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Abstract

In this paper we investigate numerically the model for paites trafic proposed in [B. Andreianov, C. Donadello,
M.D. Rosini, Crowd dynamics and conservation laws with weal constraints and capacity drop, Mathematical Models
and Methods in Applied Sciences 24 (13) (2014) 2685-27223 pwdve the convergence of a scheme based on a constraint
finite volume method and validate it with an explicit solutiobtained in the above reference. We then perfadioc
simulations to qualitatively validate the model under édesation by proving its ability to reproduce typical phemena

at the bottlenecks, such as Faster Is Slovikerot and the Braess’ paradox.
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1. Introduction

Andreianov, Donadello and Rosini developed|ih [1] a maap&cmodel, called here ADR, aiming at describing the
behaviour of pedestrians at bottlenecks. The model is diyethe Cauchy problem for a scalar hyperbolic conservation
law in one space dimension with non-local point constrafrhe form

o +0xf(p) =0 t,x) e Ry xR, (1a)
0(0,X) = p(X) X € R, (1b)
f (o(t,0+)) < p(f]R w(x) p(t, X) dx) teR,, (1c)

wherep(t, x) € [0, R] is the (mean) density of pedestriansxi R at timet € R, andp: R — [0, R] is the initial (mean)
density, withR > 0 being the maximal density. Theh; [0, R] — R, is the flow considered to be bell-shaped, which is
an assumption commonly used in crowd dynamics. A typicairgxa of such flow is the so-called Lighthill-Whitham-
Richards (LWR) flux|[2, 3,14] defined by

max

() =pvmax(1— £ )
P
wherevmax andpmax are the maximal velocity and the maximal density of pedassrrespectively. Throughout this paper
the LWR flux will be used. Nexp: R, — R, prescribes the maximal flow allowed through a bottlenechtied atx = 0
as a function of the weighted average density in a left neighttood of the bottleneck antl: R_ — R, is the weight

function used to average the density.
Finally in (Zd),o(t, 0-) denotes the left measure theoretic trace along the camsiraplicitly defined by

+00 0
lim } f f lo(t, X) — p(t, 0-)| ¢(t, xX) dxdt = O forall¢ € C?(RZ; R).
0 —&
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The right measure theoretic tragét, 0+), is defined analogously.

In the last few decades, the study of the pedestrian behathoough bottlenecks, namely at locations with reduced
capacity, such as doors, stairs or narrowings, drawn a d@eradile attention. The papers [5, 6, 17,18, 9,10, 11] present
results of empirical experiments. However, for safety oeas experiments reproducing extremal conditions such as
evacuation and stampede are not available. In fact, theiarégperimental study of a crowd disaster is proposed in [12]
The available data show that the capacity of the bottlenieeklie maximum number of pedestrians that can flow through
the bottleneck in a given time interval) can drop when highsity conditions occur upstream of the bottleneck. This
phenomenon is calledapacity dropand can lead to extremely serious consequences in escap#osis. In fact, the
crowd pressure before an exit can reach very high valuesfiiogency of the exit dramatically reduces and accidents
become more probable due to the overcrowding and the irecddlse evacuation time (i.e. the temporal gap between the
times in which the first and the last pedestrian pass thrdugbottleneck). A linked phenomenon is the so-calfaster

Is Slower(FIS) dfect, first described in [13]. FISTect refers to the jamming and clogging at the bottleneclat,résult

in an increase of the evacuation time when the degree of lefierowd is high. We recall that the capacity drop and the
FIS dfect are both experimentally reproducedlinl[6, 14]. A furtfedated (partly counter-intuitive) phenomenon is the
so-calledBraess’ paradoxor pedestrian flows [15]. It is well known that placing a shudistacle before an exit door can
mitigate the inter-pedestrian pressure and, under p&aticircumstances, it reduces the evacuation time by impgov
the outflow of people.

Note that as it happens for any first order model, see formestfl6, Part I1l] and the references therein, ADR can not
explain the capacity drop and collective behaviours at titldnecks. Therefore one of thefitiulties we have to face is
that the constrainp has to be deduced together with the fundamental diagramtfrerampirical observations.

The aim of this paper is to validate ADR by performing simigias in order to show the ability of the model to
reproduce the mainfiects described above and related to capacity drop that &eard Braess’ paradox. To this end
we propose a numerical scheme for the model and prove itecgerce. The scheme is obtained by adapting the local
constrained finite volume method introduced.in [17] to tha+aral case considered in ADR, using a splitting strategy.

The paper is organized as follows. In Secfidn 2 we brieflyltélha main theoretical results for ADR. In Sectibh 3
we introduce the numerical scheme, prove its convergendevalidate it with an explicit solution obtained in/ [1]. In
Section 4 we perform simulations to show that ADR is able fwraduce the Braess’ paradox and the Fiea&. In
Subsectio 4]3 we combine local and non-local constraimsadel a slow zone placed before the exit. Conclusions and
perspectives are outlined in Sectidn 5.

2. Well-posedness for the ADR model

Existence, uniqueness and stability for the general Capchblem [[1) are established inl [1] under the following
assumptions:

(F) f belongstdLip ([0, R]; [0, +oo[) and is supposed to be bell-shaped, that(@® = 0 = f(R) and there exists
o €]0, R[ such thatf’(p) (o — p) > 0 fora.ep € [0, R].
(W) wbelongs ta“(R_;R,), is an increasing maiwi| 1z y = 1 and there exists,i> 0 such thaw(x) = 0 for
anyx < —iy.
(P) pbelongstdip([0,R]; ]0, f(o)]) and is a non-increasing map.

The regularityw € L*(R_; R, ) is the minimal requirement needed in order to prove excsteand uniqueness dfl(1).
In this paper, we shall consider continuaus

The existence of solutions for the Riemann problem[for (Praved in [18] for piecewise constapt However, such
hypothesis orp is not suficient to ensure uniqueness of solutions, unless thefflamnd the iciency p satisfy a simple
geometric condition, see [18] for details. In the presempave consider either continuous nonlinpast a piecewise
constantp that satisfies such geometric condition.

The definition of entropy solution for a Cauchy problém] (1X) with a fixeda priori time dependent constraint
condition

f (o(t, 0+)) < q(t) teR, )

was introduced in [19, Definition 3.2] and then reformulatefi 7, Definition 2.1], see also [17, Proposition 2.6] an@,[2
Definition 2.2]. Such definitions are obtained by adding antérat accounts for the constraint in the classical defimitio
of entropy solution given by Kruzkov in_[21, Definition 1]. €hdefinition of entropy solution given inl[1, Definition 2.1]
is obtained by extending these definitions to the framewbérioo-local constraints.
The following theorem on existence, uniqueness and staloifientropy solutions of the constrained Cauchy prob-
lem (1) is achieved under the hypothe@€s (W) and(P).
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Theorem 2.1 (Theorem 3.1 inlJ1]) Let (F), (W), (P) hold. Then, for any initial datump € L*(R; [0, R]), the Cauchy
problem () admits a unique entropy solutign Moreover, ifo’ = p'(t, X) is the entropy solution corresponding to the
initial datump’ € L*(R; [0, R]), then for all T> 0 and L > iy, the following inequality holds

||p(T) _p/(T)”Ll([—L,L]) = eCT”p__p_'||L1((\x|sL+MT])’ ®)
where M= Lip(f) and C= 2Lip(p)IM|_~(r_)-

The total variation of the solution may in general increase tb the presence of the constraint. [In [1] the authors
provide an invariant domai® c L! (R; [0, R]) such that ifp belongs taD, then one obtains a Lipschitz estimate with
respect to time of the! norm and an a priori estimate of the total variation of

W) = sign - o)[1(0) - 1)) = [ [{)]ar

3. Numerical method for approximation of ADR

In this section we describe the numerical scheme based de finiume method that we use to sol{z¢ (1). Then we
prove the convergence of our scheme and validate it by casgwawith an explicit solution of {1). In what follows, we
assume thatF), (W) and(P) hold.

3.1. Non-local constrained finite volume method

Let Ax and At be the constant space and time steps respectively. We deérmointsxj.1> = jAX, the cellsK; =
[Xj-1/2, Xj+1/2[ and the cell centers; = (j — 1/2)Ax for j € Z. We define the time discretizatidh = nAt. We introduce
the indexj. such thatx;..1/» is the location of the constraint (a door or an obstacle).rFeilN andj € Z, we denote by
p'j‘ the approximation of the averageg(t", - ) on the cellK;, namely

1 Xj+1/2 1 Xj+1/2

0_ = nLo_—
P} = — o(X) dx and P} =5

o(t", X) dx if n> 0.
AX Jxi

Xj-1/2

We recall that for the classical conservation law (1a)-(&tstandard finite volume method can be written into the form

At
Ml _ n n n
P =00 = i (e = T lap2) )

Where?'j’]rl/2 =F (p?,p?ﬂ) is a monotone, consistent numerical flux, thaFsatisfies the following assumptions:

e F is Lipschitz continuous from [@R]? to R with Lipschitz constant Lidf),
e F(a,a) = f(a) foranyac€ [0, R],
e (a,b) € [0,R]? —~ F(a, b) € R is non-decreasing with respecta@nd non-increasing with respecttio

We also recall that il [17] the numerical flux for the time degent constrainf{2) is modified as follow in order to take
into account the constraint condition

] { F(e).07,1) it # e, -

MU minF (o on,) o) i e

whereq" is an approximation of(t"). In the present paper, when dealing with a Cauchy probléijestito a non-local
constraint of the forn{dc) we will use the approximation

q' = p[AXZW(Xi)P?]- (6)
i<ie
Roughly speaking
e we apply the numerical schenié (4) for the problgni (La)-(1b),
e we apply the numerical schenié (£)-(5) for the problen (I&)-(2),

e we apply the numerical schenié (4)-(E)-(6) for the problejn (1
3



3.2. Convergence of the scheme
Let us introduce the finite volume approximate solufigrdefined by

pat.X) = pf for x € Kj andt e [t", t™!], (7)

where the sequencp’;ojez, neN IS obtained by the numerical scheriie (@)-(5). Analogoustyalgo define the approximate
constraint function

) =q" fort e [t", t"™1]. (8)

First, we prove a discrete stability estimate valid for amyna@inQ = [0, T] x R with T > 0, for the schemd{4)-[5)
applied to problem{daJ-(A1b}4(2). This estimate can be seethe equivalent, in this framework, of the stability résul
established in[17, Proposition 2.10].

Proposition 3.1. Letp be inL*(R; [0, R]) and q, §a be piecewise constant functions of the fqB8 If p» andp, are
the approximate solutions dffd)(I0) (@) corresponding, respectively, to @nd g, and constructed by applying the
schemd)-(E), then we have

lloa — PallLygy < 2Tlda — Qall 2o Ty -
Proof. For notational simplicity, leN = | T/At]. Let us also introducepg'),-ez, neny defined by,

~ At ~ .
Pt =pl - Ax( Nya—Fly,). foranyjez neN,
Where?” \1/» is defined by
. [ Fhel) it # e,
j+1/2 — . A . .
mm{F (p’j‘,p’j‘+l) , q”} if j=je.

Then using the definitions oﬁT),—Ez,neN and b?)jez’ngN, we have foranp=1,...,N,
p? =15T it jé&{jcjc+1}
and

p?c_ﬁ?c:__x(mm{':(plc Lolch) '+ min{F (00 o) @),

Pt =P = o (min{F (o o) ) - min{F (o 1 ). 07).
which implies that

n-1_ An—ll n-1_ An—l|
s .

t - At
AX |q |p?c+l _p?c+l < E( |q

Therefore we deduce that, forany=1,..., N,

~ At 1 e
D leh -] < 25 fer - (©)

jez

|ch

Besides, observe that the modification of the numerical fiuke interfacex; .1/, introduced in[(5) does noffect the
monotonicity of the schemg&l(4}(5) (seel[17, Propositi@j)4 Therefore, for any = 1,..., N, we have

D=8 < > et =AY (10)

€z €z
Hence thanks td {9) and {{L0), we can write
~ o 1 A At .
St -l Yokl Y-l < 2 o0 -+ Do) - 01 = 20 [0~ ).
JEZ J€Z JEZ J€Z
Then an induction argument shows that for any 1,..., N,

Z |;ol pJ| < 2— Z gk - ||QA = Qallrqo.oy)-

ez



In conclusion, we find that

N N
lloa = PallLyq) = At AXZ Z lo} = A7 < 2llda — QallLro.ry Z At < 2T|lda — Gallirgo
=1

n=1 jeZ
and this ends the proof. O
Let us now notice that as in [17, Proposition 4.2], under thé €ondition
. At 1
Lip(F) Ax < > (11)
we have theé * stability of the schemél4){5)4(6) that is
O0<pa(tbx) <R fora.e. {,x) € Q. (12)

This stability result allows to prove the statement below.

Proposition 3.2. Let gy be defined byg)-(8). Then under the CFL conditiofid), for any T > 0, there exists C- 0 only
dependingon T, f, F, p, wand R such that:

[9algv(o,ry < C. (13)
Proof. LetN = | T/At] andjy be an integer such that sup)(c U K;j. Thenforanyn=0,...,N -1, we have
Jws<]e
o - = p[Ax D W(X;)p?”] - p{Ax D W(Xj)p',—‘]
wi<ic jwsige
< AxLip(p) Z w(xj) (o™ - p7)| = At Lip(p) Z w(x) (Flajo = Flaja)| -
jw<i<ie jwsi<je

Now, using a summation by part, we have
D0 W) (Flajo = Fllaja) = WGF [Lajo = WOGIFieaia = D (WOKG41) = WOXG)) Flh o
iwsi<ic jwsj<je-1
Then, it follows that
™t - o < AtLip(p) Il ) ) 1Tl

jw=1<j<je
Now, from (3), for anyj € Z we have the estimate
(70 12] < [F @R o2 < |F(%0%,0) = F ol o] + | £ < Lin(F) o7, — 1] + Lin() o] < R(Lip(F) + Lip(f)).
Hence we deduce that

N-1
9alBv(o,Ty) = Z g™t -q" < C,
n=0

whereC = (jc — jw +2) T RLip(p) IWll. <& ;) (Lip(F) + Lip(f)). O
We are now in a position to prove a convergence result for¢cherae [(4)i(b)EB).

Theorem 3.1. Under the CFL conditiorfIT), the constrainted finite volume sche@ (5)-(6) converges in.1(Q) to the
unique entropy solution t¢).

Proof. Let (oa,ga) be constructed by the schené (@)-(5)-(6). Proposiiiole8@Helly’'s lemma give the existence of a
subsequence, still denotgg and a constraint functiog € L*([0, T]) such thatg, converges taj strongly inL ([0, T])
asAt — 0. Letp € L*(R, x R; [0, R]) be the unique entropy solution fo_{1&)-[1D)-(2) assecldbg. It remains to prove
that the subsequenpg converges te strongly inL*(Q) asAt, Ax — 0. The uniqueness of the entropy solutionid (1a)-
(@IB)-@) will then imply that the full sequengg converges t@ and, as a consequence, the full sequepceonverges to
q= p(fRi wW(X) p(t, X) dx).

Let G, be a piecewise constant approximatiorgafuch thaigy converges ta strongly inL*([0, T]). Furthermore, we
also introduce constructed by the schenié (f}-(5) and associategd.tdléw we have

llo = pallLyq) < llo = pall i) + lloa — PallLyg)-
But, thanks tol[17, Theorem 4.9], under the CFL conditlon)(14 — pall, 1) tends to 0 adt, Ax — 0. Furthermore,
thanks to Propositidn 3.1, we have
lloa = PallLyg < 2T llda = Gall 1oy
which also shows thdlp, — ﬁA||L1(Q) tends to 0 aat, Ax — 0. [l
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3.3. Validation of the numerical scheme

0.2
0.2¢
0.1
0.1(¢

0.0§

02 04 06 08 1.C

Figure 1: The functionsi+— f(0)] and g — p(¢£)] as in Section 313.

We propose here to validate the numerical schéte {4)-)5)<€iBig the Godounov numerical flux (see e.gl [22, 23])
which will be used in the remaining of this paper:

minf ifa<b,

F(a,b) ={ [ab]

maxf ifa>Db.
[b.a]

We consider the explicit solution tbl(1) constructed.in [&c®on 6] by applying the wave front tracking algorithm. The
set up for the simulation is as follows. Consider the domégomputation £6, 1], take a normalized flut(p) = p(1-p)
(namely the maximal velocity and the maximal density areiaesl to be equal to one) and a linear weight function
W(X) = 2(1+ X) x[-1,0/(X). Assume a uniform distribution of maximal density iy xg] at timet = 0, namelyp = x[x, xs]-
The dficiency of the exitp, see Figurgll, is of the form

Ppo ifO<&E<é,
pr if&<é<é,
p: ifé&<é<L

pE) =

The explicit solutiorp corresponding to the values
Po = 0.21 p1 = 0.168 P2 = 0.021 fl ~ 0.566, Xp = =5.75, Xg = —2, {,:2 ~0.731

is represented in Figuié 2. The above choices for thefflard the iciencyp ensure that the solution to each Riemann
problem is unique, see [18]. We deferito [1, Section 6] fordbtails of the construction of the solutiprand its physical
interpretation.

A qualitative comparison between the numerically compstdtionx — pa(t, X) and the explicitly computed solution
X - p(t, X) at different fixed times is in Figure[3. We observe good agreements betweenp(t, X) andx i pa(t, X).
The parameters for the numerically computed solutiomare 3.5 x 10~* andAt = 7 x 107°.

A convergence analysis is also performed for this test. Wedice the relative '-error for the density, at a given time

t", defined by
112 ot x|
j

In Table[1, we computed the relatité-errors for diferent numbers of space cells at the fixed time 10. We deduce
that the order of convergence is approximativeB0®. As in [17], we observe that the modificati@h (5) of the euical
flux does not fect the accuracy of the scheme.

n
E.=

2. ot %) = pf]
J

4. Numerical ssimulations

This section is devoted to the phenomenological descripgifcsome collective fects in crowd dynamics related to
capacity drop, namely the Braess’ paradox and the Fastéouse5(FIS) dfect.

4.1. Faster is Slowerfgect

The FIS dfect was first described in [13,/24] in the context of the roomicenation problem. The authors studied the
evolution of the evacuation time as a function of the maxiwgdbcity reached by the pedestrians, and they shown that
there exists an optimal velocity for which the evacuatiomtiattains a minimum. Therefore, any acceleration beyomnd th
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(b) The solution in thex; t)-coordinates.
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(c) The solution in thet(x, p)-coordinates for 0< t < 15. (d) The solution in thet(x, p)-coordinates for 85< t < 87.5.

Figure 2: Representation of the solution constructef iBftion 6] and described in Subsecfior 3.3.
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Number of cells LI-error
625 9.6843x 1072
1250 6.2514x 1073
2500 3.4143x 1073
5000 1.3172x 1073

10000 1.03x 1073
20000 4.2544x 10°*
Order 0.906

Table 1: RelativeL 1-error at timet = 10.

optimal velocity worses the evacuation time. Following shedies above, the curve representing the evacuation srae a
function of the average velocity takes a characteristipsha4, Figure 1c].

The first numerical tests we performed aim to verify if suchmhis obtained starting from the ADR model. To this end,
we consider the corridor modeled by the segment [-6,1], afitlexit atx = 0. We consider the fluf(o) = o Vmax(1 — p)
wherevnay is the maximal velocity of the pedestrians and the maximakitg is equal to one. We use the same weight
function as for the validation of the scheméx) = 2(1 + X)x[-1,0/(X) and, the same initial density, = y[-575-2). The
efficiency of the exitp is now given by the following continuous function

Po ifO <¢&<éy,
0E) = (Po — p1)§+_p1§1— Pof2 G<t<t (14)
&1-&
P1 ifé&<é<],
where
Po = 0.24, p1= 0.05, fl = 0.5, fg =0.9.

The space and time steps are fixedto= 5x 10°3 andAt = 5x 107*. In Figure[4 are plotted the fluk corresponding
to the maximal velocitymax = 1 and the aboveficiency of the exit.

T T T T
0.25 |- P4

02 —

0.15 | —

f,

01 —

0.05 |

L L L L
0 0.2 0.4 0.6 0.8 1

P&

Figure 4: The normalized flux — f(o) and the constrairg — p(&) defined in[T#).

Figure[® represents the evacuation time as a function of theémal velocityvmayx, asvmax varies in the interval [@, 5].

As we can observe, the general shape described above iseredovihe numerical minimal evacuation time isQC&
and is obtained fovmax = 1.

In addition, we reported in Figufd 6 the density at the exiadanction of time for diferent values of the maximal
velocity vimax @around the optimal one. We notice that the maximal densitiyeaéxit and the time length where the density
is maximal increase with the velocity. This expresses thajing at the exit that leads to the Fifest.

Then we performed some series of tests to see how the geheys ®btained in Figuigd 5 changes with respect to
variations of the parameters of the model. In Figure 8 (a),shew this variation when we considerffgirent initial
densities, namely), p1 andp, with p1(X) = 0.8y[-575-2] andpz(X) = 0.6x[_s575-2;. The general shape of the curves is
conserved. We observe that the evacuation time increasieshsiinitial amount of pedestrians while the optimal vélpc
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Figure 5: With reference to Subsectlon]4.1: Evacuation tia function of the velocitymax.
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Figure 6: With reference to Subsectlon]4.1: Densities aefiteas a function of time for dierent velocities.

decreases as the initial amount of pedestrians increadss.mihimal evacuation time and the corresponding optimal
maximal velocity are 1259 and 107 forp, and 15691 and 103 forp;.
Next we explore the case where th@ency of the exit varies. We consider the functiprefined in [1#) and the
modification pg such thatps(¢) = p(B¢). In Figure[T, we plotted the functions ps for 5 = 0.8 andg = 0.9. Then,
in Figure[8 (b) are plotted the evacuation time curves cpoeding to these thredfiiencies of the exit. As minimum
evacuation times, we obtain B86 and 1827 forg = 0.8, 0.9 respectively. As expected, the minimal evacuation time
increases with lowerfciency of the exit. The corresponding velocities are apipnatively 106 and 102 respectively.
Finally, we change the location of the initial density. Ird#gbn to the corridor {6, 1], we consider two other corridors
modeled by the segments12 1] and [-20, 1]. In these two corridors we take as initial densijgéx) = x[-1175-g and
pa(X) = x1-1075-16) respectively. We have reported the obtained evacuatiom ¢imves in Figurl8 (c). As expected, the
minimal evacuation time increases with the distance betwlee exit and the initial density location.

4.2. Braess’ paradox

The presence of obstacles, such as columns upstream froexithenay prevent the crowd density from reaching
dangerous values and may actually help to minimize the etixrutime, since in a moderate density regime the full
capacity of the exit can be exploited. From a microscopinpof view, the decrease of the evacuation time may seem
unexpected, as some of the pedestrians are forced to chosgex path to reach the exit.

The ADR model is able to reproduce the Braess’ paradox foegteidns, as we show in the following simulations. We
consider, as in the previous subsection, the corridor neadey the segmentp, 1] with an exit atx = 0. We compute
the solution corresponding to the fldXp) = p(1 - p), the initial densityp(X) = x;-s.75-2)(X), the dficiency of the exitp
of the form [14) with the parameters

po = 0.21 p = 0.1, & = 0.566 & =0731
10
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and the same weight function(x) = 2(1 + X)x;_1,0/(X). The space and time steps are fixedito = 5 x 10~ and
At = 5x 10°4. Without any obstacle, the numerical evacuation time i4®8. In these following simulations we place an
obstacle ak = d, with -2 < d < 0. The obstacle reduces the capacity of the corridor and eaedn as a door, which we
assume larger than the onexat 0. Following these ideas we define dfi@ency functionpy(¢) = 1.15p(¢) and a weight
functionwy(x) = 2(x — d + 1)y[4-1,4/(X) associated to the obstacle.

In Figur® we have reported the evolution of the evacuatina when the position of the obstacle varies in the interval
[-1.9, -0.01] with a step of 0.01. We observe that fet.8 < d < —1.72, the evacuation time is lower than in the absence
of the obstacle. The optimal position of the obstacle isinkbthford = —1.72 and the corresponding evacuation time
is 24.246. We compare in Figufe 110 five snapshots of the solutiohauitobstacle and the solutions with an obstacle
placed ad = —1.72 andd = —1.85. This latter location corresponds to a case where theuatiaa time is greater than
the one without an obstacle. In these shapshots, we seédhéhabstacle placed dt= —1.85 becomes congested very
soon. This is due to the fact that the obstacle is too clogegtéocation of the initial density. When the obstacle is pthc
atd = —1.72, it delays the congestion at the exit.

4.3. Zone of low velocity

In this section, we perform a series of simulations whereot&tacle introduced in Subsectionl4.2 is now replaced by
a zone where the velocity of pedestrians is lower than elsesvim the domain. Theffect we want to observe here is
similar to the one we see in Braess’ Paradox. Namely we pterehigh concentration of pedestrians in front of the
exit by constraining their flow in an upstream portion of tleerilor. In this case however the constraint is local, as the
maximal value allowed for the flow only depends on the positiothe corridor.

We consider again the corridor modeled by the segme®tl]] with an exit atx = 0. The éficiency of the exit and the
initial density are the same as in the previous subsectisause that the slow zone is of size one and is centrec-at,
where-1.9 < d < 0. Define the following function

1 if x< d - 0.5,
—2(x-d) ifd-05<x<d,

=V oia) ifd<x<dsos. 13)

1 if x>d+ 0.5,

and the following velocity(x, p) = [1 + (1 — 2) K(X)] Vmax (1 — p), wherea € [0, 1] andvimax = 1 is the maximal velocity.
With such velocity, the maximal velocity of pedestriansm@ases in the intervatl[- 0.5, d], reaching its minimal value
AVmax atx = d. Then the velocity increases in the intenv@ld + 0.5] reaching the maximum valug,.y, that corresponds
to the maximal velocity away from the slow zone. Finally wasider the fluxf (x, p) = p v(X, p) and the space and time
steps are fixed tax = 5x 102 andAt = 5x 1074,
Figure[11 (a) shows the evolution of the evacuation time amatfon of the parameter varying in the interval [QL, 1]
when the center of the slow zone is fixeddat —1.5. We observe that the optimal minimal velocity in the slomeds
for 1 = 0.88 and the corresponding evacuation time i®26. Recalling that without the slow zone the evacuatioe fisn
29.496, we see that the introduction of the slow zone allowsdoce the evacuation time. In Figlre 11 (b), we show the
evolution of the evacuation time when varying the centehefdlow zonel in the interval 1.9, 0] and when the minimal
11
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Figure 8: With reference to Subsectlonl4.1: Evacuation tisia function ofimax for different parameters of the model.

and the maximal velocities are fixed and corresponti00.88 andvimax = 1. We observe here that, unlike in the Braess
paradox tests case, the evacuation time does not depend tot#tion of the slow zone, except when this latter is close
enough to the exit. Indeed, when the slow zone gets too ctoeetexit, the evacuation time grows. This is due to the
fact that pedestrians do not have time to speed up beforhirgpihe exit.

Fix nowd = —1.5 andA = 0.88 and assume that,o« varies in the interval [, 5]. The evolution of the evacuation
time as a function o¥jhax is reported in Figure11 (c). We observe that we get the cleniatic shape already obtained in
the FIS dfect.

Finally we present in Figufe12 five snapshots for thréietént solutions. The first two solutions are the ones congpute
in Subsectioh 4]2, without obstacle and with an obstacletémtad = —1.72 respectively. The third solution is computed
with a zone of low velocity centered dt= —1.72,1 = 0.88 andvnax = 1. In order to have a good resolution of this third
solution, the space and time steps where fixetixe=- 3.5x 104 andAt = 7 x 10-°.We note that in the case where a zone
of low velocity is placed in the domain, we do not see the capacop, as the density of pedestrians never attains very
high values in the region next to the exit.

5. Conclusions

Qualitative features that are characteristic of pedestianacroscopic behaviour at bottlenecks (Faster is Slower
Braess’ paradox) are reproduced in the setting of the sisgalkar model with non-local point constraint introducefilin
These &ects are shown to be persistent for large intervals of vadfiparameters. The validation is done by means of a
simple and robust time-explicit splitting finite volume sche which is proved to be convergent, with experimental rate
close to one.

The results presented in this paper allow to consider mongptex models. Indeed, as ADR is a first order model,
it is not able to capture more complicatefiieets related to crowd dynamics. Typically, ADR fails to reguce the

12
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amplification of small perturbations. This leads to consislecond order model such as the model proposed by Aw,
Rascle and Zhang [25,126] in the framework of vehiculaffica

Another extension of this work is to consider the ADR moddhwionstraints that are non-local in time. Such con-
straints allow to tackle optimal management problems irsghgt of [27,/28].

Finally, this work can also be extended to two-dimensionadlels where experimental validations may be possible.
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