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Abstract

We propose a new sufficient non-degeneracy condition for the strong
precompactness of bounded sequences satisfying the nonlinear first-order
differential constraints. This result is applied to establish the decay prop-
erty for periodic entropy solutions to multidimensional scalar conservation
laws.

1 Introduction

Let €2 be an open domain in R™. We consider the sequence ug(z), k € N, bounded

in L>°(€2), which converges weakly-* in L>(2) to some function u(z): uy U

Now let p(x,u) € L2 (2, C(R,R")) be a Caratheodory vector-function (i.e. it
is continuous with respect to u and measurable with respect to z) such that the

functions
ay () = max |p(z,u)| € L () VM >0 (1.1)

ul<M foe

(here and below |-| stands for the Euclidean norm of a finite-dimensional vector).
By 6()\) we shall denote the Heaviside function:

I, A>0,
9(/\):{0 A <0.

Suppose that for every p € R the sequence of distributions
div, [0(ur — p)(@(x,ux) — @(z,p))] is precompact in W(;lloc(Q) (1.2)

for some d > 1. Recall that W, L (Q) is a locally convex space of distributions
u(z) such that uf(z) belongs to the Sobolev space Wt for all f(z) € C5°(9).
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The topology in W, L () is generated by the family of semi-norms u — ||luf ||W(;l,
f(x) € C(9).

If the distributions div, ¢(z, k) are locally finite measures on 2 for all k£ € R,
then the notion of entropy solutions (in Kruzhkov’s sense) of the equation

div o(x,u) + P(z,u) =0 (1.3)

(with a Caratheodory source function ¥ (z,u) € L; (Q,C(R))) is defined, see
[15] and [16] (in the latter paper the more general ultra-parabolic equations are
studied). As was shown in [16], assumption (1.2) is always satisfied for bounded
sequences of entropy solutions of (1.3).

Our first result is the following strong precompactness property.

Theorem 1.1. Suppose that for almost every x € € and all & € R™, £ # 0 the
function X — £ - p(x,\) is not constant in any vicinity of the point u(zx) (here
and in the sequel “” denotes the inner product in R™). Then uy(x) T u(z) in

L, (Q) (strongly).

Theorem 1.1 extends the results of [15], where the strong precompactness
property was established under the more restrictive non-degeneracy condition:
for almost every x € Q and all £ € R™, £ # 0 the function A — £ - o(x, \) is not
constant on nonempty intervals.

The proof of Theorem 1.1 is based on a new localization principle for H-
measure (with “continuous” indexes) corresponding to the sequence uy, see The-
orem 3.5 and its Corollary 3.6 below.

Using this theorem and results of [17], we will also derive the more precise
criterion for the decay of periodic entropy solutions of scalar conservation laws

us+ div, p(u) =0, (1.4)

u=u(t,x), (t,z) € II = (0,400) x R™. The flux vector p(u) = (p1(u), ..., pn(u))
is supposed to be merely continuous: ¢(u) € C'(R,R™). Recall the definition of
entropy solution to equation (1.4) in the Kruzhkov sense [7].

Definition 1.2. A bounded measurable function v = u(t,z) € L*°(II) is called
an entropy solution (e.s. for short) of (1.4) if for all k € R

| — K+ div, [sign(u = k)(p(u) = @(k))] <0 (1.5)
in the sense of distributions on II (in D'(II)).

As usual, condition (1.5) means that for all non-negative test functions f =
f(t,x) € Go(ID)

[l i+ signt = B)pta) — 0 - Ve > 0,
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As was shown in [13] (see also [14]), an e.s. u(t,z) always admits a strong trace
uy = up(x) € L>*(R™) on the initial hyperspace ¢t = 0 in the sense of relation

ess l%m u(t,-) = up in L, (R"), (1.6)
that is, u(¢,x) is an e.s. to the Cauchy problem for equation (1.4) with initial
data

u(0, ) = up(x). (1.7)

Remark 1.3. It was also established in [13, Corollary 7.1] that, after possible
correction on a set of null measure, an e.s. u(t,z) is continuous on [0, +00) as
a map t — u(t,-) into L} (R™). In the sequel we will always assume that this
property is satisfied.

Suppose that the initial function ug is periodic with a lattice of periods L,
ie., up(x +e) = up(z) a.e. on R for every e € L (we will call such functions
L-periodic). Denote by T™ = R"/L the corresponding n-dimensional torus, and
by L’ the dual lattice L' = { £ e R" | { -z € Z Vx € L }. In the case under
consideration when the flux vector is merely continuous the property of finite
speed of propagation for initial perturbation may be violated, which, in the mul-
tidimensional situation n > 1, may even lead to the nonuniqueness of e.s. to
Cauchy problem (1.4), (1.7), see examples in [8, 9]. But for a periodic initial
function ug(x), an e.s. u(t,x) of (1.4), (1.7) is unique (in the class of all e.s., not
necessarily periodic) and space-periodic, the proof can be found in [12]. It is also
shown in [12] that the mean value of e.s. over the period does not depend on
time:

/n u(t,z)de = I = / uo(2)dz, (1.8)

where dx is the normalized Lebesgue measure on T". The following theorem
generalizes the previous results of [3, 17].

Theorem 1.4. Suppose that

VEe L', E#0 the function u — & - p(u)
is not affine on any vicinity of 1. (1.9)
Then

t——+o0

lim u(t,) = I / wo(x)dz in L'(T"). (1.10)
Moreover condition (1.9) is necessary and sufficient for the decay property (1.10).

In the case ¢(u) € C*(R,R™) Theorem 1.4 was proved in [3]. As was noticed
in [3, Remark 2.1], decay property (1.10) holds under the the weaker regular-
ity requirement p(u) € C'(R,R™) but under the more restrictive assumption
that for each £ € L’ I is not an interior point of the closure of the union of

3



all open intervals, over which the function £ - ¢'(u) is constant. Let us demon-
strate that condition (1.9) is less restrictive than this assumption even in the
case p(u) € CY(R,R™). Suppose that n =1, p(u) € C'(R) is a primitive of the
Cantor function, so that ¢'(u) is increasing, continuous, and maximal intervals,
over which it remains constant, are exactly the connected component of the com-
plement R \ K of the Cantor set K C [0,1]. Since K has the empty interior the
assumption of [3] is never satisfied while (1.9) holds for each I € K.

2 Preliminaries

We need the concept of measure valued functions (Young measures). Recall (see
[4, 20]) that a measure-valued function on €2 is a weakly measurable map = — v,
of € into the space Probg(R) of probability Borel measures with compact support
in R.

The weak measurability of v, means that for each continuous function g(\)
the function x — (v, g(A)) = [ g(A)dv,()) is measurable on €.

A measure-valued function v, is said to be bounded if there exists M > 0
such that supp v, C [—M, M] for almost all z € Q.

Measure-valued functions of the kind v, (\) = §(A—u(z)), where u(x) € L>*(Q)
and 6(A—u*) is the Dirac measure at u* € R, are called regular. We identify these
measure-valued functions and the corresponding functions u(z), so that there is
a natural embedding of L*(£2) into the set MV(2) of bounded measure-valued
functions on (2.

Measure-valued functions naturally arise as weak limits of bounded sequences
in L*°(IT) in the sense of the following theorem by L. Tartar [20].

Theorem 2.1. Let ug(x) € L>®(Q), k € N, be a bounded sequence. Then there ex-
ist a subsequence (we keep the notation uy(x) for this subsequence) and a bounded
measure valued function v, € MV(Q) such that

Vg(A) € C(R)  g(ug) k:;O(Vm,g()\D weakly-x in L*(L2). (2.1)

Besides, v, is reqular, i.e., vz(A) = 6(A — u(z)) if and only if ug(x) 7 u(z) in
L .(Q) (strongly).

We will essentially use in the sequel the variant of H-measures with “contin-
uous indexes” introduced in [10]. This variant extends the original concept of
H-measure invented by L. Tartar [21] and P. Gerard [5] and it appears to be a
powerful tool in nonlinear analysis.

Suppose ug(x) is a bounded sequence in L>(2). Passing to a subsequence
if necessary, we can suppose that this sequence converges to a bounded measure
valued function v, € MV(Q) in the sense of relation (2.1). We introduce the



measures 7%(\) = §(\ — ug(x)) — v,()\) and the corresponding distribution func-
tions Ug(x,p) = v*((p, +0)), uo(x,p) = vz((p, +00)) on Q x R. Observe that
Uk(z,p), up(x,p) € L=(R) for all p € R, see [10, Lemma 2]. We define the set

E=E{,)= { po € R | wp(z,p) i uo(w,po) in Ly, () } :

As was shown in [10, Lemma 4], the complement R\ E' is at most countable and
if p € E then Uy(z,p) - 0 weakly-* in L>°(2).

Let F(u)(£), £ € R™, be the Fourier transform of a function u(x) € L*(R"),
S=8"1={¢eR" | |{ =1} be the unit sphere in R". Denote by u — u,
u € C the complex conjugation.

The next result was established in [10, Theorem 3], [11, Proposition 2,
Lemma 2].

Proposition 2.2. (i) There exists a family of locally finite complex Borel mea-
sures {uP1} cp i xS and a subsequence U, (x,p) = Uy, (z,p) such that for all
@1 (x), Bo(z) € Co(R2) and $(€) € C(S)

(@B 0(E) = i [ PN F@T a0 () de
(2.2)
(11) For any py,...,p € E the matriz {pri?s }é,j:l 1s Hermitian and nonnega-

tive definite, that is, for all (1,...,{ € C the measure

l
S GG 2 0,

1,j=1

We call the family of measures {7}
subsequence u,.(z) = uy, ().

As was demonstrated in [10], the H-measure p?? = 0 for all p,q € E if and
only if the subsequence u,(z) converges as r — oo strongly (in L}, (9)).

Since |Ug(x,p)| < 1, it readily follows from (2.2) and Plancherel’s equality
that prg|uP?| < meas for p,q € E, where meas is the Lebesgue measure on €2,
and by |u| we denote the variation of a Borel measure p (this is the minimal of
nonnegative Borel measures v such that |u(A)| < v(A) for all Borel sets A). This
implies the representation pP? = p24dx (the disintegration of H-measures). More
exactly, choose a countable dense subset D C E. The following statement was
proved in [11, Proposition 3], see also [15, Proposition 3].

pqer the H-measure corresponding to the

Proposition 2.3. There exists a family of complex finite Borel measures pb? €
M(S) in the sphere S with p,q € D, x € ), where ' is a subset of Q0 of full
measure, such that p*? = pPidx, that is, for all ®(x,€) € Co(2 X S) the function

o (), 0. ) = [ 2w (€

S
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15 Lebesque-measurable on §2, bounded, and

(4, D (2, €)) = / (W21(€), B, )
Moreover, for p,p',q € D, p' >p
Var 2 = [i2|(S) <1 and Var (427 — p2%) < 2 (vo((p,p))"* . (2.3)

We choose a non-negative function K(x) € C§°(R™) with support in the unit
ball such that [ K(z)dz =1 and set K,,(z) = m"K(mz) for m € N. Clearly,
the sequence of K,, converges in D'(R™) to the Dirac d-function ( that is, this
sequence is an approximate unity ). We define ®,,(z) = (K,,(z))"/2. As was
shown in [11, Remark 4] (see also [15, Remark 2(b)] ), the measures p?? can be
explicitly represented by the relation

() (9, 9()) = lim (29(y,€), () Ko — 1)(E)) =

Jin i [ F@,0,( ) F@, 0G0 (é—|) € (24
for all (&) € C(5), where ®,,UP(y) = ®(y)P,,(z — v)U.(y,p), ®,,U(y) =
®,,(x —y)U,.(y,q), and ®(y) € L2 () be an arbitrary function such that z is its
Lebesgue point.

From this representation (with ® = 1) and Proposition 2.2(ii) it follows that
forall p1,...,m € D,z €, (q,...,( € C the measure

l
p=>_ GGubri > 0. (2.5)

ij=1

Indeed, for every nonnegative 1(§) € C(.S)

m—0o0
ij=1

< (), 9(§) >= lim <Z GG (y, &), Kl — y)w(£)> > 0.

This, in particular implies, that u?? > 0, u% = pb?, and for every Borel set A C S

19 (A) < (P (At (A))? (2.6)
( see [11, 15] ). For completeness we provide below the simple proof of (2.6). In

| . () Ay
view of (2.5) (with 1=2) the matrix M = < HIP(A) i A) is Hermitian and
nonnegative definite. Therefore,

pi (A)pg(A) — gt (A))* = P (A (A) — i (A)pf (A) = det M > 0.
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By Young’s inequality for any positive constant ¢ and all Borel sets A C S

1
P (A) + gt (A).

HEI(A)] < (uP(A)psa(A4)'? < 2

c
2
. c 1 . . . .
Since pu = 5/1?’ + Q—ng is nonnegative Borel measure, it follows from this in-

c
equality that the variation |u2?| < p. This implies that
1
HE7)(A) < SpP(A) + S-pl(A) Ve > 0. (2.7)
c
It is easily computed that

nf (52C0) + 3o () ) = (A

and (2.6) follows from (2.7).

3 Localization principles and the strong pre-
compactness property

Lemma 3.1. For each p,q € R, x € Q) there exist one-sided limits in the space
M(S) of finite Borel measures on S (with the standard norm Var u):

pl? — b as (p,q) — (pg), p.d €D >pd >q,
Pl — b as (p'q) — (p,9), P.d €D,p <pd <q
Moreover, Var P9 < 1 and for every Borel set A C S and each p; € R, i =

1,...,l the matrices {/f;ipji(A) éj:l are Hermitian and nonnegative definite, that
18, the measures

!
N GGt 20 (3.1
ij=1

for all compler (; € C, 1 =1,...,1.

Proof. Let € ', p,q € R, p1,q1,p2,42 € D, p2 > p1 > p, g2 > q1 > q. Then, in
view of (2.3) and the equality u%? = ub?,

Var (pi2® — pi ) < 2v((p1, p2)) + 2v2((q1, ¢2)) <
0.

2v,((p, p2) +2((q,2)) —
(p2,92)—(p,q)

By the Cauchy criterion, this implies that there exists a limit p2?t in M(S) as
#'.d') = (p,a), P',d' € D, p" > p, ¢ > q. Similarly, for each py,q1,p2,q2 € D

such that po < p; <p, 2 <1 < ¢
Var (pb29? — pPr9) < 2u,((p2, p1)) + 2v2((q2, ¢1)) <
2v,((p2,p)) +2Va:((QQuQ)>( — 0,

p2,92)—(p,q)



which implies existence of a left-sided limit p2?~ in M(S) as (p/,¢) — (p,q),
v,q¢ €D, p <p, ¢ <q By Proposition 2.3 Var u2'¢ < 1, which implies in the
limits as p’ — p+, ¢ — ¢+ that Var % < 1. Finally, for every p, € D, ¢; € C,
1 =1,...,1 the measures

> cG

i,7=1
In the limits as p; — p;& this implies (3.1). O
Corollary 3.2. Let p,q € R, x € Q. Then for every Borel set A C S
1/2 _ _ 1/2
HE1(A) < (P (A () i |(A) < (2 (At ()7 (32)
Proof. Relations (3.2) follow from (3.1) in the same way as in the proof of in-
equality (2.6) above. O

Remark 3.3. By continuity of ;27 with respect to variables p,q € D, we see that
forpe D

PiE — Jim lim 0?7 = lim in M(S).
He q—>qip—>piu q—>qi'u ( )

Analogously, if ¢ € D, then
pbiE = lim uxq in M(S).
p 4?

If the both indices p, ¢ € D, then evidently pP%* = yPe.

Now we suppose that f(y,\) € L2 (Q, C(R,R")) is a Caratheodory vector-
function on 2 x R. In particular,

UM >0 e = g 17V = (@) € L2,(0). (33)
Since the space C'(R, R") is separable with respect to the standard locally convex
topology generated by seminorms || - |00, then, by the Pettis theorem (see [6],
Chapter 3), the map z — F(x) = f(x,-) € C(R,R") is strongly measurable and
in view of estimate (3.3) we see that |F(z)|? € L, .(, C(R)). In particular (see
6], Chapter 3), the set Qf of common Lebesgue points of the maps F(z), | F(z)|?
has full measure. As was demonstrated in [15], for z € Qy

lim [ Ku(z = y)[|F(z) = F(y)ll3edy =0 VM > 0. (3-4)

m—0o0

Clearly, each = € €y is a common Lebesgue point of all functions = — f(z, \),
A€eR. Let Q" ="' NQp, v2(A) = 6(A —up(2)) — ().

Suppose that © € Q”, p € R, H,, H_ are the minimal linear subspaces of R",
containing supports of the measures p2?*, PP~ respectively. We fix ¢ € D and
introduce for p’ € D the function

L) = [ NE0- 1) - 60 - (V) € LE,(@).  (35)



Proposition 3.4. Assume that ¢ > p and f(x,\) € Hi for all X € R. Then

£
hm lim lim
p' —p+ m—00 r—00 Rn |€|

(@0, >><s>F<<1>mUr<-7p'>><5>w(é)5 (3.6)

for all (&) € C(S). Analogously, if ¢ < p and f(z,\) € H- VYA € R, then
Vip(§) € C(S5)

3
€l

Here @, = @, (v —y) = /Kn(x —y) and L.(y,p'), U.(y,p") are functions of the
variable y € €.

hm lim lim 5

F(@ () F @l (7)) O < )d&—o (3.7)

Proof. Note that starting from some index m the supports of the functions ®,,,(x—
y) lie in some compact subset B of 2. Without loss of generality we can assume
that supp ®,, C B for all m € N. Let

T.y.p) = / FE MO0 — 1) — 00— ) (N) € L2,(),

M = sup [|uy||os. Then suppry; C [~M, M], and

reN

1L:(y. p) = Ly, )] < /If Y, A) = [, dlyy[(A) < 2[F(y) = F(2)]| a0

By Plancherel’s identity

£ ; S\ e
£ ;

[ & F@uLlp) = L) F@T @ (\51) =

§
[llocl|®on (£, 1) = L D 2| @V (- 1) ]2 <
HwHOOH(Dm(IT(vp/) - [r(’7pl))H2 <

2[|9]le (/ Km(z = y)[|F(y) - F(x)\lﬂ,oody) " :

m

Here we take account of the equality

[l = ([ Ktz =)ty o



From the above estimate and (3.4) it follows that

§ , §
Jim ti| [ - F@nL (N OF@TENE 1) o=
§ ; _
[ LN T@T @ (&) e =0 63

Observe that the function f(\) = f(z,\) € C(R, H1) is continuous and does not
depend on y. Therefore for any ¢ > 0 there exists a piece-wise constant vector-
k

valued function g(\) of the form g(\) = > v;,6(\ — p;), where v; € Hf, p=p; <
i=1

pa < --- < pr = gsuch that || fx—glle <& onR. Here x(\) = 8(A—p) —0(A—q).
Moreover, by the density of D, we may suppose that p; € D for i > 1. We define
for p" € DN (p,p2)

T = [ dVBO = ).

Using again Plancherel’s identity and the fact that

|]~7‘<y7p/) - Jr(yapl)| =

i x= gm0 - p’)d%(A)' <
/ (Fx — )W) < 22,

we obtain
f T ! i _
/ & F@n >><§>F<<bmw<-7p>><s>w(m)d}s
¢ : €
[ >><5>F<<mer<-,p>><s>¢(m)ds\—
[ & P@ar) - Jr<-,p'>>><s>F<<1>mUr<-,p/>><§>¢(%)dg\<
1B T (o) — Jo oDl 12l )l [l < 20 ]le (3.9)

for all ¢(¢) € C(S). Since

Jo(y, ') =/ (Zvﬂ@ -1 ) dryy (A sz (v, Pf),

where p, = max(p;, p’) € D, it follows from (2.4) with account of Remark 3.3 that

£ : €Y e —
Jim it [ (@) O PO @ () de =
Jim 3G (0 (€)= D (v u(E)) = 0. (3.10)
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The last equality is a consequence of the inclusion supp p??* C supp p?* C H,
(because of Corollary 3.2) combined with the relation v; L H;. By (3.8), (3.9) and
(3.10), we have

lim lim lim
p'—p+ m—o00 r—o0

¢ , ; £
/Rn i F(®p (-, p ) () F (U, (-, p)) (E) (\él

and it suffices to observe that ¢ > 0 can be arbitrary to complete the proof of
(3.6). The proof of relation (3.7) is similar to the proof of (3.6) and is omitted. [

) df‘ < const-g,

Now we assume that the sequence wy, satisfies constraints (1.2). We choose
a subsequence u, and the corresponding H-measure p?? = pP4dx. Assume that
r e =Q'NQ, po € R. As above, let H,, H_ be the minimal linear subspaces
of R™ containing supp pLoP°" supp pPoPo~ | respectively.

Theorem 3.5 (localization principle). There exists a positive 0 such that
(p(x,\) —@(z,p)) - € =0 for all 6 € Hiy, N € [po,po + 0] and all £ € H_,
AE [pO - 57p0]'

Proof. The proof is analogous to the proof of [15, Theorem 4] (if d = 2), for
arbitrary d > 1 see the proof of [16, Theorem 4] (where the more general case of
ultra-parabolic constraints was treated). For completeness we provide the details.
Observe firstly that in view of (1.2) the sequence of distributions

£5) =aiv, ([ 00~ )6t ) = ol ) = 0 Wik (9. @10
For p,q € D, q > p > py we consider the sequence of distributions
Ly — L, =div, (Q7(y)), reN,

where the vector-valued functions Q?(y) ( for fixed ¢ € D ) are as follows:
Q0) = [ (o) = 9l )00 - )y -
/(w(y, A) = oy, p)0(A — p)dvy,(A) =
[0 = clw ) -
[ elw0) = el )OO plary(3) =

/ (0 0) — 2y XN — (0(0.0) — 000 Unlyp): (3.12)

here x(A) = 8(A —p) —O(\ —q) is the indicator function of the segment (p, q]. As
was already noted, div, (Q%(y)) — 0in W, (Q) and if ®(y) € C5°(Q) then

div, (QP®(y)) — 0 in W, (3.13)
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Using the Fourier transformation, from (3.13) we obtain
617 FQ@®)(©) = Fla.). g0 — 0 in LYR") (3.14)

(see [15, 16] for details).
Let ¥(§) € C*(S). By the known Marcinkiewicz multiplier theorem (cf. [19,
Chapter 4]) ¥(£/|€]) is a Fourier multiplier in L*® for all s > 1. This implies that

FOCm©w
where the sequence h, is bounded in LY, d' = d/(d — 1).
By (3.14), (3.15) we obtain

) =T, (3.15)

[ ke Fe POt an@e () = [ o -0

as r — 00, or in view of (3.12),

tim { [ g7t PO ) OFTT 8@ () e

[l P OFTT 0@ () df =0 10)

where

F(9) = oy q) — oy p) and Vi(y,p) = / (0(.0) — 05 V)XW V).

Obviously, (3.16) remains valid for merely continuous ¥ (§). We set in (3.16)
®(y) = @,,(z — y) , where the functions ®,, were defined in section 2, and pass
to the limit as m — oo, p — po+. By (2.4) with ®(y) = »(y,q) — ¢(y,p) and
Lemma 3.1, we obtain

lim lim lim [ (€78 F(U(,p)f @) () F (U (- p) i) (§)0 <5>d5_

ppot mobo e Jr €

Jlim (o2, q) = (@, p) - (1, €0(€)) = (@, q) = lx, po)) - (Kl Pt € (£)),
therefore

(w(z,q) — p(,po)) - (phP, € (€)) =
i it [ 67 PO D@ O T 180 (£ ) de. (317

P—Po+ M—00 r—00 R |€|

Let m; and w5 be the orthogonal projections of R™ onto the subspaces H, and
H, respectively; let p(z,\) = mi(p(z,N)), @(x,\) = ma(p(x,N)). Recall that
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H, is the smallest subspace containing supp p?°?°*. This readily implies that
(4B €(€)) € H.. Hence

((z,q) =@, po)) - (E"T, E0(8)) = (B, q) — B(, po)) - (™, £(E)). (3.18)
Further, V,(y,p) = m(V;(y,p)) + m2(V.(y, p)) and

0 (Viy,p)) = / (B(.0) — 39, 1) XN V),

ra(Vi(y,p)) = / (@(y.0) — 29, 1) XN (N,

Observe that

mo(Vo(y,p)) = 1y, p),
where the function I,(y, p) is defined in (3.5) (with p’ replaced by p) for a vector-
function f(y, \) = ¢(y,q) — ¢(y, ) € Hy. By Proposition 3.4 we obtain

lm G Gim [ (67 F(ma(Vi(y. 2)) @) € F O (D)@ E0 (i) dé = 0.

P—Ppo+ M—00 r—00 R |€|
(3.19)

Let f/,n(y,p) =m(V.(y,p)). From (3.17), in view of (3.18) and (3.19), we see that

(P(.0) = o) - (P E0(E)) =
i il [ (6] P O F G000 () de

p—po+ M—00 r—0o0 ‘5’

which in turn, by Bunyakovskii inequality and Plancherel’s equality, gives us the
estimate

(@2, 4) = @(x,po)) - (T, Ev(€))] <
lim lim Hm [V,(,p)@llz - |U-(2) @iz 9]0 <

p—po+ M—00 r—00

fm Tm Tim [T, p) @z - 0]l (3.20)

P—Po+ M—00 r—00

Next, for M,(y) = )\Iefl[]%i] 12(y,q) — @y, N

Vi (ys )| < My(y) /X(A)d () + 2 | =

M (y) (ur(y, p) — ur(y, @) + w0y, p) — wo(y, q)).

In view of the elementary inequality (a + b)* < 2(a® + b?) and the relation 0 <
ur(y,p) — ur(y,q) <1, r € NU{0}, we have

IVl < 2 | (V)P () = w)* +
(uo(y, p) — uo(y,q))*) Km(x — y)dy <
2 [ (M) () = ) +

uo(y, p) — uo(y, ) Kz — y)dy. (3.21)

13



Since p,q € D C E, then

ur(y, p) — ur(y, q) = uo(y,p) — uo(y,q)

as r — oo in the weak-* topology of L>°(£2) and from (3.21) we now obtain the
estimate

T @l < 4 | (V)P 0(9.) = ol ) o = )

from which, passing to the limit as m — oo, we obtain

lim Tim |V, (-, p) @3 < 4(My(2))(uo(, po) — uo(, ). (3.22)

m—o0 r—0o0

Here we bear in mind that by the definition of €' (see, for instance, [15, Propo-
sition 3]) z is a Lebesgue point of the functions ug(y, po), uo(y,p). It is also
used that x € Q, is a Lebesgue point of the function (M,(y))* as well ( this
easily follows from the fact that = is a Lebesgue point of the maps y — (v, -),
y — |o(y,-)|? into the spaces C'(R,R™), C'(R), respectively ). From (3.22) in the
limit as p — po it follows that

lim lim lm [|V,(,, p)®,, 53 < 4(M,(2))? (uo(, po) — uo(w, q))- (3.23)

P—Po M—00 7—00

In view of (3.20) and (3.23),

[(@(z,q) — @(2,po)) - (BT, E(E))] < 2/ oo My (2)w(q), (3.24)
w(q) = (un(x, po) = un(x,9))"* = (v (po, )"

— 0.

It is clear that the set of vectors of the form (p2oPot ¢u(€)), with real (&) € C(S)

spans the subspace H,. Hence we can choose functions ¢;(§) € C(5),i=1,...,1

such that the vectors v; = (uPoPo™ £4);(€)) make up an algebraic basis in H.
By (3.24), for ¥(§) = 4(§), i =1,...,1, we obtain

[(@(x,q) = &z, p0)) - vi| < ciwlq)My(x), ¢; = const,
and since v;, ¢ = 1,...,[ is a basis in H,, these estimates show that

|2(2,q) — &z, po)| < cwlq)My(x) =
cw(q) /\rer%s;);] |o(z,q) — @(z, A)|, ¢ = const. (3.25)

We take ¢ = py + 0, where § > 0 is so small that 2cw(q) = ¢ < 1. Then, in view
of (3.25),

max |5(x, q) — 4z, A, (3.26)

e
D .T, — @ xZ, é .
|&(x, q) — &(x,po) 5 \max.
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and since ¢(x,q) is continuous with respect to ¢ and the set D is dense, the
estimate (3.26) holds for all ¢ € [po, po + 9.

We claim that now @(z,p) = @(x, po) for p € [po, po + 9]. Indeed, assume that
for p" € [po, po + d]

D 9 ) —¢ ) = D 7)\ —Q ) .
|@(x, p") — P(z,po) Aemﬁ&]\s@(ﬂc ) — @(x, po)|

Then for X € [py, p'] we have

(2, p') — @z, N)| < |p(x, A) — @(x,po)| +
|P(2, ") — (2, po)| < 2|p(x,p') — @(, po)l

and

max |@(z,p’) — @z, N)| < 2|¢(z,p') — @, po)l.
A€ [po,p’]

We now derive from (3.26) with p = p’ that

[P, 0') — @2, po)| < el@(x,p) — P(x,po)l,

and since € < 1, this implies that

[B(z,p') — ¢(x,po)| = max |5z, \) = Gz, po)| = 0.
A€E[po,po+9]
We conclude that p(z, \) — ¢(x, py) € Hy for all X € [pg, po + 6], Le., (p(z,\) —
o(x,po)) - € = 0 on the segment [po,py + 0] for all £ € H,.

To prove that for some sufficiently small 6 > 0 (o(z,A) — p(z,p0)) - £ = 0
on the segment [py — d,po] for all £ € H_, we take p,q € D, ¢ < p < py and
repeat the reasonings used in the first part of the proof. As a result, we obtain
the relation similar to (3.24)

|[(B(x; q) — &z, po)) - (™™, EY(E)] < 2[|¢h|oc My (x)w(q),

where

M,y(z) = nax. 1P(y, q) — @y, NI,

la,p0

wlg) = lim (uo(z,q) = uo(z,p))'""* = (g, p0))"* — 0.
p—po— )
This relation readily implies the desired statement (p(z, ) — ¢(z,p)) - & = 0 on
the segment [py — 6, po] for all £ € H_, where ¢ is sufficiently small.
The proof is complete. [

Corollary 3.6. Let x € Q" [a,b] be the minimal segment, containing supp v, and
po € (a,b). Then, in the notations of Theorem 3.5, supp pPoPo™ N supp pkoPo~ 2 )
and for all € € Hy N H_, £ # 0 the function & - p(x, ) is constant in a vicinity

of po-
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Proof. First, note that since x € " C Q' is a Lebesgue point of the functions
uo(-,p) for all p € D while D is dense, the distribution function wug(z,\) =

vz ((A,+00)) is uniquely defined by the relation ug(xz,\) = sup wuo(x,p). In
pED p>A
particular, the measure v, is well-defined at the point x.

The statement that the function A — & - p(z, A) is constant in a vicinity of
po for all £ € H . N H_, £ # 0 readily follows from the assertion of Theorem 3.5.
Hence, we only need to show that supp p2oPo" N supp pLoPo~ #£ (). We assume to
the contrary that S, N S_ = ), where S = supp u?°?=. Denote C, = S\ Sy,
C_=5\S_, Then S =C, UC_, pborot(Cy) = pboro=(C_) = 0. Therefore, by
relation (2.6), for all p,g € D, p < py < ¢

Var pg? = |p3[(S) < [p2'[(C4) + 12| (C-) <
(P (CL )t (C))? o (P (CO) it (CoNY? < (puat(C)Y? + (i (C2)) 2,

where we use that p??(A) < pPP(S) <1 for all p € D and every Borel set A C S,
see (2.3). It follows from the obtained estimate and Lemma 3.1 that

lim lim Varugq < (M£0p0+(0+))1/2 4 (Mgopo*(ci))l/Q —0

P—Po— q—Po+

Thus,
bt — 0 in M(S) asp — po—,q — po + . (3.27)

On the other hand, by (2.4)

ppt(S) = lim lim [ F(QnU (-, p))(§) F(PmlU: (-, q))(§)dE =

m—oor—00 [pn

lim lim Ur(y, p)Ur(y, Q) K (z — y)dy. (3.28)

m—00 100 Jpn

Observe that U, (z, \) = 0(u,(x) — A) —ug(x, A). Since U,(-,p) — Oforallp € D
and (0(u.(y) —p) — 1)0(u.(y) — q) = 0, we find

lim [ U.(y,p)U(y,q)Km(x —y)dy =

r—o0 Jpn

lim [ (U(y,p) — DUy, Q) K (x — y)dy =

T—00 Rn

lim [ (0(u-(y) —p) — 1 —uo(y, p))(O(u-(y) — q) — uo(y, @) Kn(z — y)dy =

r—00 Rn

lim [ [(1—0(u(y) — p))uo(y, q) — uo(y,p)(O(u-(y) — q) — uo(y, Q)| Km(z — y)dy

r—o0 Jpn

= /n(l — (Y, p))uo(y, @) Km(r — y)dy.
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In the limit as m — oo this yields

lim lim [ U.(y,p)U,(y, Q) Km(x — y)dy =

m—00 r—00 Rn

lim [ (1= wuo(y,p))uo(y, 9) Km(z — y)dy = (1 — uo(x,p))uo(z, q).

m—oo [pn

Here we take into account that z is a Lebesgue point of the functions ug(y, p),
uo(y, q). By (3.27), (3.28) we find

0= lim lim wP%(S) =

p—Ppo— g—po+
lim  lim (1 —uo(x, p))uo(z,q) = va((—00, po))Va((po, +00)) > 0,
p—po— q—po+
since a < py < b and [a,b] is the minimal segment containing suppv,. The
obtained contradiction implies that S, N S_ # () and completes the proof. [

Now we are ready to prove Theorem 1.1.

Proof. Let u, = ug, be a subsequence of u; chosen in accordance with Proposi-

tion 2.2. In particular, this subsequence converges to a measure-valued function
v, € MV(Q). In view of (2.1) for a.e. z € Q

u(z) = / Mva(N). (3.29)

We define the set of full measure " C Q and the minimal segment [a(z), b(x)],
containing suppv,, = € Q”. In view of (3.29) u(z) € (a(x),b(x)) whenever
a(z) < b(z). By Corollary 3.6 the function £-¢(x, -) is constant in a vicinity of u(z)
for some vector & # 0. But this contradicts to the assumption of Theorem 1.1.
Therefore, a(x) = b(x) = u(x) for a.e. € 2. This means that v,(\) = §(\ —
u(z)). By Theorem 2.1 the subsequence u, — u as r — oo in Lj,.(Q2). Finally,
since the limit function u(x) does not depend of the choice of a subsequence wu,.,
we conclude that the original sequence uy — u in L}, (Q) as k — oco. The proof

is complete. O

4 Decay property

This section is devoted to the proof of Theorem 1.4. Suppose that u(t,z) is
a unique e.s. to problem (1.4), (1.7) with the periodic initial data ug(z). By
Remark 1.3 we can assume that u(t, z) € C([0, +o0), L*(T™)) (after possible cor-
rection on a set of null measure). We consider the sequence ug(t, z) = u(kt, kx),
k € N, consisting of e.s. of (1.4). As was firstly shown in [2], the decay property

(1.10) is equivalent to the strong convergence u,.(t, x) e I = const in L} (II) of

a subsequence u, = uy, (t,z). As follows from [17, Lemma 3.2(i)], u, — u*, where
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u* = u*(t) is a weak-* limit of the sequence ag(k,t), where ay(t) = / u(t, z)dx.

Since u(t, x) is an e.s. of (1.4), this function is constant: ay(t) =1 = / uo(z)dz,

n

in view of (1.8). Therefore, u, — I as r — oo (actually, the original sequence
up — I as k — 00).

Let uP?, p,q € E, be the H-measure corresponding to a subsequence u, =
u, (t,x). Recall that pP? = pPi(t, z,7,£) € Mjpe(Il X S), where

S={{=(r ) eERxR"[|{P =7+ =1}

is a unit sphere in the dual space R"*! (the variable 7 corresponds to the time
variable t).
By [17, Theorem 3.1] the following localization principle holds

supp pP? C II x Sy,

where o
So={¢/lEl1§€=(r§) #0,7€R, £ L'}
As was demonstrated in Proposition 2.3, p#? = pi%dtdx for all p,q € D, where

D C F is a countable dense subset and measures ,up 1 € M(S), are defined for all
(t,x) belonging to a set of full measure II" C II. Obviously, the identity

(W, B(t, 7, ) = / (W (€). (¢, ., €))dtdr, (4.1)

O(t,z,€) € Co(IIx 9), remains valid also for compactly supported Borel functions
®. Taking & = ¢(t, z)h(€), where ¢(t,z) € Co(I), ¢(t,x) > 0 while h(§) is an
indicator function of the set S\ Sy, we derive from (4.1) that

/ W (S So)(t, x)didi = 0

and since ", > 0 and gzﬁ(t x) € Cy(1I) is arbitrary nonnegative function, it follows
from this 1dent1ty that pf%.(S\ So) = 0 for all p € D, (t,x) € II'. By relation
(2.6) we claim that, more generally, |1t %](S\ So) = 0 for all p,q € D, (t,z) € IT".
Finally, in view of Lemma 3.1, we find that |,upqi|(S \ Sp) = 0, that is,

supp utx C SoVp,q e R, (t,x) e IT'. (4.2)

Further, u,(t,z) is a sequence of entropy solutions of (1.4). Therefore ( see for
instance [16] ) the sequences

div [0(u, — p)(p(ur) = 2(p))] = ((ur — p) 7)ot dive [0(ur — p)(e(ur) — ©(p))]

are compact in Hy L (IT) for some d > 1 and all p € R, where $(u) = (u, ¢(u)) €
C(R,R™™), and we use the notation v = max(v,0).
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Denote by v;, € MV(II) the limit measure valued function for a sequence u,.,
and by [a(t,z),b(t, z)] the minimal segment containing supp vy .

Suppose that (t,z) € II', a(t,z) < b(t,z). Then I = [Ndy.(\) €
(a(t,z),b(t,x)). By Corollary 3.6 we find that there exists & = (7,§) €
supp ugf N supp ut{é’ and ¢ > 0 such that the function

A—E&-p(\) =Tu+E-ou) = ¢ = const (4.3)

on the interval V' = {\ | |\ — I| < 0}. By (4.2) £ € Sy, which implies that we
can assume that £ € L' in (4.3). Evidently, £ # 0 (otherwise, Tu = ¢ on V for
7 # 0). Hence the function ¢ - ¢(u) = ¢ — 7Tu is affine, which contradicts (1.9).
Thus, a(t,z) = b(t,xz) = I for a.e. (t,z) € II. We conclude that vy ,(\) = §(A—1)
an by Theorem 2.1 the sequence u, — I as r — oo strongly (in L} (IT) ). As
was mentioned above (one can simply repeat the conclusive part of the proof of
Theorem 1.1 in [17]), this implies (1.10).

Conversely, if the assumption (1.9) fails, we can find £ € L', £ # 0, and
constants a,b € R such that £ - ¢(A) = au + b on a segment [I — 6,1 + §], § > 0.

Then, as is easily verified, the function
u(t,z) =1+ dsin(2n(§ - x — at))

is the e.s. of (1.4), (1.7) with initial data uo(z) = I + dsin(27( - x)). It is clear
that ug(x) is L-periodic and [y, ug(x)dx = I, but the e.s. u(t,z) does not satisfy
the decay property.

Example. Let n =1, p(u) = |u|. Let u = u(t,x) be an e.s. of the problem
u+ (Ju)z =0, w(0,2) = up(x), (4.4)

where ug(z) € L>(R) is a nonconstant periodic function with a period [ (for a
constant uy = ¢ the e.s. u = ¢ and the decay property is evident). Notice that no
previous results [2, 3, 17] can help to answer the question whether the decay prop-
erty is satisfied. However, as follows from Theorem 1.4, if [ = % fol uo(z)dz = 0,
then the decay property holds: fol lu(t,z)|der — 0 as t — oo. Actually, the

condition fol up(z)dxr = 0 is also necessary for the decay property (1.10). In-
deed, u(t,z) = uo(x Ft) if £up(z) > 0 (then £7 > 0), and the decay property is
evidently violated. In the remaining case when u( changes sign we define the func-
tions u4 (¢, x) = vy(z—t), u_(t,x) = v_(x+1t), where vy (z) = max(ug(x),0) > 0,
v_(z) = min(ue(z),0) < 0. Note that this functions take zero values on sets of
positive measures. By the construction, v_(z) < ug(x) < vy (z) and uy(t, z) are
e.s. of (4.4) with initial data vy (x). In view of the known property of monotone
dependence of e.s. on initial data u_(¢,z) < u(t,x) < uy(t,x) a.e. on II. These
inequality can be written in the form

u(t,r —t) >ov_(x), u(t,z+1t) <vi(z). (4.5)
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Assuming that u(t,x) satisfies the decay property, we find, with the help of -
periodicity of u(t,-), that

! I
/ |u(t,xj:t)—l|dx:/ |u(t,z) — I|dr — 0 as t — o0,
0 0

that is, the functions u(t, z+t) 7 I'in L'([0,1]). Passing to the limit as t — +o0

in (4.5), we find that v_(z) < I < vy (z) for a.e. € R. The latter is possible
only if I = 0. We conclude that the decay property holds only in the case I = 0.

Remark 4.1. Theorem 1.4 can be extended to more general case of almost
periodic initial data (in the Besicovitch sense [1]). Repeating the arguments
of [18], we arrive at the following analogue of Theorem 1.4.

Theorem 4.2. Let My be the additive subgroup of R™ generated by the spectrum
of ug. Assume that for all £ € My, € # 0 the function & - p(A) is not affine in any
vicinity of I = g, uo(x). Then the e.s. u(t,x) of (1.4), (1.7) satisfies the decay
property

lim lu(t,z) — I|dz = 0.

t—400 Jpn

Here][ v(x)dz denotes the mean value of an almost periodic function v(zx) (see
R
[1] ).
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