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ABSTRACT. –The aim of this paper is to obtain new fine properties of entropy solutions

of nonlinear scalar conservation laws. For this purpose, we study some “fractional BV spaces”

denoted BV s, for 0 < s ≤ 1, introduced by Love and Young in 1937. The BV s(R) spaces are

very closed to the critical Sobolev space W s,1/s(R). We investigate these spaces in relation with

one-dimensional scalar conservation laws. BV s spaces allow to work with less regular functions

than BV functions and appear to be more natural in this context. We obtain a stability result

for entropy solutions with BV s initial data. Furthermore, for the first time we get the maximal

W s,p smoothing effect conjectured by P.-L. Lions, B. Perthame and E. Tadmor for all nonlinear

degenerate convex fluxes.
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1 Introduction

The space of functions with bounded variation BV plays a key role for scalar conservations
laws. In particular, Oleinik [24] and Lax [17] obtained a BV smoothing effect for uniformly
convex fluxes: f ′′ ≥ δ > 0.

Fractional BV spaces, denoted here BV s, 0 < s ≤ 1, were defined for all s ∈]0, 1[ in
[21, 22, 23]. For s = 1, BV 1 is the space BV of functions with bounded variation and the
space BV 1/2 is known since 1924 ([29]).

Notice that BV s is not an interpolated space between L1 and BV . Indeed the inter-
polation between L1 and BV simply yields W s,1 [28]. Since L∞ and BV are well fitted
with scalar conservation laws, Tartar proposed in [27] the interpolated space: (L∞, BV )s.
This interpolated space seems closed to the BV s space, see Section 2 below.

The spaces BV s share some properties with BV and allow to work with less regular
functions. For the one-dimensional scalar conservation laws, initial data in BV s yield
weak entropy solutions which are still in BV s. Furthermore, for a degenerate nonlinear
convex flux with only L∞ data, we obtain a natural smoothing effect in BV s. Such
a smoothing effect is well known in the framework of Sobolev spaces ([19]). The best
parameter s quantifying the smoothing effect is not known in the multidimensional case.
It is improved in [26] and bounded in [11, 16]. For the one dimensional case, the best
smoothing effect in W s,1 conjectured in [19] was first proved in [15]. We will improve this
result in W s,p with p = 1/s.

It is also well known that the solutions are not BV in the case of a degenerate nonlinear
flux, but they keep some properties of BV functions ([10]). BV s spaces appear to be
natural in this context:

• we find the maximal W s,p smoothing effect for a nonlinear degenerate convex flux in
one dimension, In this context, BV s is naturally related to a new one sided Hölder
condition,

• BV s spaces share some properties with BV and highlight the BV like structure of
entropy solutions ([10]),

• BV s total variation is not increasing for all entropy solutions and all fluxes.

In Section 2, we introduce the BV s spaces and give some usefull properties. We
also investigate for the first time the relations with others classical functional spaces. In
Sections 3 and 4, we give some applications to scalar conservation laws: a stability result,
the best smoothing effect in the case of L∞ data with a degenerate convex flux and new
results about the asymptotic behavior of entropy solutions for large time.
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2 BV s spaces

The function space BV s is known in the literature as the space of functions with bounded
p-variation. It was introduced in 1924 by Wiener ([29]) for s = 1/2. BV s has since
been studied in great details in the lecture notes [5]. For our purpose, we introduce the
notations BV s, instead of BVp with p = 1/s, to emphasize the link between BV s and
Sobolev spaces W s,p. Indeed s can been seen as a fractional derivative exponent.

A main purpose of this section is to compare BV s and Sobolev spaces. To be self-
contained, we first present some useful properties to compute BV s norm.

Furthermore, in [27, 28], Tartar proposed the interpolated space (BV 0, BV 1)s with
the notation BV 0 = L∞. Indeed, it was shown in [2] that (BV 0, BV 1)s is continuously
imbedded in BV s. Up to our knowledge, the equality between BV s and the correspondent
Tartar’s interpolated space is unknown.

2.1 Definition

Let I be a non empty interval of R and s ∈]0, 1]. We begin by defining the space BV s(I)
which appears to be a generalization ofBV (I), space of functions with a bounded variation
on I.
In the sequel, we note S(I) the set of the subdivisions of I, that is the set of finite subsets
σ = {x0, x1, · · · , xn} ⊂ I with x0 < x1 < · · · < xn.

Definition 2.1 Let be σ = {x0, x1, · · · , xn} ∈ S(I) and let u be a real function on I. The
s-total variation of u with respect to σ is

TV su{σ} =
n∑
i=1

|u(xi)− u(xi−1)|1/s (1)

and the s-total variation of u(.) on I is defined by

TV su{I} = sup
σ∈S(I)

TV su{σ}, (2)

where the supremum is taken over all the subdivisions σ of I.
The set BV s(I) is the set of functions u : I → R such that TV su{I} < +∞. We define
the BV s semi-norm by:

|u|BV s(I) = (TV su{I})s . (3)

We will make use of the following elementary properties:

Proposition 2.1 Let I be a non empty interval of R and let u be a real function on I.

1. For any subinterval J ⊂ I, TV su{J} ≤ TV su{I}.

2. For any (a, b, c) ∈ I3 with a < b < c,

TV su{]a, b[}+ TV su{]b, c[} ≤ TV su{]a, c[}.
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Remark 2.1 In the following section it is shown that if u ∈ BV s then this function have
a finite limit on the right and on the left everywhere (Theorem 2.7), thus u is measurable
and the preceding definition can be extended to the class of measurable functions defined
almost everywhere by setting:

TV su{I} = inf
v=u a.e.

TV sv{I}.

Remark 2.2 For s = 1, we recover the classical space BV (I,R) = BV 1(I).

2.2 How to choose a convenient subdivision ?

In the sequel, we will have to compute explicitly the s-total variation of some functions,
especially piecewise constant functions. To this purpose we must know how to get the
supremum in (2). The following examples and lemmas show that this calculation can not
be done like that of the total variation in BV . For more properties we refer the reader to
the book [5].

Example 2.1 (an increasing function)
Let be I = [0, 1], u(x) = x on I.

Then TV su([0, 1]) = 1 but with the subdivision σn =

{
0,

1

n
, · · · , n− 1

n
, 1

}
we have for all

s < 1, lim
n→+∞

TV su{σn} = 0.

So the classical result in BV for smooth function:

if u ∈ C1([0, 1],R) then TV su{[0, 1]} = lim
n→+∞

TV su {σn}

is never true for all s < 1 and for non-constant function since the limit is always 0. More
generally, refining a subdivision is not always a good way to compute the BV s variation.

The following example shows two functions with the same BV total variation but
never the same BV s total variation for all s < 1.

Example 2.2 (a non monotonic function)
Let a, b be some positive numbers, let u and v be two functions defined by

u = a 1I[0,1[ + (a+ b) 1I[1,+∞[, v = a 1I[0,1[ + (a− b) 1I[1,+∞[,

where we denote 1II the indicator function of a set I, then TV su{R} > TV sv{R} for all
s < 1.

This simple phenomenon is related to the monotonicity of u instead of v. We define
two subdivisions σ1 = {−1, 0, 1} and σ2 = {−1, 1}. We get easily:

TV su{R} = TV su{σ2} = (a+ b)1/s > a1/s + b1/s = TV su{σ1},

TV sv{R} = TV sv{σ1} = a1/s + b1/s > |a− b|1/s = TV sv{σ2},
while TV u{R} = TV v{R} = a+ b = TV u{σ1} = TV v{σ1}. This is an easy consequence
of the following lemma, consequence of the strict convexity of the function x 7→ x1/s:
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Lemma 2.1 For all a, b in R∗+ and all s ∈]0, 1[ we have:

|a− b|1/s < a1/s + b1/s < (a+ b)1/s.

More generally, if (ai)1≤i≤n is a finite sequence of positive real numbers:

∑
1≤i≤n

a
1/s
i <

( ∑
1≤i≤n

ai

)1/s

.

To formalize this, we propose the following definition:

Definition 2.2 Let σ = {x0 < x1 < · · · < xn} be a subdivision of an interval I. The
extremal points of σ with respect to a function u : I → R are x0, xn and, for 1 ≤ i ≤ n−1,
the points xi such that max(u(xi−1), u(xi+1)) ≤ u(xi) or u(xi) ≤ min(u(xi−1), u(xi+1)).
We note σ[u] the subdivision of I associated to these extremal points.
A subdivision is said to be extremal with respect to u if σ[u] = σ.

With this definition, we have the following properties

Proposition 2.2 (BV s variation with extremal subdivisions)

1. For any subdivision σ, the s-total variation of a function u is less or equal to the
s-total variation on the extremal subdivision σ[u]:

TV su{σ} ≤ TV su{σ[u]}, ∀σ. (4)

2. Denote by Ext(I, u) the set of the subdivisions of an interval I, extremal with respect
to a function u : I → R. We have

TV su{I} = sup
σ∈Ext(I,u)

TV su{σ}. (5)

3. If u is a monotonic function on the interval I then

TV su{I} =

(
sup
I
u− inf

I
u

)1/s

and |u|BV s(I) = TV u{I}.

Proof:

1. Let σ = {x0 < x1 < · · · < xn} be a subdivision of I and σ[u] = {y0, · · · , yN} the
subdivision of I associated to the extremal points with respect to u. We introduce
the function φ : {0, · · · , N} → {0, · · · , n}, strictly increasing, such that φ(0) =
0, φ(N) = n and yj = xφ(j). Setting ui = u(xi) we have:

TV su{σ} =
n∑
i=1

| ui − ui−1 |1/s=
N∑
j=1

∑
φ(j−1)<i≤φ(j)

| ui − ui−1 |1/s .
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The sequence (ui) is monotonic on [yφ(j−1), yφ(j)] thus, by Lemma 2.1∑
φ(j−1)<i≤φ(j)

| ui − ui−1 |1/s≤| uφ(j) − uφ(j−1) |1/s .

Finally, TV su{σ} ≤
N∑
j=1

| uφ(j) − uφ(j−1) |1/s= TV su{σ[u]}.

2. It is a direct consequence of the first item of Proposition 2.2.

3. The extremal subdivision for a monotonic function have only two points:
σ = {minσ,maxσ} and the result follows.

�

We have seen in Example 2.1 that we can have τ ⊂ σ but TV su{τ} > TV su{σ}: take
τ = {0, 1} and σ = σn with n > 1. The following example shows that this problem can
also occur for extremal subdivisions.

Example 2.3 (A piecewise monotonic function) Let I = [0, 3], let w be the conti-
nuous piecewise linear function defined by: w(0) = 0, w(1) = a, w(2) = a− ε, w(3) = b,
with 0 < ε < a < b, let τ = {0, 3} and σ = {0, 1, 2, 3}. τ and σ are extremal subdivisions,
we have τ ⊂ σ but TV su{τ} > TV su{σ} for all s < 1 and 0 < ε small enough.

Indeed we have

TV su{τ} = b1/s > a1/s + (b− a)1/s = TV su{σ}

and
TV su{σ} = a1/s + ε1/s + (b− a+ ε)1/s = g(ε).

We have also g(0) = a1/s + (b − a)1/s < TV su{τ} = b1/s by Lemma 2.1 and g is a
continuous function, thus the inequality holds for 0 < ε small enough.
Example 2.3 shows that the TV s variation of a function is not necessarily computed using
all extremal points of this function.
Conversely, the following proposition is useful to compute BV s variation of oscillating
functions with diminishing amplitudes.

Proposition 2.3 ( BV s variation of alternating diminishing oscillations)
Let I =

⋃
k≥0 Ik, Ik = [xk, xk+1[, xk < xk+1 and u be a monotonic function on each

Ik, with successive different monotonicity: (u(x) − u(y))(u(z) − u(t)) ≤ 0 for all xk ≤
x < y < xk+1 ≤ z < t < xk+2. The oscillation of u on the compact interval Ik is
ak = supx,y∈[xk,xk+1]

|u(x)− u(y)|.
If the oscillation (ak)k is monotonic then

TV su{I} =
∑
k

a
1/s
k . (6)
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Notice that if the sequence of successive amplitudes is not monotonic then (6) can be
wrong. The result is still valid with a finite union of Ik. For the infinite case, the non
increasing oscillations is the interesting case. In this case, the proposition states:

u ∈ BV s(I) if and only if (an) ∈ lp(N) with s p = 1.

Proof: to prove that TV su{I} =
∑

k a
s
k we restrict ourselves to the case of a piecewise

constant function. The general case follows.
Let AN = a0−a1+· · ·+(−1)NaN and u(x) = AN on IN . The inequality TV su{I} ≥

∑
k a

s
k

is clear by taking the subdivision σ∗ = {x0, x1, · · · }. Let σ = {y0, y1, · · · } be any other
extremal subdivision. We can assume that there is at most one yj in each In since the
contribution is zero for two extremal points in the same interval.

Let us define k(j) by the condition xj ∈ Ik(j). We have to prove that∑
j

|u(yj+1)− u(yj)|p ≤
∑
i

|u(xi+1)− u(xi)|p.

We have |u(yj+1) − u(yj)| ≤ |u(xk(j)+1) − u(xk(j))| since (AN) is the partial sum of an
alternating series. This is enough to conclude the proof. �

Let us study a more complex example where the sequence of the increasing jumps
belongs to l1 and the sequence of the decreacreasing jumps belongs to l2. Does the
function belong to BV 1/2? The result is more surprising.

Example 2.4 Let (an)n be a positive sequence which belongs to l1(N) such that bn =
√
an

does not belong to l1(N). We set with 1II is the indicator function of a set I,:

z(x) =
∑
n

zn 1I]n−1,n](x), z2n+1 = z2n + an, z2n+2 = z2n+1 − bn, z0 = 0.

z does not belong to any BV s(R) for all s.

Proof 1: notice that
∑
an <∞ and

∑
b2n <∞ since b2n = an ∈ l1.

z2n+2 = (a0+· · ·+an)−(b0+· · ·+bn) yields lim
n→+∞

z2n = −∞ and also lim
n→+∞

zn = −∞. This

implies lim
x→+∞

z(x) = −∞: z is not bounded and thus in none BV s thanks to Proposition

2.4 below. �

Proof 2: notice that an = o(bn) and for n large enough TV su{]2n + 1, 2n + 3[} ∼ (bn +
bn+1)

1/s in a similar way as in Example 2.3. For any k > 0, in a same way, we have
TV su{]2n + 1, 2n + 2k + 1[} ∼ (bn + · · · + bn+k)

1/s, but
∑

n bn = +∞ so the BV s total
variation blows up. �

Proof 3: there is another way to interpret Example 2.4. Functions L∞ with total increa-
sing variation bounded are BV . By construction, the total increasing variation TV+z =∑

n an is bounded, but z is not BV since the total decreasing variation is not bounded:
TV−z =

∑
n bn = +∞. So, z is not in L∞ and also in none BV s. �

The problem is more complicated if we assume that (an)n does not belongs to l1 . The
previous argument in BV is not known in BV s for s < 1. For instance, if (an)n does not
belong to l1 but belongs to l2, is z in BV 1/4 ?
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2.3 Some properties of BV s spaces

We begin with some properties of BV s(I) which arises directly from the definition:

Proposition 2.4 Let I be an interval of R. The following inclusions hold:

1. for all s ∈]0, 1], BV s(I) ⊂ L∞(I),

2. if 0 < s < t ≤ 1 and I is not reduced to one point then BV t(I) $ BV s(I).

Proof:

1. Let a ∈ I. For any x ∈ I one has |u(x) − u(a)| ≤ |u|BV s(I) thus ‖u‖L∞(I) ≤
|u(a)|+ |u|BV s(I) then the first inclusion holds.

2. We can assume I =]0, 1[ without loss of generality. The null function of course
belongs to all spaces BV s. Assume u 6= 0 and u in BV t(I) for some t ∈]0, 1] and

let s be such that 0 < s < t. First, u ∈ L∞(I) and v =
u

2‖u‖∞
∈ BV t. Now

‖v‖∞ = 1/2 thus for any variation ∆v of v we have |∆v| ≤ 1 and |∆v|1/s ≤ |∆v|1/t
then the second inclusion follows.

In order to prove that BV t(I) 6= BV s(I), let us consider the function

u(x) =
+∞∑
n=1

an1In(x)

where 1In is the indicator function of In =](n+ 1)−1, n−1] and an =
n∑
p=1

(−1)p

pt
.

On one hand, choosing the subdivision σn = {1

p
; 1 ≤ p ≤ n} (extremal with respect

to u) we get TV tu{]0, 1[} ≥
n∑
p=1

1

p
and u /∈ BV t(]0, 1[). On the other hand, using the

same family of subdivisions σn, n ≥ 1 and Proposition 2.3 we get, for 0 < s = t− ε,

TV su{]0, 1[} =
∞∑
n=1

1

n
t

t−ε

< +∞ thus u ∈ BV s(]0, 1[). �

Proposition 2.5 If u ∈ BV s(I) then u is a regulated function.

This result is already in [5, 23]. We give a proof for the convenience of the reader.
Proof: let be (a, b) ∈ I2 with a < b, let ε > 0 and σ ∈ S(]a, b[) be such that

TV su{σ} ≥ TV su{]a, b[} − ε.

There exists α > 0 such that σ ∈ S(]a + h, b[) for any h ≤ α and we have (Proposition
2.1):

TV su{]a, a+ h[}+ TV su{]a+ h, b[} ≤ TV su{]a, b[},
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thus h ≤ α implies TV su{]a, a + h[} ≤ ε i.e. lim
h→0

TV su{]a, a + h[} = 0. The oscillation

of u(.) on ]a, a+ h[ also tends to 0 as h→ 0 and this is enough to get a right limit for u
at point a. For the existence of a left limit and the cases of α = inf I and β = sup I, the
proof is very similar. �

Recall that for α > 0 and p ≥ 1 a function u belongs to the space Lip(α,Lp(R)) if
there exists some constant c ≥ 0 such that ||u(·+ h)− u||Lp ≤ c |h|α for all h ∈ R ([12]).
Notice that Lip(α,Lp) is also the Nikolskii space Nα,p and the Besov space Bα

p,∞ ([25]).
Lip(α,L1) is widely used in [8] as a generalized BV space but without the trace properties
(see the proof of the next propostion). The space BV (R) is nothing but Lip(1, L1(R)),
thus when u ∈ BV (R) we have

TV (u) = sup
h>0

1

h

∫
R
|u(x+ h)− u(x)| dx.

Dealing with the space BV s(R), we have a different result:

Proposition 2.6 For any 0 < s < 1, BV s(R) * Lip(s, L1/s(R)). More precisely, for
u ∈ BV s(R):

sup
h>0

1

h

∫
R
|u(x+ h)− u(x)|1/sdx ≤ TV su{R} (7)

and this inequality generally cannot be replaced by an equality.

Proof: for u ∈ BV s(R) and h > 0 we have:∫
R
|u(x+ h)− u(x)|1/s dx =

∑
k∈Z

∫ kh+h

kh

|u(x+ h)− u(x)|1/s dx

=
∑
k∈Z

∫ h

0

|u((k + 1)h+ y)− u(kh+ y)|1/s dy

=

∫ h

0

∑
k∈Z

|u((k + 1)h+ y)− u(kh+ y)|1/s dy

≤
∫ h

0

TV su{R} dy = hTV su{R}.

Inequality (7) and the inclusion BV s(R) ⊂ Lip(s, L1/s(R))) follow.
In order to prove that Inequality (7) may be strict, we consider the function u(x) =

x1I[0,1] and we set, for p ≥ 1 and h > 0:

Ip(h) =
1

h

∫
R
|u(x+ h)− u(x)|p dx.

On one hand TV su{R} = 2. On the other hand:
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if h ≥ 1, then

h Ip(h) =

∫ 1−h

−h
|x+ h|p dx+

∫ 0

1−h
0 dx+

∫ 1

0

xp dx =
2

p+ 1
,

thus Ip(h) ≤ Ip(1) =
2

p+ 1
< 2,

if 0 < h ≤ 1, then

h Ip(h) =

∫ 0

−h
|x+ h|p dx+

∫ 1−h

0

hp dx+

∫ 1

1−h
xp dx

=
hp+1

p+ 1
+ hp(1− h) +

1− (1− h)p+1

p+ 1
,

and in particular I1(h) = 2− h. For p > 1 Ip(0
+) = 1, thus sup

h>0
Ip(h) = 1 or there exists

h0 > 0 such that sup
h>0

Ip(h) = Ip(h0). Now, Ip(h0) is non increasing with respect to p

because |u(x+ h)− u(x)| ≤ 1 thus Ip(h0) ≤ I1(h0) < 2. Finally we get:

sup
h>0

1

h

∫
R
|u(x+ h)− u(x)|1/sdx = sup

h>0
I1/s(h) < 2 = TV su{R}.

We now prove that Lip(s, Lp(]0, 1[)) 6= BV s(]0, 1[). For instance the function x−a

belongs to Lip(s, Lp(]0, 1[)) for 0 < a <
1

p
with s =

1

p
−a. But this function is unbounded

and admits no trace at x = 0, so this function does not belong to BV s(]0, 1[). Let us
show that u(x) = x−a belongs to Lip(s, Lp(]0, 1[)), for all 0 < h < 1 :

h−s
∫ 1−h

0

|u(x+ h)− u(x)|pdx = ha p−1
∫ 1−h

0

∣∣∣∣ 1

xa
− 1

(x+ h)a

∣∣∣∣p d x
=

∫ 1−h

0

∣∣∣∣haxa − ha

(x+ h)a

∣∣∣∣p d xh =

∫ 1/h−1

0

∣∣∣∣ 1

ya
− 1

(y + 1)a

∣∣∣∣p d y
≤

∫ +∞

0

∣∣∣∣ 1

ya
− 1

(y + 1)a

∣∣∣∣p d y.
The last integral is clearly convergent. �

Corollary 2.1 For any 0 < s < 1 and any interval I ⊂ R (with I̊ 6= ∅) we have

BV s(I) ⊂ Lip(s, L1/s(I)).

Moreover, with Ih = {x ∈ I, such that x+ h ∈ I}, we have:

sup
h>0

1

h

∫
Ih

|u(x+ h)− u(x)|1/sdx ≤ TV su{I},

and this inequality generally cannot be replaced by an equality.
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Proof: this result follows immediately from Proposition 2.6 thanks to the following
lemma. �

Lemma 2.2 Let I ⊂ R be an interval. We set a = inf I and b = sup I. For u : I → R
we note ũ : R→ R the extension of u such that:

- if a ∈ I then ũ(x) = u(a) for x ≤ a,

- if a /∈ I and a 6= −∞ then ũ(x) = u(a+) for x ≤ a,

- if b ∈ I then ũ(x) = u(b) for x ≥ b,

- if b /∈ I and b 6= +∞ then ũ(x) = u(b−) for x ≥ a,

then

sup
|h|<dist(x,∂I)

1

h

∫
I

|u(x+ h)− u(x)|1/sdx ≤ sup
h6=0

1

h

∫
R
|ũ(x+ h)− ũ(x)|1/sdx

and TV sũ{R} = TV su{I}.

Proof: the first inequality is obvious. Next, on one hand we have trivially TV su{I} ≤
TV sũ{R}. On the other hand, in order to get the converse inequality it suffices to consider
the case I =] − ∞, b]. Let τ ∈ S(R) be such that στ ∩ I 6= ∅ and τ ∩ Ic 6= ∅. If
σ = {x0 < · · · < xn} then we get easily:

TV sũ{τ} = TV sũ{σ ∪ {xn+1}}
= TV sũ{σ ∪ {b}}
= TV su{σ ∪ {b}} ≤ TV su{I},

thus TV sũ{R} ≤ TV su{I}. �

Some results of the next proposition can be found in [5, 23].

Proposition 2.7 Space BV s(I) is endowed with the following properties:

1. BV s(I) ∩ L1/s(I) with the norm ‖u‖s = ‖u‖L1/s + |u|BV s(I) is a Banach space,

2. the embedding BV s(I) ∩ L1/s(I) ↪→ L1
loc(I) is compact.

Proof:

1. the proof is classic ([23]).

2. Case I = R: It suffices to prove that BV s(R) ∩ L1/s(R) is compactly imbedded in

L
1/s
loc (R) because L

1/s
loc (R) ↪→ L1

loc(R). This is a direct consequence of the Riesz-
Fréchet-Kolmogorov Theorem since (un) is bounded in BV s and we have from
Proposition 2.6:∫

R
|un(x+ h)− un(x)|1/sdx ≤ |h|TV sun{R} ≤ C|h|. (8)

The proof is similar in the general case (see for example [23]).
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�

To end this section, we give two approximation results which will be usefull in the
context of scalar conservation laws (see Section 3 below).

Proposition 2.8 Let I be an interval of R and let u be a function in BV s(I). There exists
a sequence (un)n≥0 of step functions such that un → u in L1

loc and TV un{I} ≤ TV u{I}.

Proof: we treat the case I = R for the sake of simplicity. Let h > 0, we set uh =∑
p

uhp 1I]ph,(p+1)h] with uhp =
1

h

∫ (p+1)h

ph

u(x) dx: we have uh → u in L1
loc as h→ 0.

For all p ∈ N there exists xhp , y
h
p ∈]ph, (p + 1)h[ such that u(xhp) ≤ uhp ≤ u(yhp ). Let

us consider a maximal finite sequence pi, pi + 1, · · · , pi+1 corresponding to a monotonic
sequence (uhpi , · · · , u

h
pi+1

): we set xi = xhpi if the sequence is increasing, xi = yhpi else.
The maximality of the sequence of indexes ensures the consistency of this definition.
Let σ be a subdivision {xj < xj+1 < · · · < xj+k}. By Lemma 2.1 we have clearly
TV u{R} ≥ TV u[σ] ≥ TV uh[σ] and thus TV u{R} ≥ TV uh{R}. Proposition 2.8 follows
immediately. �

Proposition 2.9 Let (un)n≥0 be a sequence of BV s(R) functions such that un → u a.e.,
then TV su{R} ≤ lim inf TV sun{R}.

Proof: let σ = {x0 < x1 < · · · < xp} be a subdivision of R. We have

TV sun[σ] =

p∑
i=1

|un(xi)−un(xi−1)|1/s → TV su[σ] as n→∞ and TV sun[σ] ≤ TV sun{R}.

Thus TV su[σ] ≤ lim inf TV sun{R} and the result follows. �

2.4 Relations between BV s and W s,1/s

Fractional Sobolev spaces are used in [19] to study the smoothing effect for nonlinear
conservation laws. An aim of this paper is to show that BV s space are more appropriate
to study the smoothing effect for nonlinear conservation laws.

Let us first compare BV s and W s,p. Roughly speaking BV s ' W s,1/s but BV s 6=
W s,1/s. More precisely W s,p, when s p = 1 is the borderline Sobolev space in dimension
one. Indeed the embedding in the space of continuous function just fails:

• p > 1
s

=⇒ W s,p(−1, 1) ⊂ C0([−1, 1]),

• p < 1
s

=⇒ H ∈ W s,p(−1, 1) where H is the Heaviside step function,

• For p = 1
s
, H /∈ W s,1/s(−1, 1), but some more complicated discontinuous functions

are in W s,1/s(−1, 1) such that ln ln |x| which is not bounded and sin ln ln |x| which
is bounded but discontinuous ([4]).
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For the classical BV space endowed with the norm: ‖u‖BV = ‖u‖L1 + TV u we have:

W 1,1(R) $ BV (R) $
⋂
s<1

W s,1(R).

Proposition 2.10 (BV s and W s,p)
Let I ⊂ R be a nontrivial bounded interval, then

1. W s,∞(I) ⊂ BV s(I),

2. BV s(I) ⊂
⋂
t<s

W t,1/s(I),

3. BV s(I) 6= W s,1/s, more precisley we have BV s(I) * W s,1/s, BV s(I) + W s,1/s.

4. BV s is never a Sobolev space for all 0 < s < 1. Moreover, the s-total variation is
not a Sobolev semi-norm.

Proof:

1. Let u ∈ W s,∞(I). There exists C > 0 such that |u(x)− u(y)| ≤ C|x− y|s,

TV su{σ} =
n∑
i=1

|u(xi)− u(xi−1)|1/s ≤ C1/s

n∑
i=1

|xi − xi−1| ≤ C1/s|xn − x0|

and u ∈ BV s
loc.

2. An usual semi-norm on fractional Sobolev space is:

|u|pW s,p(R) =

∫
R

∫
R

|u(x)− u(y)|p

|x− y|1+sp
dx dy =

∫
R

∫
R

|u(x+ h)− u(x)|p

|h|1+sp
dx dh. (9)

Now, assume u ∈ BV s(I). We note p = 1/s. We bound |u|pσ the intrinsic semi-norm
of W σ,p(I) by:

|u|pσ =

∫ l

−l

∫ b−h

a

|u(x+ h)− u(x)|p

|h|pσ+1
dx dh

≤
∫ l

−l

(
1

|h|

∫ b−h

a

|u(x+ h)− u(x)|pdx
)

dh

|h|pσ

≤ TV su

∫ l

−l

dh

|h|pσ
< +∞

thanks to Poposition 2.6 and because p σ = p(s− ε) = 1− p ε < 1.

3. More precisely there is no inclusions between BV s and W s,1/s.

(a) W s,1/s is not a subspace of BV s: the Heaviside function is in BV s but not in
W s,1/s: use the integral criterium (9).
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(b) BV s is not a subspace of W s,1/s: we have just to consider the following example
(cf [4]):

ln | ln |x|| ∈ W s,1/s but ln | ln |x|| /∈ BV s (it is not bounded).

4. BV s has the same trace properties as BV . It is a subspace of the regulated functions
R. W σ p is not a subspace of R except for σ p > 1 when it is imbedded in C0. But
the Heaviside function belongs to BV s. Thus BV s is never a Sobolev space.

Indeed, the s-total variation is invariant under dilations. Indeed, for any λ 6= 0, the
function uλ defined by uλ(x) = u(λx) satisfies TV suλ{R} = TV su{R}. Thus for
compactly spported functions the s-total variation is independent of the support.
In particular, the s-total variation is not related to a Sobolev semi-norm except for
W s,p with sp = 1. Again the Heaviside function does not belong to W s,1/s and then
the s-total variation is never a Sobolev semi-norm.

�

3 BV s stability for scalar conservation laws

Theorem 3.1 Let u0 ∈ BV s(R), f ∈ C1(R,R) and u be the unique entropy solution on
]0,+∞[t×Rx of

∂tu+ ∂xf(u) = 0, u(0, x) = u0(x), (10)

then
∀t > 0 TV su(t, .)(R) ≤ TV su0(.)(R). (11)

This theorem means that the s-total variation is not increasing with respect to time.

Proof: in a first step we show that this property is achieved for an approximate solution
obtained with the Front Tracking Algorithm ([3, 9]), thus we assume that the initial

condition is piecewise constant and writes u(0, x) = u0(x) =
∑
n

u0n1I]an,bn](x). The key

point is that the solution of the Riemann problem at each point of discontinuity, consisting
in a composite wave, is piecewise constant and monotonic. Actually, in the framework of
the Front Tracking Algorithm, we also assume that the flux function f is piecewise affine,
thus we have to deal with K contact discontinuities for each Riemann Problem, where
1 +K is the number of intervals where f is affine. In a second step we show that we can
pass to the limit in this approximation process in order to get (11).

First step - We denote by t∗1 the time of the first interaction and, following [3], we can
suppose that there exists an only interaction. For t < t∗1, we denote

u(t, ·) =
∑
n

(
un1I]an(t),bn(t)] +

K∑
m=1

un,m1I]an,m(t),an,m+1(t)]

)
,

where bn < an,1 < · · · < an,K+1 < an+1 (zone corresponding to the wave fan denoted
Fn: see Fig. 1), with the monotony condition:
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un ≤ un,1 ≤ · · · ≤ un,K ≤ un+1 or un ≥ un,1 ≥ · · · ≥ un,K ≥ un+1

Let σ = {x0, · · · , xp} and TV su(t, .){σ} =
∑
| u(t, xi) − u(t, xi−1) |1/s. Let σ̃ be

the subdivision obtained by removing the points xi located in a fan zone: σ̃ = σ \⋃
n

[bn(t), an+1(t)]. We are going to show that it is possible to add to σ̃ a finite set P of

points located in
⋃
n

]an(t), bn(t)[ in such a way that TV su(t, .){σ̃ ∪ P} ≥ TV su(t, .){σ}.

This being carried out, we get TV su(t, .){σ} ≤ TV su(t, .){σ̃ ∪ P} ≤ TV su0 and thus
(11) holds for the exact solution of Problem (10) associated to the approximate initial
condition and the approximate (piecewise affine) flux.

In the bounded interval [minσ,maxσ] there is a finite number of fan zones and we
have just to consider the case of a single wave fan Fn and the associated monotony zone
Mn =]an(t), bn+1(t)[ in which we assume (for instance) that u(t, ·) is increasing.
If σ ∩Mn = ∅ then we have nothing to do, else we set i(n) = max{0 ≤ i ≤ p ; xi ≤ bn(t)}
(if exists) and j(n) = min{0 ≤ i ≤ p ; xi ≥ an+1(t)} (if exists).

• If i(n) exists and u(xi(n)) > un then we add to σ̃ any point yi(n) ∈]an(t), bn(t)],

• if j(n) exists and xj(n) < un+1 then we add to σ̃ any point
yj(n) ∈]an+1(t), bn+1(t)], else we have nothing to do.

Let P be the set of the added points according to the preceding procedure. Thanks to
Lemma 2.1, we get immediately TV su(t, .){σ∗} ≥ TV su(t, .){σ} where σ∗ = σ̃ ∪ P .
When the first interaction occurs (t = t∗1), it appears a new monotony zone where the
solution varies between two successive values taken by u(t, ·) for t in some interval [t∗1 −
ε, t∗1[, thus the total variation does not increase.This concludes the first step.

Second step - Let (un0 )n≥0 be a sequence of step functions in BV s such that un0 → u0
in L1

loc and a.e., with TV sun0 ≤ TV su0 : this is ensured by Proposition 2.8.
Let (fn)n≥0 be a sequence of piecewise affine functions such that fn → f uniformly on
every compact set.
Let un be the solution of Problem (10) associated to the initial condition un0 and the flux
fn. For all t ≥ 0, (un(t, ·))n≥0 is bounded in L∞ ∩ BV s thus it converges, extracting a
subsequence if necessary, in L1

loc and a.e.
Similarly to the case of BV data ([3]), we can establish that the sequence (un)n≥0 is

bounded in Lips([0,+∞[t, L
1/s
loc (Rx,R)): this is enough to get the convergence a.e. in

[0,+∞[t×R of some subsequence (still noted (un)) towards a function u, entropy solution
of the initial problem. Lastly Proposition 2.9 ensures that for all t ≥ 0 and n ∈ N,
TV su(t, ·) ≤ TV sun(t, ·) ≤ TV su0, thus Theorem 3.1 holds. �

Remark 3.1 For the linear case: f(u) = a x, Tartar’s interpolated spaces ([27]) seem
also well fitted. More precisely, if u0 belongs to L∞ (respectively BV ), then u(t, .) stays in
L∞ (respectively BV ). Thus by a linear interpolation argument, if u0 belongs to (L∞, BV )s
then u(t, .) belongs in the same space for all t > 0. Unfortunately, for the nonlinear scalar
conservation law, this linear argument is not justified.
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Figure 1: a zoom around a wave fan. The × symbols correspond to a subdivision in the neigh-
borhood of a wave fan: we have here P = {yi(n)}.

4 Smoothing effect for nonlinear degenerate convex

fluxes

First we define the degeneracy of a nonlinear flux. Then we obtain a smoothing effect in
the spirit of P.-D. Lax [17] and O. Oleinik [24]. Finally, we study the asymptotic behavior
of entropy solutions as [20]. There is two main tools: the Lax-Oleinik formula and the
BV s spaces. We refer the reader to [17] for these results in the case of uniformly convex
flux and also to [13] for detailed proofs.

4.1 Degenerate nonlinear flux

Definition 4.1 (degeneracy of a nonlinear convex flux)
Let f belong to C1(I,R) where I is an interval of R. We say that the degeneracy of f on
I is at least p if the continuous derivative a(u) = f ′(u) satisfies:

0 < inf
I×I

|a(u)− a(v)|
|u− v|p

(12)

We call the lowest real number p, if it exists, the degeneracy measurement of uniform
convexity on I. If there is no p such that (12) is satisfied, we set p = +∞.
Let f ∈ C2(I). We say that a real number y ∈ I is a degeneracy point of f in I if
f ′′(y) = 0 (i.e. y is a critical point of a).

If f ∈ C2(I) we can see easily that p ≥ 1.
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Remark 4.1 Condition (12) implies the strict monotonicity of a(.) and then the strict
convexity or concavity of the flux, but it is more general than the uniform convex case
studied by P.-D. Lax in [17]. Indeed, (12) allows f ′′ to vanish as one can see below with
the power law flux function.

We give some examples to illuminate this notion.

Example 4.1 Uniformly convex function: inf f ′′ > 0.
The degeneracy is p = 1.

This is the basic example studied by P.-D. Lax [17] with I = R.

Example 4.2 Linear flux. The degeneracy is p = +∞.

Example 4.3 Power convex functions f(u) =
|u|1+α

1 + α
, α > 0.

Let I = [0, 1], then y = 0 is a degeneracy point and the degeneracy of f in I is p =
max(1, α).

This example is the basic example to obtain all the finite degeneracy p ≥ 1.

Proof: the computation of p is straightforward. The case α < 1 is left to the reader.
The case α = 1 corresponds to the Burgers flux, the simplest example of an uniformly
strictly convex flux. Let us study the more interesting case α > 1. It is clear that p ≥ α,
else the fraction of Inequality (12) vanishes for v = 0 and u→ 0. It suffices to study the

case p = α. Let R(u, v) =
|uα − vα|
|u− v|α

for u 6= v. It suffices to study the case u < v by

symmetry: with v = u + h, h > 0, R(u, u + h) =
(u+ h)α − uα

hα
= φ(y) = (y + 1)α − yα,

where y =
u

h
∈ [0,+∞[. Then inf

y≥0
φ(y) = 21−α > 0 which is enough to conclude. �

Example 4.4 Smooth degenerate convex flux.
Let K be a compact interval, f ∈ C∞(K,R) and let a = f ′ be an increasing function. We
define classically the valuation of f ′′ by:

val[a](u) = min

{
k ≥ 1,

dka

duk
(u) 6= 0

}
∈ {1, 2, . . . } ∪ {+∞}

then the degeneracy of f on K is p = max
K

val[a].

We say that the flux is nonlinear if p is finite.
This general example has been studied recently for the multidimensional case in [1, 16].

These examples allow to compute the parameter of degeneracy of any smooth flux given
in the paper of P.-L. Lions, B. Perthame and E. Tadmor [19].

Proof: In the one dimensional case, the computation is easier. We give a simple proof
for a nonlinear flux, i.e. the valuation is finite for each point of K. Let R(u, v) =
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|a(u)− a(v)|
|u− v|p

for u 6= v. Since R is a continuous function on u 6= v, positive outside the

diagonal {u = v}, it suffices to study R on the diagonal. Let k be val[a](u), R(u, u) =
0 if k > p,

|a(k)(u)| if k = p,
+∞ if k < p.

So the lowest p in the neighborhood of u is p = val[a](u). Notice that the valuation is
upper semi-continuous. So the maximum of the valuation on the compact K exists and
it is the lowest p satisfying Definition 4.1 . �

4.2 Smoothing effect

We generalize the Oleinik one sided Lipschitz condition [24] to define an entropy solution
on the scalar conservation law (10) and we prove that the Lax-Oleinik formula yields such
condition for degenerate convex flux.

Definition 4.2 (One sided Hölder condition)
Let f be a degenerate convex flux. Let p ≥ 1 be a degeneracy parameter of f on an interval

I, and 0 < s =
1

p
≤ 1. Let be u a weak solution of (10). Assume that u belongs to I.

This solution is called an entropy solution if for some positive constant c, for all t > 0
and for almost all (x, y) such that x < y we have

u(t, y)− u(t, x) ≤ c
(y − x)s

ts
. (13)

If −f is convex then we replace in Inequality (13) u by −u.
As usual, the one sided condition implies the Lax entropy condition [9].

Theorem 4.1 (BV s smoothing effect for degenerate convex flux)
Let K be the compact interval [−M,M ]. Let u0 belong to L∞(R), f ∈ C1(R,R) and
let u be the unique entropy solution on ]0,+∞[t×Rx of the scalar conservation law (10)
satisfying the one sided condition (13). Let p be a degeneracy parameter of f on K and

0 < s =
1

p
≤ 1.

If p is finite and |u0| ≤M then ∀ δ > 0, u ∈ Lips(]δ,+∞[t, L
1/s
loc (Rx,R)) and

∀t > 0, u(t, .) ∈ BV s
loc(R).

If u0 is compactly supported then ∀ δ > 0, u ∈ Lips(]δ,+∞[t, L
1/s(Rx,R)) and there exists

a constant C such that

TV su(t, .) ≤ C

(
1 +

1

t

)
.

Remark 4.2 This entropy solution is the unique Kruzhkov entropy solution. It is well
known for an uniformly convex flux [9], for the degenerate convex case see ([6]).
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Remark 4.3 This theorem gives the regularity conjectured by P.-L. Lions, B. Perthame
and E. Tadmor in [19] for a non linear convex flux. This conjecture was stated in Sobolev
spaces. The W s,1 regularity with only L∞ initial data was first proved in [15]. We get
the best W s,p regularity. Indeed by Proposition 2.10, this BV s regularity gives a W s′,1/s

smoothing effect for all s′ < s.

Remark 4.4 We cannot expect a better regularity. Indeed, C. De Lellis and M. Westdick-
enberg give in [11] a piecewise smooth entropy solution which does not belong to W s,1/s.
Recently, in [6, 7], another examples, with continuous functions, are built. Indeed for each
τ > s , there exists a smooth solution which belongs to BV s but not to BV τ .

Remark 4.5 For solutions with bounded entropy production and uniform convex flux, the
optimal smoothing effect is reached in [14]. This class of solutions is larger than the class
of entropy solutions. The optimal exponent is only s = 1/3 ([11, 14]) instead of s = 1 for
uniformly convex fluxes.

Proof: we first recall the Lax-Oleinik formula for a general convex flux without assuming
the uniform convexity. We assume only (12). With such an assumption the Lax-Oleinik
formula is still valid ([6]). We know, thanks to Remark 4.1, that the function a (or −a), is
increasing. We assume here that the function a is increasing on K. We can easily extend
a continuously on R with the same degeneracy parameter p (using a suitable translated
power function) then the function a admits the inverse function b on R. The entropy
solution is then given for all t and almost all x by the Lax-Oleinik formula:

u(t, x) = b

(
x− y
t

)
(14)

where y = y(t, x) minimizes, for t and x fixed, the function

G(t, x, y) = U0(y) + t h

(
x− y
t

)
with U0(y) =

∫ y

0

u0(x) dx, a(0) = c, h(u) =

∫ u

c

b(v) dv.

Geometrically, y(t, x) has a simple interpretation. The function u(., .) is constant on
the characteristic x = y + ta(u0(y)): u(t, x) = u0(y) (before the formation of a shock).

Indeed a(u0(y)) =
x− y
t

, so b(a(u0(y))) = b

(
x− y
t

)
= u0(y) = u(t, x). The key point

of the formula (14) is that y(t, x) minimizes an explicit function, namely y 7→ G(t, x, y).
Consequently y(t, x) is not so far from x, more precisely:

|x− y(t, x)| ≤ t sup
K
|a|. (15)

Moreover, if x1 < x2 then y(t, x1) ≤ y(t, x2), ([17, 13, 6]).
Condition (12) implies that b belongs to Cs(R,R) with s = 1/p. Indeed we have for

all U, V ∈ a(K), with u = b(U) and v = b(V ):

|b(U)− b(V )|
|U − V |s

=
|u− v|

|a(u)− a(v)|s
=

(
|u− v|p

|a(u)− a(v)|

)s
≤ Ds =

1

Cs

19



where 0 < C = inf
K×K

|a(u)− a(v)|
|u− v|p

.

We are now able to prove the BV s smoothing effect. Fix T > 0 and I = [a, b]: we
want to bound TV su{I}. Let x1, x2 ∈ I and yi = y(t, xi), then

|u(T, x1)− u(T, x2)|p =

∣∣∣∣b(x1 − y1T

)
− b
(
x2 − y2
T

)∣∣∣∣p
≤

(
Ds

∣∣∣∣x1 − y1T
− x2 − y2

T

∣∣∣∣s)p .
The condition sp = 1 yields

|u(T, x1)− u(T, x2)|p ≤ D

∣∣∣∣x1 − x2T

∣∣∣∣+D

∣∣∣∣y1 − y2T

∣∣∣∣ .
We now compute TV su{σ} for a subdivision σ = {x0 < x1 < · · · < xn} of I. Then

TV su{σ} ≤ D

T
(xn − x0 + yn − y0) ≤

D

T
(2(b− a) + T sup

K
|a|). (16)

Then TV su{I} keeps the same bound.
We can precise the previous bounds. First, we obtain the one sided Hölder condition (13),
which implies that the solution is an entropy solution. We know that if x1 < x2 then

y1 = y(t, x1) ≤ y(t, x2) = y2.

Moreover

u(t, x2)− u(t, x1) = b

(
x2 − y2

t

)
− b
(
x1 − y1

t

)
≤ b

(
x2 − y2

t

)
− b
(
x1 − y1

t

)
because b is increasing. But, b(x2−y2

t
)− b(x1−y1

t
) ≥ 0 because x2 ≥ x1. Then

u(t, x2)− u(t, x1) ≤
∣∣∣∣b(x2 − y2t

)
− b
(
x1 − y1

t

)∣∣∣∣ ≤ Ds

∣∣∣∣x2 − x1t

∣∣∣∣s = Ds (x2 − x1)s

ts
.

We can improve the TV s bound for a compactly supported initial data. For any t, the
solution stays compactly supported (but the size of this support depends on t). Fix T = 1.
Inequality (16) gives u ∈ BV s(R).
For t ≥ T , Theorem 3.1 implies TV su(t, .) ≤ TV su(T, .) = C1 and for 0 < t ≤ T ,

Inequality (16) implies TV su(t, .) ≤ C0(1 +
1

t
), then ∀t > 0, TV su(t, .) ≤ C(1 +

1

t
).

Theorem 3.1 shows that ∀ δ > 0, u ∈ Lips(]δ,+∞[t, L
1/s(Rx,R)).

Fo the general case, the estimate is only locally valid with respect to the space variable.
�

Proposition 4.1 The unique entropy solution of Theorem 4.1 satisfies the folowing decay

TV s
+u(T, .){[a, b]} ≤ D

|b− a|
T

for some positive constant D.

Proof: it is a direct consequence of the one sided condition (13). �

20



4.3 Asymptotic behavior of entropy solutions

The smoothing effect is sometimes related to the asymptotic behavior for large time ([17]).
We investigate briefly classical decays under assumption (12). Indeed the decay of the
solution with compact support depends on one more parameter.

Theorem 4.2 (Decay for large time)
Let be u0 ∈ L1 ∩ L∞(R), |u0| ≤ M , K = [−M,M ]. Assume that f ∈ C1(R,R) satisfies
Condition (12) with a = f ′, p the degeneracy of f on K, s = 1/p. Let u be the unique
entropy solution on ]0,+∞[t×Rx of (10) and b the inverse function of the function a on
a(K).
If there exists q > 0 such that

0 < inf
U∈a(K)

|b(U − a(0))|
|U |q

(17)

then there exists C > 0 such that

|u(t, x)| ≤ C

td
, d =

s

1 + q
.

Originally, P.-D. Lax found this optimal decay in the 50’ for strictly convex flux with

d =
1

2
since s = q = 1 [17].

For power function f(u) = |u|1+α, α > 1, we have d =
s

1 + s
<

1

2
since s = q = 1/α. For

the simplest degenerate convex case: the cubic convex flux, we only have d =
1

3
. This

decay is slower than classical Lax decay which is
1√
t
.

Remark that q ≥ s. Assume that without loss of generality a(0) = 0 and J = a(K) =
[0, 1]. Then |b(x) − b(y)| ≤ C|x − y|s since b is in Cs(J). Moreover, there exists D > 0
such that D|x|q ≤ |b(x)| by (17), so Dxq ≤ Cxs on [0, 1] then we have q ≥ s.

We give some examples with q > s. On K = J = [0, 1], with f(u) =
u1+α

1 + α
, 0 < α < 1

we have s = 1, q =
1

α
> 1 = s.

Proof: the proof is a slight modification of the original Lax’s proof, [17]. We use the
Lax-Oleinik formula with the notations of the proof of Theorem 4.1, so we have to extend
the function a on R. We have

∀y ∈ R, −d2 ≤ U0(y) =

∫ y

0

u0(x) dx

≤ d2 = max

(∫ +∞

0

|u0(x)|dx,
∫ 0

−∞
|u0(x)|dx

)
.

Notice that minG ≤ d2. Since h is a convex nonnegative function which vanishes only
at c = a(0), it suffices to take y = x − c t so G(t, x, y) = U0(y). Integrating Inequality
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(17), there exists a constant d1 > 0 such that for z ∈ J = a(K),

h(z) ≥ d1|z − c|1+q.

Let y = y(t, x) be the minimizer of G(t, x, .).

Notice that
x− y
t
∈ J since x− y = t a(u0(y)). Now, we have the inequality

d2 ≥ G(t, x, y) ≥ −d2 + td1

∣∣∣∣x− yt − c
∣∣∣∣1+q

then

2 d2 ≥ t d1

∣∣∣∣x− yt − c
∣∣∣∣1+q

and then (
2d2
d1t

)1/(1+q)

≥
∣∣∣∣x− yt − c

∣∣∣∣ . (18)

Since b ∈ Cs, we have |b(z)| = |b(z)− b(c)| ≤ Ds|z − c|s .
The Lax-Oleinik formula (14) and Inequality (18) conclude the proof:

|u(t, x)| =
∣∣∣∣b(x− yt

)∣∣∣∣ ≤ Ds

(
2 d2
d1t

)s/(1+q)
.

�

The periodic case is much simpler and only depends on the degeneracy of f .

Theorem 4.3 (Decay for periodic solutions)

Let u0 be a P-periodic bounded function, m =
1

P

∫ P

0

u0(x)dx, |u0| ≤M ,

K = [−M,M ], let u be the unique entropy solution on ]0,+∞[t×Rx of (10), f ∈ C1(R,R).
If the degeneracy p of f on K is finite then there exists a constant C such that

|u(t, x)−m| ≤ C

ts
, s =

1

p
.

For uniform convex flux we have the classical case with s = 1, [17].
For power function f(u) = |u|1+α with α > 1 we have s = 1/α. For instance, for the cubic

convex flux, s =
1

2
.

Proof: first notice that u(t, .) is periodic with the same period P and the same mean
value m. We have thanks to the one side condition (13) the inequality

u(t, y)− u(t, x) ≤ C
(y − x)s

ts
≤ C

P s

ts

for 0 ≤ y − x ≤ P . Assume that m = 0 without loss of generality. Fix x. If u(t, x) < 0,
there exists y in [x, x+ P ] such that u(t, y) > 0 since m = 0. Then

|u(t, x)| ≤ |u(t, x)|+ |u(t, y)| ≤ |u(t, y)− u(t, x)| = u(t, y)− u(t, x) ≤ C
P s

ts
.

The same argument holds if u(t, x) > 0, which concludes the proof. �
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