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Abstract

Lions, Perthame, Tadmor conjectured in 1994 an optimal
smoothing effect for entropy solutions of nonlinear scalar con-
servations laws ([19]). In this short paper we will restrict our
attention to the simpler one-dimensional case. First, supercriti-
cal geometric optics lead to sequences of C* solutions uniformly
bounded in the Sobolev space conjectured. Second we give con-
tinuous solutions which belong exactly to the suitable Sobolev
space. In order to do so we give two new definitions of nonlinear
flux and we introduce fractional BV spaces.
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1 Introduction and nonlinear flux defini-
tions

We focus on oscillating smooth solutions for one-dimensional scalar
conservations laws:

ou N Of (u)

ot ox

The aim of this paper is to build solutions related to the maximal reg-
ularity or the uniform Sobolev bounds conjectured in [19] for entropy
solutions. In the one-dimensional case, piecewise smooth solutions with
the maximal regularity are obtained in [12] for power-law fluxes. We
seek supercritical geometric optics expansions and some special oscil-
lating solutions. Our constructions are valid for all C* flux and show
that one cannot expect a better smoothing effect.

=0, u(0,z) = up(x), t>0,zeR. (1)

The more complex multidimensional case is dealt with in [17, 4].
For recent other approaches we refer the reader to [9, 7, 11, 8, 15, 14].
Recall that the first famous BV smoothing effect for uniformly con-
vex flux was given by the Oleinik one-sided Lipschitz condition in the
1950s (see for instance the books [10, 18]). For solutions with bounded
entropy production, the smoothing effect is weaker than for entropy
solutions ([12, 14]).

Let us give various definitions of nonlinear flux from [19, 1, 17, 2.
Throughout the paper, K denotes a compact real interval.

Definition 1 [Lions-Perthame-Tadmor nonlinear flux,[19]]
f € CYK,R) is said to be a nonlinear flur on K with degeneracy o if
there exists a constant C' > 0 such that for all 6 > 0,

sup (measure{v € K, |7+ ¢ f'(v)] < d}) < Co“. (2)
T24£2=1

In [19], the authors proved a smoothing effect for entropy solutions
in some Sobolev space. They obtained uniform Sobolev bounds with
respect to L* bounds of initial data. Moreover, they conjectured a
better smoothing effect :

uy € L2R) = u(t,.) € W2 (R,), foralls <« and for allt >0 (3)

loc
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where the parameter « is defined in Definition 1. They proved a weaker
smoothing effect which was improved in [21]. The conjecture (3) is still
an open problem.

In [17] was given another definition related to the derivatives of the
flux. It generalizes a notion of nonlinear flux arising in geometric optics
([5]). The next one-dimensional definition of smooth nonlinear flux is
simpler than in the multidimensional case ([1, 17]).

Definition 2 [Smooth nonlinear flux, [17]]
f € C®(K,R) is said to be a nonlinear flur on K with degeneracy d if

. d1+k f
For the Burgers equation or for uniformly convex flux, the degeneracy is
d = 1. That is the minimal possible value. For the cubic flux f(u) = u®
on K = [—1,1], the degeneracy is d = 2. The cubic flux is "less”
nonlinear than the quadratic flux. Notice that, with this definition,
a linear flux is not nonlinear: d = 400 with the natural convention
min(()) = +oo.

This definition is equivalent to Definition 1 for C'**° flux with o =

SIS

([1, 17]). Therefore the Lions-Perthame-Tadmor parameter « is fo
smooth flux the inverse of an integer.

—

The conjectured smoothing effect (3) is proved for the first time
in fractional BV spaces for the class of nonlinear (degenerate) convex
fluxes ([2]).

Definition 3 [Nonlinear degenerate convex flux, [3, 2]]
Let f belong to C*(I,R) where I is an interval of R. We say that the
degeneracy of f on I is at least p if the continuous derivative a(u) =

f'(u) satisfies:
oo la() — a)
IxI  |u—wvlP

()

The lowest real number p, if there exists, is called the degeneracy of f
on I. If there is no p such that (5) is satisfied, we set p = +o0.

Let f € C?*(I). We say that a real number y € I is a degeneracy point
of fonlif f'(y) =0 (i.e. y is a critical point of a).

|1+a

For instance, if f is the power-law flux on [—1,1]: f(u) = |u where

a > 0, then the degeneracy is p = max(1, ), ([3, 2]).
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Remark 1 Definition 3 implies the convezity (or the concavity) of the
flux f.

Indeed, by definition there exists C' > 0 such that |f'(u) — f'(v)| >
Clu — v|P. Hence the difference f'(u) — f'(v) never vanishes for u # v.
Since the flux is continuous, it has got a constant sign for v > v, which
implies the monotonicity of f’ and then the convexity (or the concavity)
of the flux.

Remark 2 Definition 3 is less general than Definition 1. Nevertheless,
1

if | satisfies (5) then it also satisfies (2) with o = — , and also (4) with
p

d = p when f is smooth.

The paper is organized as follows. The sequence given in Section
2 is exactly uniformly bounded in the Sobolev space conjectured in
[19]. Furthermore, this sequence is unbounded in all smoother Sobolev
spaces. In Section 3, we build solutions with the suitable regularity (3).

2 Supercritical geometric optics

We give a sequence of high frequency waves with small amplitude
exactly uniformly bounded in the Sobolev space conjectured in [19].
The construction uses a WKB expansion ([5, 20]).

Theorem 4 Let f € C*(K,R) be a nonlinear flux with degeneracy d
defined by (4). There exists a constant state u € K such that for any
smooth periodic function Uy satisfying for all 0 < e <1, for all x € R,
ug(z) = u+ el (5%) € K, the following properties hold:

1. there exists a positive time T such that the entropy solution u® of
equation (1) with uy = ug is smooth on [0,T] xR for all0 <e <1

2. the sequence (uf) is uniformly bounded in W([0,T] x R) for

s=a=- and unbounded for s > a when Uj # 0 a.e.

The key point is to construct a sequence of very high frequency waves
near the state u where the maximum in (4) is reached. Next we compute



the optimal Sobolev bounds uniformly with respect to € on the WKB
expansion:

t
u(t,x) =u+elU (t, @) +er(t,z).

To estimate the remainder in Sobolev norms, we build a smooth se-
quence of solutions. It is quite surprising to have such smooth sequence
on uniform time strip [0,7]. Indeed, it is a sequence of solutions with
no entropy production, without shock. But for any higher frequency,
the life span T, of u. as a continuous solution goes towards 0 and os-
cillations are canceled ([17]). Thus the construction is optimal.

Remark 3 The uniform life span of the smooth sequence (uf) is at

least
1

d Uy
SUpPy W

as one can see in [17]. So we can build such smooth sequence for any
large time T and any non constant initial periodic profile Uy small
enough in C'. But we cannot take T = +oo since shocks always occur
when Uy 1s not constant.

T ~

?

Remark 4 For C* fluz, the parameter o in Definition 1 is always the
wnverse of an integer. To get supercritical geometric optics expansions

1
for all a €]0,1] and not only o € {—, n e N*}, we shall consider
n

1
power-law flur f(u) = |u|"?, where p = — € [1,+o0[, as in [12].
o

x
In this case, u = 0 and the sequence is simply u®(t,x) = eU (t, —p),
€

the exact entropy solution of (1) and U(t,0) is the entropy solution of
OU + 0p|U|IMP =0, U(0,0) = Uy(0).

Proof: We give a sketch of the proof (see [17] for more details).

e Existence of u: the map u — min{k > 1, f0+*(u) # 0} is upper
semi-continuous, so it achieves its maximum on the compact K.

e WKB expansion ([13, 16, 5, 17]): we plug the ansatz

uf(t,x) = u+ e, (t, M)

ed



into (1). Notice that the exact profile U, depends on ¢.
Set A = f/(u) and b — I W

€ _f(ﬂ) an - (1—|—d>'
the Taylor expansion of the flux f(u + eU.) = f(u) + e \U. +
gltdpUltd — 24 R_(U.) gives an equation for the exact profile
U. and the phase ¢:

# 0. After simplification,

oU. oUuMe QR (U.)
+b =€

ot 06 a0 7’

U:(0,0) = Up(0), o(t,x) ==t
(6)

The profile, which does not depend on ¢, is

ou  outtd

— +b——=0 U(0,0) = Uy(0). 7

b =0, U(0,0) = Uy(0) 7)
Existence of smooth solutions for a time 7" > 0 independent of
g: it is a consequence of the method of characteristics. Indeed,
the characteristics of equation (6) are a small perturbation of
characteristics of equation (7).

Approximation in C*([0, 7] X R): it comes again from the method

of characteristics since e R, — 0.

Notice that the expansion is valid in L}, after shock waves ([5]).

But it is not enough to estimate the Sobolev norms.

Sobolev estimates: roughly speaking, the order of growth of the

s fractional derivative d_UO (6%) is ¢7%¢. For the profile U, this
xs

estimate is propagated along the characteristics on [0,7]. We
have the same estimate for U, since U, is near U in C'. Then we
get the Sobolev bounds for u..

O

Oscillating solutions

In this section we give exact continuous solutions with the Sobolev

regularity conjectured in [19]. Indeed, we choose a suitable initial data
such that the regularity is not spoiled by the nonlinearity of the flux
for a positive time T'. Furthermore, the conjectured smoothing effect is
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proved for the first time in fractional BV spaces ([2]) for the degenerate
convex class of nonlinear flux given by Definition 3. The next theorem
shows the optimality of this smoothing effect. The optimality was also
given in [12] in Besov spaces framework. Let us introduce the BV*
spaces.

Definition 5 (Fractional BV spaces)

Let I be a non empty interval of R. A partition o of the interval I is
a finite ordered subset: 0 = {xg,x1,  ,xp} CI, xog <21 < -+ < Ty,
We denote by S(I) the set of all partitions of I. Let s belong to |0, 1]

and p = — > 1. The s-total variation of a real function u on I is
s
TV*u{l} = sup Z u(zy) — w(@e—1)["
ceS(I) 1
BV*(1) is the space of real functions u such that TV u{l} < 400,

BV® spaces are introduced in [2] for applications to conservation laws.
These spaces measure the regularity of regulated functions: BV =

BV c BV® C L*®. Indeed, BV*(K) is very close to the Sobolev space
W (K) ([2)):

e BVS(K)C Wsm/s(K) forall0 <n < s .
e BV*(K) # WYs(K)
We now give continuous functions which have the BV*® regularity.

Proposition 1 (A continuous BV* function [3])
Let0 <5 <1,0<n<1—sandletg=gs, bethe real function defined
on [0,1] by g(0) = 0 and for all z €]0,1] :
2
g(x) = 2° cos <1>, where b=s+ > and c=".
xe n Ui

The function g belongs to BV*([0,1])NC°([0, 1]) but not to BV**"([0, 1]).

Notice that such example do not provide a function which belongs to
BV? but not to Un>0 BV**t1.  Proof: The extrema of g are achieved

1
onz, =k Y Letp==>1,¢<pand
s

+0o0
Vo= Z |9(xx41) — g(x) |
k=1
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Since gb/c = q(s + 1), the asymptotic behavior |g(zg11) — g(zx)|? ~
20K~/ when k — oo yields V, = 400 when ¢ = 1/(s + 1) and
V, < +oo. First this implies g ¢ BV*™. Second, for such oscillating
function with diminishing amplitudes, we choose the optimal infinite
partition to compute the s-total variation (see Proposition 2.3. p. 6 in
2]). Then g belongs to BV*. O

We are now able to find oscillating initial data with the critical
Sobolev exponent propagated by the nonlinear conservation law (1).

Theorem 6 Assume f € C®(K,R) be nonlinear in the sense of Def-

wnition 2. We denote by d its degeneracy and s = For anyn > 0

,T] x R,R) such

ol =

and any time T > 0 there exists a solution u € C°(|
that for all t € [0, T]

u(t,-) € BV*(R,R) and u(t,-) ¢ BV*""(R,R).

The idea follows the K-S Cheng construction ([6]) with the function
g given in Proposition 1.
Proof: Let u € K a point where the maximum of degeneracy of

f is achieved. We also suppose that u € [O( (the proof of Theorem 6 is
quite similar if u € 0K).
We define the initial condition ugy by :
w(x) =u ifx<0
up(z) =u+dg(x) f0<z<1 |

u(z)=u—0 ifl<uzx

where § > 0 is chosen such that for all z € [0, 1], u+dg(z) € K. Notice
that for all z € [0,1], =1 < g(z) <1 and g(1) = —1.
Then, following the method of characteristics, we define the function
u(t,x) by :
u(t,z) =0 ifx <0
ut,z) =u+dg(y) fr=y+ta(u+dgly), 0<y<1.

u(t,z) =u—4¢6 ifl+talu—90) <z



up € BV*([0, 1]) and ug ¢ BV*™([0, 1]). Let be ¢t > 0 and for all
Y,
0:(y) =y + ta(u+ dg(y))-
Considering the change of variable y = = — a(u)t, we can assume
without loss of generality that f'(u) = a(u) = 0. Since f € C*°(K,R),
we derive from a Taylor expansion that

a(u) = % (a(d)(g)(u —u)t+ /uu(u — s)da(1+d)(s)ds> :
Defining
L) = 5 [ (=)t rdg)in

we get then :

0.(y) =y + 6% (y)" (%a(d) (u) + 5g(y)1n(y)> :

Note that g, I,,, J,, are bounded on [0, 1].

d
For y # 0, since bd = 1 + ¢, we have l9(y)] = O (y°) at 0. Thus 6, is
Y

do
differentiable at 0 and d—t(O) = 1. For y # 0, we have
Y

do,

—(y) =1+t5
dy(y) + t0%hy, (y),

ha(y) = 9(y)* 19 () ((d _1 1)!a(d) (w) + (d +1)89(y) In(y) + 529(y)2Jn(y)> :

For y # 0, since bd = 1 + ¢, we have

9wl ly) = (y” cos (%))d_l (by“ cos <y1) + meyt ™ sin (yl))
l9(y)" g (y)| < |cos (yi) o (b]y|c cos <yﬂ)' + 7¢ |sin (5)‘)

Thus g(y)?t¢'(y) is bounded on [0, 1].
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As h,, is bounded on [0,1], there exists T5 > 0 such that for all
do
y € [0,1] and for all ¢ €]0, T, d—t(y) > 0. Notice that (lsin(l)T(; = +00.
Y —

We can take 6 > 0 small enough such that T5 > T

Thus for all ¢ €]0,T], 6, is an homeomorphism between [0, 1] and
0,14 ta(u — 0)]. Then u(t,x) is a continuous solution of equation (1)
on [0,7] x R. Furthermore, since ug € BV*(I) and ug ¢ BV*"(I),
where [ = [0, 1], we deduce that for all ¢ €]0, T}, u(t,-) € BV*(J) and
u(t,) ¢ BVst1(J), where J = 6,(I) = [0,1 + ta(u — 9)]. Finally, as
u(t,-) is constant outside J, we have proved that u(t,-) € BV*(R) and
u(t, ) ¢ BV*T(R). O

Remark 5 As in Remark 4, Theorem 6 is restricted for critical expo-

1
nent s such that — € N. To obtain all exponent s €]0,1], following
s

1
[12], we can consider a power-law flux with p = ~: f(u) = |u|**P. Our

construction is quite similar as in the proof of Theorem 6 with u = 0
and 6 > 0 small enough.

References

[1] F. Berthelin, S. Junca, Averaging lemmas with a force term in the
transport equation, J. Math. Pures Appl., (9), 93, No 2, (2010),
113-131.

[2] C. Bourdarias, M. Gisclon, S. Junca. BV® spaces and applications
to scalar conservation laws, (arXiv), (2012).

[3] P. Castelli, Lois de conservations scalaires: étude de solutions
particuliéres en dimension 1 d’espace, effet régularisant, (French),
Master Thesis, Université de Nice Sophia-Antipolis, (2012).

[4] P. Castelli, S. Junca, Oscillating solutions and bounds for the
maximal smoothing effect for multidimensional scalar conservation
laws, (in preparation).

[5] G.-Q. Chen, S. Junca, M. Rascle, Validity of Nonlinear Geometric
Optics for Entropy Solutions of Multidimensional Scalar Conser-
vation Laws, J. Differential. Equations., 222, (2006), 439-475.

10



[6]

[7]

[10]

[11]

[12]

K. S. Cheng, The space BV is not enough for hyperbolic conser-
vation laws. J. Math. Anal. App., 91, (1983), no. 2, 559-561.

C. Cheverry, Regularizing effects for multidimensional scalar con-
servation laws. Ann. Inst. H. Poincaré, Anal. Nonlinéaire 17, no.
4, (2000), 413-472.

G. Crippa; F. Otto; M. Westdickenberg, Regularizing effect of non-
linearity in multidimensional scalar conservation laws. Transport
equations and multi-D hyperbolic conservation laws, 77128, Lect.
Notes Unione Mat. Ital., 5, Springer, Berlin, (2008).

C. Dafermos, Regularity and large time behavior of solutions of a
conservation law without convexity. Proc. Royal Soc. Edinburgh
99 A, (1985), 201-239.

C. Dafermos, Hyperbolic Conservation Laws in Continuum
Physics, Springer, 2000.

C. De Lellis, F. Otto, M. Westdickenberg, Structure of entropy so-
lutions for multidimensional scalar conservation laws. Arch. ration.
Mech. Anal. 170, no2, (2003), 137-184.

C. De Lellis, M. Westdickenberg. On the optimality of velocity
averaging lemmas. Ann. Inst. H. Poincaré Anal. Non Linéaire 20,
no. 6, (2003), 1075-1085.

R.-J. DiPerna and A. Majda, The validity of nonlinear geometric
optics for weak solutions of conservation laws, Commun. Math.
Phys. 98, (1985), 313-347.

F. Golse, B. Perthame, Optimal regularizing effect for scalar con-
servation laws. (arXiv:1112.2309v2), (2012).

P.-E. Jabin. Some regularizing methods for transport equations
and the regularity of solutions to scalar conservation laws. 2008-
2009, Exp. No. XVI, 15 pp., Sémin. Equ. Dériv. Partielles, Ecole
Polytech., Palaiseau, (2010).

S. Junca, A two-scale convergence result for a nonlinear conserva-
tion law in one space variable, Asymptotic Analysis, 17, (1998),
221-238.

S. Junca, High frequency waves and the maximal smoothing effect
for nonlinear scalar conservation laws, (hal-00576662), (2011).

11



[18] P. D. Lax. Hyperbolic partial differential equations. Courant Lec-
ture Notes in Mathematics, 14. American Mathematical Society,
Providence, RI, (2006). viii+217 pp.

[19] P.-L. Lions, B. Perthame, E. Tadmor, A kinetic formulation of
multidimensional scalar conservation laws and related equations,
J. Amer. Math. Soc. 7, (1994), 169-192.

[20] J. Rauch. Hyperbolic Partial Differential Equations and Geometric
Optics. Graduate Studies in Mathematics, Vol. 133, A.M.S., 2012.

[21] E. Tadmor, and T. Tao, Velocity averaging, kinetic formulations,
and regularizing effects in quasi-linear PDEs. Comm. Pure Appl.
Math. 60, no. 10, (2007), 1488-1521.

12



