
dx +

−
∫

Rn

(
−
∫

Rn

|v(y)− w(y)|Φr(x− y)dx

)
dy =

−
∫

Rn

|v(x)− w(x)|dx +−
∫

Rn

|v(y)− w(y)|dy = 2−
∫

Rn

|v(x)− w(x)|dx < ε. (2.7)

We use here that −
∫

Rn

Φr(z)dz = 1 for all r ∈ N, and that

−
∫

Rn

(
−
∫

Rn

G(x, y)dx

)
dy = −

∫

Rn

(
−
∫

Rn

G(x, y)dy

)
dx = −

∫

R2n

G(x, y)dxdy, (2.8)

where G(x, y) = |v(y)−w(y)|Φr(x−y). Indeed, if v(y) ∈ AP (Rn) then G(x, y) ∈
AP (R2n) and (2.8) follows from results of [1, Ch. I, § 12]. The general case
v(y) ∈ B1(Rn) is treated with the help of approximation of v(y) by Bohr almost
periodic functions vr ∈ AP (Rn), r ∈ N, and passage to the limit as r → ∞.
Observe also that

−
∫

Rn

|w(x)− w(y)|Φr(x− y)dy ≤
∑

λ∈Λ

|aλ|−
∫

Rn

|e2πiλ·x − e2πiλ·y|Φr(x− y)dy =

∑

λ∈Λ

|aλ|−
∫

Rn

|e2πiλ·(x−y) − 1|Φr(x− y)dy =

∑

λ∈Λ

|aλ|−
∫

Rn

|e2πiλ·z − 1|Φr(z)dz
.
= Ir.(2.9)
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Since the function hλ(z) = |e2πiλ·z − 1| is a Bohr almost periodic function and its
spectrum lays in H, then

−
∫

Rn

|e2πiλ·z − 1|Φr(z)dz = −
∫

Rn

hλ(z)Φr(z)dz →
r→∞

hλ(0) = 0.

This together with finiteness of Λ implies that Ir → 0 as r → ∞. By (2.9) the
sequence

−
∫

Rn

|w(x)− w(y)|Φr(x− y)dy →
r→∞

0

uniformly in x. This implies the relation

lim
r→∞

−
∫

Rn

(
−
∫

Rn

|w(x)− w(y)|Φr(x− y)dy

)
dx = 0.

From this relation and (2.7) it follows that

lim sup
r→∞

−
∫

Rn

(
−
∫

Rn

|v(x)− v(y)|Φr(x− y)dy

)
dx ≤ ε.

Since ε > 0 is arbitrary, then (2.6) follows. The proof is complete.

Corollary 2.1. Let Bn be the Bohr compactification of Rn, Φ̂r(x), r ∈ N, be
the extension of Bochner-Fejér kernels on Bn (i.e., the Gelfand transform of Φr).
Then for each v(x) ∈ L1(Bn,m)

lim
r→∞

∫

Bn×Bn

|v(x)− v(y)|Φ̂r(x− y)dm(x)dm(y) = 0. (2.10)

Proof. There exists a unique function u(x) ∈ B1(Rn) such that v = û. Since for
each fixed x ∈ Rn

(|u(x)− u(·)|Φr(x− ·))∧ = |u(x)− v(y)|Φ̂r(x− y),

we have

F (x)
.
= −

∫

Rn

|u(x)− u(y)|Φr(x− y)dy =

∫

Bn

|u(x)− v(y)|Φ̂r(x− y)dm(y). (2.11)

As can be easily verified, for all x ∈ Bn

F̂ (x) =

∫

Bn

|v(x)− v(y)|Φ̂r(x− y)dm(y).

This equality and (2.11) imply the relation

−
∫

Rn

(
−
∫

Rn

|u(x)− u(y)|Φr(x− y)dy

)
dx = −

∫

Rn

F (x)dx =

∫

Bn

F̂ (x)dm(x) =

∫

Bn

(∫

Bn

|v(x)− v(y)|Φ̂r(x− y)dm(y)

)
dm(x) =

∫

Bn×Bn

|v(x)− v(y)|Φ̂r(x− y)dm(x)dm(y). (2.12)

Now relation (2.10) follows from (2.12) and the statement of Lemma 2.3.
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Corollary 2.2. Let ω(r) be a continuous function on [0, +∞) such that
ω(r) ≥ ω(0) = 0, and v(x) ∈ L∞(Bn,m). Then

lim
r→∞

∫

Bn×Bn

ω(|v(x)− v(y)|)Φ̂r(x− y)dm(x)dm(y) = 0. (2.13)

Proof. Let M = ‖v‖∞ and ε > 0. Then there exists a constant C > 0 such that

ω(r) ≤ ε + Cr ∀r ∈ [0, 2M ]. (2.14)

Indeed, we can find a positive δ such that ω(r) < ε for 0 ≤ r < δ. Taking C =
1

δ
max

δ≤r≤2M
ω(r), we see that (2.14) is satisfied. In view of (2.14) and Corollary 2.1

we obtain the relation

lim sup
r→∞

∫

Bn×Bn

ω(|v(x)− v(y)|)Φ̂r(x− y)dm(x)dm(y) ≤

ε + C lim
r→∞

∫

Bn×Bn

|v(x)− v(y)|Φ̂r(x− y)dm(x)dm(y) = ε.

Since ε > 0 is arbitrary, we conclude that (2.13) holds.

3 Setting of the problem. The main results.

Let us look at the problem (1.1), (1.2) in the framework of distributions on
the space R+ × Bn. Since Rn can be identified with a subgroup of Bn we can
define partial derivatives fxj

(y), j = 1, . . . , n, of a function f(y) on Bn as partial
derivatives hxj

(0) of the function h(x) = f(x + y), x ∈ Rn. This allows to
introduce the spaces Ck(Bn), k = 0, 1, . . . and the space C∞(Bn). As usual,
distributions on Bn are the linear continuous functionals on C∞(Bn). In the same
way as in the classic situation we can introduce generalized derivatives fxj

of a
function f(y) ∈ L1(Bn,m). They are functionals

〈fxj
, g〉 = −〈f, gxj

〉 = −
∫

Bn

f(y)gxj
(y)dm(y)

acting on the space of test functions g(y) ∈ C1(Bn).
Hence, we may study the Cauchy problem:

vt + divxϕ(v) = vt +
n∑

j=1

(ϕj(v))xj
= 0, (3.1)

v = v(t, y), t > 0, y ∈ Bn, with initial data

v(0, y) = v0(y) ∈ L∞(Bn,m). (3.2)
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We denote by C1
0(R+ × Bn) the space of compactly supported test functions

f = f(t, x), which have continuous partial derivatives ft, fxj
, j = 1, . . . , n, defined

in the usual way:

ft(t, y) = lim
δ→0

f(t + δ, y)− f(t, y)

δ
, fxj

(t, y) = lim
δ→0

f(t, y + δej)− f(t, y)

δ
,

where t > 0, y ∈ Bn, and ej, j = 1, . . . , n, being the canonical basis in Rn. It
is clear that these derivatives coincides with classic derivatives of the function
h(t, x) = f(t, y +x) at the points (t, 0). Actually, the space C1

0(R+×Bn) consists
of functions f(t, y) = ĥ(t, y) being the Gelfand transforms (as functions of spa-
cial variables) of the functions h(t, x) ∈ C1(Π), which together with their partial
derivatives are Bohr almost periodic functions (with respect to the spacial vari-
ables), and have supports inside layers t ∈ [a, b], b > a > 0 (where a, b depend on

h). Besides, as is easy to verify, ft = ĥt, fxj
= ĥxj

, j = 1, . . . , n.

Definition 3.1. A function v = v(t, y) ∈ L∞(R+ × Bn) = L∞(R+ × Bn, dt×m)
is called an e.s. of problem (3.1), (3.2) if for all k ∈ R

|v − k|t + divx[sign(v − k)(ϕ(v)− ϕ(k))] ≤ 0

in the sense of distributions on R+ × Bn, that is,
∫

R+×Bn

[|v − k|ft + sign(v − k)(ϕ(v)− ϕ(k)) · ∇y
xf ]dtdm(y) ≥ 0 (3.3)

for every nonnegative test function f = f(t, y) ∈ C1
0(R+ × Bn), and

ess lim
t→0

v(t, ·) = v0 in L1(Bn,m).

In (3.3) we denote by ∇y
xf the vector with coordinates fxj

(t, y), j = 1, . . . , n.

Theorem 3.1. There exists a unique e.s. of (3.1), (3.2). Moreover, v(t, y) =
û(t, y), where u(t, x) ∈ C([0, +∞),B1(Rn))∩L∞(Π) be an almost periodic e.s. to
the problem (1.1), (1.2) with the initial function u0 = u0(x) such that v0 = û0.

Proof. By Lemma 2.1 there exists a unique u0 = u0(x) ∈ B1(Rn) ∩ L∞(Rn) such
that v0 = û0. Let u(t, x) ∈ C([0, +∞),B1(Rn))∩L∞(Π) be an almost periodic e.s.
to the problem (1.1), (1.2) with the initial function u0(x). We choose a function
g(y) ∈ C1

0(Rn), g(y) ≥ 0, g 6≡ 0, and apply relation (1.3) to the test function

fR =
1

CRn
h(t, x)g(x/R), where C =

∫

Rn

g(y)dy, R > 0, and h(t, x) ∈ C1(Π)

is a nonnegative function, which is almost periodic (with respect to the spacial
variables) together with its partial derivatives, and is supported in some layer
0 < a < t < b. We obtain that for each k ∈ R

1

CRn

∫

Π

[|u− k|ht + sign(u− k)(ϕ(u)− ϕ(k)) · ∇xh]g(x/R)dtdx +

1

CRn+1

∫

Π

sign(u− k)(ϕ(u)− ϕ(k)) · ∇yg(x/R)hdtdx ≥ 0. (3.4)
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Passing in (3.4) to the limit as R → +∞ and taking into account the statement
of Lemma 2.2, we obtain the relation

∫

R+

(
−
∫

Rn

[|u− k|ht + sign(u− k)(ϕ(u)− ϕ(k)) · ∇xh]dx

)
dt ≥ 0.

In view of (2.1) we can rewrite this relation as follows
∫

R+×Bn

[|v − k|ĥt + sign(v − k)(ϕ(v)− ϕ(k)) · ∇y
xĥ]dtdm(y) ≥ 0, (3.5)

where v = û(t, y). Since ĥ(t, y) is arbitrary nonnegative function from
C1

0(R+ × Bn), we claim that entropy relation (3.3) holds. Besides, again by (2.1)
∫

Bn

|v(t, y)− v0(y)|dm(y) = −
∫

Rn

|u(t, x)− u0(x)|dx = N1(u(t, ·)− u0) →
t→0

0

and initial condition (3.2) in the sense of Definition 3.1 is also satisfied.
To complete the proof of Theorem 3.1, it only remains to establish the unique-

ness. Suppose that v1 = v1(t, y) ∈ L∞(R+ × Bn) be an e.s. of (3.1), (3.2).
We are going to demonstrate that v1 = v = û(t, y). Recall that u = u(t, x) ∈
C([0, +∞),B1(Rn))∩L∞(Π) be an almost periodic e.s. to the problem (1.1), (1.2)
with the initial functions u0(x). Denote by M0 = M(u0) the minimal additive
subgroup of Rn containing Sp(u0). By Theorem 1.1 Sp(u(t, ·)) ⊂ M0 for all t > 0.
Let Φr(x), r ∈ N be the sequence of Bochner-Fejér kernels corresponding to a basis
of Q-linear subspace generated by M0 ( or, the same, Sp(u0) ). Let ρ(s) ∈ C∞

0 (R)

be a function such that supp ρ(s) ⊂ [0, 1], ρ(s) ≥ 0,

∫ +∞

−∞
ρ(s)ds = 1. We intro-

duce the approximate unity δν(s) = νρ(νs), ν ∈ N, so that the sequence δν(s)
converges as ν → ∞ to the Dirac δ-measure weakly in D′(R). We are going to
adapt the Kruzhkov method of doubling variables to the pair of e.s. v1, v. For
that we apply (3.3) for e.s. v1 and k = v(s, z), (s, z) ∈ R+ × Bn, to the test

function f(t, y)δν(s − t)Φ̂r(y − z), where f(t, y) ∈ C1
0(R+ × Bn), f(t, y) ≥ 0.

Integrating the result over (s, z), we arrive at
∫

R+×Bn

∫

R+×Bn

[|v1(t, y)− v(s, z)|(f(t, y)δν(s− t))tΦ̂r(y − z) +

sign(v1(t, y)− v(s, z))(ϕ(v1(t, y))− ϕ(v(s, z))) · ∇y
x(f(t, y)Φ̂r(y − z))

×δν(s− t)]dtdm(y)dsdm(z) ≥ 0. (3.6)

In the same way, changing the places of variables (t, y) and (s, z) and e.s. v1(t, y)
and v(s, z), we derive from (3.3) with v = v(s, z), k = v1(t, y) that

∫

R+×Bn

∫

R+×Bn

[|v1(t, y)− v(s, z)|(δν(s− t))sf(t, y)Φ̂r(y − z) +

sign(v1(t, y)− v(s, z))(ϕ(v1(t, y))− ϕ(v(s, z))) · ∇z
x(Φ̂r(y − z))

×f(t, y)δν(s− t)]dtdm(y)dsdm(z) ≥ 0. (3.7)
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Putting (3.6) and (3.7) together and taking into account the obvious identities

(f(t, y)δν(s− t))t + (δν(s− t))sf(t, y) = ft(t, y)δν(s− t),

∇y
x(f(t, y)Φ̂r(y − z)) +∇z

x(Φ̂r(y − z))f(t, y) = (∇y
xf(t, y))Φ̂r(y − z),

we find that
∫

R+×Bn

∫

R+×Bn

[|v1(t, y)− v(s, z)|ft(t, y) +

sign(v1(t, y)− v(s, z))(ϕ(v1(t, y))− ϕ(v(s, z))) · ∇y
xf(t, y)]

×δν(s− t)Φ̂r(y − z)dtdm(y)dsdm(z) ≥ 0. (3.8)

First, we pass to the limit in (3.8) as ν →∞. We have the following inequalities

||v1(t, y)− v(s, z)| − |v1(t, y)− v(t, z)|| ≤ |v(s, z)− v(t, z)|,
| sign(v1(t, y)− v(s, z))(ϕ(v1(t, y))− ϕ(v(s, z)))−

sign(v1(t, y)− v(t, z))(ϕ(v1(t, y))− ϕ(v(t, z)))| ≤ 2ω(|v(s, z)− v(t, z)|), (3.9)

where ω(r) = max
u,v∈[−M,M ],|u−v|≤r

|ϕ(u) − ϕ(v)| is the continuity modulus of the

vector ϕ(u) on the segment [−M, M ], M = ‖v‖∞. Let χ(t) ∈ C0(R+) be a
nonnegative function such that χ(t) = 1 if (t, y) ∈ supp f . By relations (2.3),
(2.4), for a.e. z ∈ Bn

lim
ν→∞

∫

R+×R+

|v(s, z)− v(t, z)|χ(t)δν(s− t)dsdt =

lim
ν→∞

∫

R+×R+

ω(|v(s, z)− v(t, z)|)χ(t)δν(s− t)dsdt = 0.

This, together with (3.9), implies that

lim
ν→∞

∫

R+×Bn

∫

R+×Bn

[|v1(t, y)− v(s, z)|ft(t, y) +

sign(v1(t, y)− v(s, z))(ϕ(v1(t, y))− ϕ(v(s, z))) · ∇y
xf(t, y)]

×δν(s− t)Φ̂r(y − z)dtdm(y)dsdm(z) =

lim
ν→∞

∫

R+×Bn

∫

R+×Bn

[|v1(t, y)− v(t, z)|ft(t, y) +

sign(v1(t, y)− v(t, z))(ϕ(v1(t, y))− ϕ(v(t, z))) · ∇y
xf(t, y)]

×δν(s− t)Φ̂r(y − z)dtdm(y)dsdm(z) =∫

R+×Bn×Bn

[|v1(t, y)− v(t, z)|ft(t, y) +

sign(v1(t, y)− v(t, z))(ϕ(v1(t, y))− ϕ(v(t, z))) · ∇y
xf(t, y)]

×Φ̂r(y − z)dtdm(y)dm(z). (3.10)
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In view of (3.10) it follows from (3.8) that

∫

R+×Bn×Bn

[|v1(t, y)− v(t, z)|ft(t, y) +

sign(v1(t, y)− v(t, z))(ϕ(v1(t, y))− ϕ(v(t, z))) · ∇y
xf(t, y)]

×Φ̂r(y − z)dtdm(y)dm(z) ≥ 0. (3.11)

Passing in (3.11) to the limit as r →∞, and taking into account the inequalities

||v1(t, y)− v(t, z)| − |v1(t, y)− v(t, y)|| ≤ |v(t, y)− v(t, z)|,
| sign(v1(t, y)− v(t, z))(ϕ(v1(t, y))− ϕ(v(t, z)))−

sign(v1(t, y)− v(t, y))(ϕ(v1(t, y))− ϕ(v(t, y)))| ≤ 2ω(|v(t, y)− v(t, z)|)

together with the statements of Corollaries 2.1, 2.2 (notice that Sp(v(t, ·)) ⊂
M0 ⊂ H), we arrive at

∫

R+×Bn

[|v1(t, y)− v(t, y)|ft(t, y) +

sign(v1(t, y)− v(t, y))(ϕ(v1(t, y))− ϕ(v(t, y))) · ∇y
xf(t, y)]dtdm(y) ≥ 0. (3.12)

Taking in (3.12) the test functions f = f(t) ∈ C1
0(R+), f(t) ≥ 0, we obtain that

∫ +∞

0

(∫

Bn

|v1(t, y)− v(t, y)|dm(y)

)
f ′(t)dt ≥ 0.

This relation means that I ′(t) ≤ 0 in D′(R+), where we denote

I(t) =

∫

Bn

|v1(t, y)− v(t, y)|dm(y).

Therefore, for a.e. t > 0

I(t) ≤ I(0)
.
= ess lim

t→0+
I(t) = 0. (3.13)

The latter equality follows from the estimate

I(t) =

∫

Bn

|v1(t, y)− v(t, y)|dm(y) ≤
∫

Bn

|v1(t, y)− v0(y)|dm(y) +

∫

Bn

|v(t, y)− v0(y)|dm(y)

and the initial requirement (3.2) for the e.s. v, v1 ( in the sense of Definition 3.1 ).
It now follows from (3.13) that I(t) = 0 for a.e. t > 0, which implies that v1 = v
a.e. in R+ × Bn and completes the proof.
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Remark 3.1. By Theorems 1.1, 3.1, the e.s. v(t, y) of (3.1), (3.2) belongs to the
space C([0, +∞), L1(Bn,m)), after possible correction on a set of null measure.
Moreover, Sp(v(t, ·)) ⊂ M0 for all t > 0, where M0 is the additive subgroup of Rn

generated by Sp(v0). Besides, if v1(t, y), v2(t, y) are e.s. of (3.1), (3.2) with initial
data v01(y), v02(y), respectively, then, as follows from the relation like (3.13), for
all t > 0

∫

Bn

|v1(t, y)− v2(t, y)|dm(y) ≤
∫

Bn

|v01(y)− v02(y)|dm(y)

( L1-contraction property ). Obviously, this property implies the uniqueness of
e.s.

It readily follows from the results of Theorem 3.1 and Theorem 1.2 the decay
property for e.s. of (3.1), (3.2).

Theorem 3.2. Let M0 be an additive subgroup of Rn. Then non-degeneracy
condition (1.4) is necessary and sufficient for the decay property

ess lim
t→+∞

∫

Bn

|v(t, y)− C|dm(y) = 0, C =

∫

Bn

v0(y)dm(y)

of every e.s. to (3.1), (3.2) such that Sp(v0) ⊂ M0.
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