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ABSTRACT. We analyze upwind difference methods for strongly degenerate
convection-diffusion equations in several spatial dimensions. We prove that the
local L!-error between the exact and numerical solutions is O(Afcz/(lg"'d)),
where d is the spatial dimension and Az is the grid size. The error estimate is
robust with respect to vanishing diffusion effects. The proof makes effective use
of specific kinetic formulations of the difference method and the convection-
diffusion equation. This paper is a continuation of [25], in which the one-
dimensional case was examined using the Kruzkov-Carrillo entropy framework.
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1. INTRODUCTION

The design of numerical methods for convection-diffusion problems is important
for many applications in science and engineering. It is especially challenging to
construct accurate methods for nonlinear problems in which the “diffusion part”
is small or vanishing, relative to the “convection part” of the problem. Connected
to this is the difficult problem of deriving error estimates for numerical methods
that are robust in the singular limit as the diffusion coefficient vanishes, thereby
avoiding the usual exponential growth of error constants.

In this paper we are interested in deriving error estimates for a class of finite
difference methods for nonlinear, possibly strongly degenerate, convection-diffusion
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problems of the form

(1.1) {&u + V- f(u) = AA(w), (t,2) €Ty,

(0, z) = ugp(z), T € RY,

where II7 = (0,7) x R4, T'> 0, d > 1, and u : [l — R is the unknown function
that is sought. The initial datum ug is an integrable and bounded function, while
the fluz function f : R — R? and the diffusion function A : R — R satisfy the
standing assumptions

(1.2) f, Alocally C'; A(0) = 0; A is nondecreasing.

By strongly degenerate it is meant that we allow for A’(u) = 0 for all u in some
interval [, 5] C R. The resulting class of equations therefore contains parabolic
and hyperbolic equations, as well as a mix thereof. In the nondegenerate (uniformly
parabolic) case A’(-) > 0, it is well known that admits a unique classical
solution. On the other hand, for strongly degenerate equations with discontinuous
solutions, the well-posedness is ensured only in a class of weak solutions satisfying
an entropy condition. The following result is known: For ug € L'(R4) N L (RY),
there exists a unique solution u € C((0,T); L*(R%)), u € L>=(Ir) of such that
9z A(u) € L*(Il7) and for all convex functions S with ¢4 = S’f” and ry = S’ A4/,

iS(u) + V- gs(u) — Arg(u) <0, weakly on [0,7) x R%

These inequalities are referred to as entropy inequalities and the corresponding
solution is called an entropy solution.

For conservation laws (A’ = 0), the well-posedness of entropy solutions is a
celebrated result due to Kruzkov [26]. Carrillo [§] extended this result to degenerate
parabolic problems such as . For uniqueness of entropy solutions in the BV
class, see [35] [36]. An alternative well-posedness theory, based on the so-called
kinetic formulation, was developed by Lions, Perthame, and Tadmor [29] and Chen
and Perthame [12]. We refer to [2] [16] for an overview of the relevant literature on
hyperbolic and mixed hyperbolic-parabolic problems.

In this paper we derive error estimates for numerical approximations of entropy
solutions to convection-diffusion equations. Convergence results, without error esti-
mates, have been obtained for difference methods [18|[I7], 24]; finite volume methods
[21] 1]; splitting methods [22]; and BGK approximations [3, B], to mention a few
references. For a posteriori error estimates for finite volume methods, see [31].

We are herein interested in estimating the error committed by a class of monotone
difference methods. The monotone methods make use of an upwind discretization
of the convection term and a centred discretization of the parabolic term. For
notational simplicity in the introduction, let us assume f%'(-) > 0 and consider the
prototype (semi-discrete) difference method

d ; d
d [ (ua) — fl(ua—ei) _ A(ua+ei) — 2A(uqa) + A(ua—ei)
where o = (ai,...,aq) € Z% is a multi-index, e; is the #th unit vector in R?,

and Az > 0 is the spatial grid size. Although our methods are semi-discrete, i.e.,
not discretized in time, the results and proofs can be adjusted to cover some fully
discrete methods, such as the implicit method analyzed in [I8]. We refer to [25] for
a discussion of this topic when d = 1.

Denote by ua, the piecewise constant interpolant linked to u,. The goal is to
determine a number (convergence rate) v > 0 such that

(1.3) [unz(t;-) —ult, )| < CAzY, (ug € BV),

for some constant C' > 0 independent of Az and (the smallness of) A’.
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In the purely hyperbolic case (A’ = 0), a prominent result due to Kuznetsov [28§]
says that v is 1/2 for monotone difference methods, as well as for the vanishing
viscosity method. Influenced by [28], a number of works have further developed the
“Kruzkov-Kuznetsov” error estimation theory for conservation laws. We refer to
[6, T3] for an overview of the relevant results. Making use of the kinetic formulation,
Perthame [33] provided an alternative route to error estimates.

With regard to convection-diffusion equations with A’(-) > 0, the subject
of error estimates is significantly more difficult. It is only recently that there has
been some progress. The simplest case is the vanishing viscosity method. Denote
by u" the solution of the uniformly parabolic equation

(1.4) ul + V- f(u?) = AA"(u"), AM(u) = A(u) + nu,

where 1 > 0 is a (small) viscosity parameter. We have the following error estimate
for the viscosity approximation u":

(1'5) Hun("t) - u('vt)HLl < C\/ﬁv (uO € BV),

where u is the entropy solution of . A “Kruzkov-Kuznetsov” type proof of this
result is given in [19], see also [20] for a boundary value problem. The error bound
can also be seen as an outcome of continuous dependence estimates [I3] [10]
or the kinetic formulation [11] [30].

For conservation laws, the error estimate for the viscous equation reveals
what to expect for monotone difference methods [28]. This suggestive link breaks
down for degenerate convection-diffusion equations , cf. [25], a fact that may
foreshadow added difficulties coming from a second order operator. Indeed, for
general A satisfying and in one spatial dimension, the work [23] established
with v = 1/11, a rate that was recently improved to v = 1/3 in [25]. Although
~v = 1/3 is the best available rate at the moment, its optimality is unknown and
also far from the convergence rate v = 1/2 known to be optimal for conservation
laws. But in spite of that, with a linear diffusion function A, the convergence rate
improves to v = 1/2 [23| [25].

Apart from a result (y = 1/2) for linear convection-diffusion equations [I1]], we
are not aware of any results for multi-dimensional equations with a degenerate,
nonlinear diffusion part. In this paper we establish with

(1.6) = (d is the spatial dimension),

for general diffusion functions A obeying (1.2)).

A technical aspect of the proof of (|1.3)) is that we are not applying the difference
method directly to but rather to (L.4]). Denoting the corresponding numerical
solution by w},, we will prove that (1.3) holds with uas,u replaced by u} ., u",
respectively, and that the error constant C is not depending on the parameter 7.
Our original claim follows from this, since we have the error estimate (|1.5)).

To help motivate the technical arguments coming later, let us lay out a “high-
level” overview of the analysis and some of the difficulties involved. As just alluded
to, we will mostly work under the assumption A’ > 0. As a consequence no in-
formation is lost upon working with A(u) instead of w in the kinetic formulation
(compare with the u-based formulation in [12]). Set B = A~! and define g by
go A= f. Then the solution u of satisfies

(1.7) B'(0)dixaw) +9'(€) - VXaw) — AXaw) = dcmacu),

where

M) = Maw(C) =0(C — Aw)) [VA()|?,
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1 if0< (<A,
XA(uw) = Xaw) () =4 -1 if A(u) <¢ <0,
0 otherwise.

This new formulation, although restricted to nondegenerate (isotropic) diffusion,
allows for a simpler proof of the L' contraction property and thus the error estimate
. More specifically, certain error terms linked to the regularization of the yx
function [I2] can be avoided, a fact that we use to our benefit.

Now we indicate how leads to the L' contraction property. Let v and v be
solutions to with initial values ug and v, respectively. Following [12] 33], we
introduce the microscopic contraction functional

(1'8) Quﬂ)(f) = |Xu(£)| + |XU(§)| - QXu(g)Xv(g)'
Under the change of variable ¢ = A(§),

qu E u v I

Oy Ju — | = /R B(O)0Q Aty atw) () dC
(1.9) - /R B0, [xaw Q)] d¢ + /R B(Q)0) |xaw)(O)] ¢

~2 [ 00 (xaw©xan(©) &6
In view of , the chain rule yields
(1.10) B'(Q)0 | xaw | +9'(C) - V|xamw| — A|xaw| = sign (¢) dcmau).

with an analogous equation for v. Using the equations for x 4(x), X a(v) and Leibniz’s
product rule, we easily check that

B'(¢)d, (XA(U)XA(U)) +4' () v(XA(u)XA(v)) - A(XA(u)XA(v))
= XA@)OcMa) + XA@w)OcMmaw) — 2VXaw) - VXA@)-
Making use of (1.10) and (1.11)) in (1.9)) yields

By lu—v| = /R 7'(0) - V@ aw)(C) dC + /R AQacy.a(w)(O) dC
d
+ / D) d,

(1.11)

(1.12)

where
D(¢) = (sian (€) ~ 2xa0)(©))eman + (sign (€) — 2xaw(©))demacy
+4Vxa()(€) - VXagw) (€)
= Dl(C) + DQ(C) + DS(C);

the term D(-) accounts for the parabolic dissipation effects associated with w,v.

Integrating (|1.12) in x gives
d
—/\u(t,x)—v(t,xﬂ dz:://D(C)dCdx.
dt e

Although the computations have been formal up to this point, they are valid when
interpreted in the sense of distributions. Moreover, as will be seen later, these
computations can with some effort be replicated at the discrete level, i.e., when we
replace the function v by the numerical solution uag,.
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Clearly, the L'-contraction property follows if we can confirm that

(1.13) /]RD(O d¢ < 0.

This step is rather delicate and will ask for a regularization of the y functions.
Indeed, the hard part of the proof leading up to , (1.6) is related to this step.
Let us for the moment ignore the regularization procedure, and continue with formal
computations. Note that

sign (€) — 2xa(v)(¢) = sign (¢ — A(v)),

and thus, after an integration by parts followed by an application of the chain rule,

/ Dy(¢)d¢ = —2 / 5(C — Au))S(C — A(v)) [VA(w)? dC.
R R

Similarly,

[ Datcrdc = =2 [ 8¢ ~ A@)SE ~ Aw) VA d.
R R
Again by the chain rule,

D3(¢) = 46(¢ — A(u))d(¢ — A(v))VA(u) - VA(v).
Combining these formal computations we finally arrive at :

/ D(¢)d¢ = —2/ 8(¢ = A(w))3(¢ = Av)) [VA(u) = VA(u)[* d¢ < 0.
R R

One crucial insight in [25] is that the convergence rate can be improved if one
can send a certain parameter ¢ to zero independently of the grid size Ax, where ¢
controls the regularization of the Kruzkov entropies. In this paper the regularization
of the entropies is replaced by the regularization of the x functions, and as before
we would like to send € to zero independently of Az (and other parameters). It
turns out that in one spatial dimension we can do this, reaching the convergence
rate 7 = 1/3 as in [25]. In several dimensions we have not been able to carry out
this “e — 0 before other parameters” program.

A serious difficulty stems from the lack of a chain rule for finite differences,
in combination with the highly nonlinear nature of the dissipation function D(-),
resulting in a series of intricate error terms. A feature of the kinetic approach is
that the crucial error term can be expressed via the parabolic dissipation measure.
To be a bit more precise, at the continuous level, the convergence rate v = 1/3 in
the one-dimensional case depends decisively on the (weak) continuity of the map

(1.14) cr /R 5(C — eYmaguy(€) dC = 8(c — A(u))(Dp Au))?,

where u is the entropy solution and m4(,) is the parabolic dissipation measure.
The continuity of this map follows from . Unfortunately, in several space
dimensions the continuity becomes a subtle matter, since the parabolic dissipation
measure splits into directional components,

d
MA@ = D My My =00 — A(w))(9s, Au)).
=1

It appears difficult to claim from the kinetic equation (|1.7) the continuity of the
individual components

¢ / 5(C — )iy () dC = 6(c — AW) (@r, AW, i=1,....d
R
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Not being able to send the y-regularisation parameter € to zero, we must instead
balance ¢ against the grid size Az and a number of other parameters, at long last
arriving at with the convergence rate .

The optimality of (d > 1), in the L N BV class, is an open problem.
It is informative to compare with recent results on viscosity solutions and error
bounds for degenerate fully nonlinear elliptic and parabolic equations. We refer
to Krylov [27], Barles and Jakobsen [4], and Caffarelli and Souganidis [7] for some
recent works. For monotone approximations of fully nonlinear, first-order equations
with Lipschitz solutions, Crandall and Lions [I5] proved in 1984 the optimal L*°
convergence rate 1/2. However, finding a rate for degenerate second order equations
remained an open problem. The first result is due to Krylov with the rate 1/27.
Later Barles and Jakobsen improved this to to 1/5, with a further improvent by
Krylov to 1/2 for equations with special structure. We remark that these results
concern equations with convex nonlinearities. Caffarelli and Souganidis proved that
there is an algebraic rate of convergence for a class of nonconvex equations. The
convergence rate is not explicit but known to be some (small) positive number.
Here we should point out that in our framework convexity plays no role; the error
estimate applies to general nonlinearities.

The remaining part of this paper is organized as follows: In Section [2] we gather
some relevant a priori estimates for nondegenerate convection-diffusion equations
and state precisely the definition of an entropy solution. The difference method
and the main result are presented in Section In Section [4 we supply certain
kinetic formulations of the convection-diffusion and difference equations. Section
is devoted to the proof of the main result, achieved through the derivation of an
error equation based on the kinetic formulations, along with a lengthy series of
estimates bounding “unwanted” terms in this equation. In Appendix [A] we collect
results relating to well-posedness and a priori estimates for the difference method.

2. VISCOSITY APPROXIMATIONS AND ENTROPY SOLUTIONS

Let us define the viscosity approximations. Set A"(u) := A(u)+nu for any fixed
7 > 0, and consider the the uniformly parabolic problem

2.1) ul + V- f(u?) = AAN(u"), (t,x) € r,
u(0,z) = up(x), r € R4

It is well known that (2.1)) admits a unique classical (smooth) solution. We collect
some relevant (standard) estimates from [35].

Lemma 2.1. Suppose ug € L>=(R?) N LY (RY) N BV (R?), and let u" be the unique
classical solution of (2.1). Then for any t > 0,

[ (8, )| L1 may < lwoll L1 gay
(£, ) oo (mety < lluoll Lo ey,
[u"(t, ) gy (ray < luol gy gy -

Lemma 2.2. Suppose up € L=(RY) N LY(R?) and V - (f(uo) — VA(ug)) € L*(RY).
Let u" be the unique classical solution of . Then for any t1,t2 > 0,

" (t2,) = w (b1, ) gy < IV - (F(ti0) = VA@)) | 1 gy It — 1]

These results imply that the family {u"}, _ is relatively compact in C([0, T; L} (R%).
If u = lim, o u", then

(2.2) [Ju” — U’”Ll(HT) < Cn'’?,
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for some constant C' which does not depend on 7, see, e.g., [19]. Moreover, u is an
entropy solution according to the following definition:

Definition 2.1. An entropy solution of is a measurable function u = u(t, z)
satisfying:
(D.1) uw e L>([0,T]; LY (R?)) N L>(TI7) N C((0,T); L' (R?)).
(D2) A(u) € L2([0, T H(R%)).
(D.3) For all constants ¢ € R and all test functions 0 < ¢ € C§°(R? x [0,T)), the
following entropy inequality holds:

/ /H ot — |0 + sign (u— ) (F(w) — £(c)) - Voo + |A() — A(c)| A dbde

+/ |ug — c|e(x,0)dz > 0.
Rd

The uniqueness of entropy solutions is proved in [§], see the introduction for
additional references.

3. DIFFERENCE METHOD AND MAIN RESULT

Let f = (f',..., f%), and let Az denote the mesh size. For simplicity we consider
a uniform grid in R? consisting of cubes with sides Az. For a multi-index a =
(ai1,...,aq) € Z, we let I, denote the grid cell

I, = [$a1—1/2»$a1+1/2) X X [xozd—l/%xad+1/2)»

where 21,2 = (j +1/2)Ax for j € Z. Let e}, € Z* be the vector with value one in
the k-th component and zero otherwise. Then we define the forward and backward
discrete partial derivatives in the k-ht direction as

Oate, — Oa

Az

Definition 3.1. (Numerical flux) We call a function F' € C*(R?) a monotone two
point numerical fluz for f, if F(u,u) = f(u) and

Dt (0,) =+ k=1,...,d

0 0
—_— > — <
auF(u,v) >0 and 8UF(u,v) <0

holds for all w and v. We say that the numerical flux splits whenever F' can be
written

F(u,v) = Fi(u) + Fa(v).
Note that F| > 0 and Fj < 0 whenever F' is monotone.

Let F* be a numerical flux function corresponding to f* for k = 1,...,d. The
semi-discrete approximation of (1.1)) is the solution of the equations

3.1) Dt + 30 DY F (g, tare,) = S0y DLDY A(u,), a € Z4, t € (0,T),
’ e (0) = U0, a €79,

where uq,0 = ﬁ fla ug(x) dx. See Appendix in particular Lemmas and
regarding existence and solution properties to this infinite system of ODEs.
Define the piecewise constant (in x) function ua, by

(3.2) uaz(t, ) = uq(t) for x € I,.

Our main result is the following:
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Theorem 3.1. Suppose f and A satisfy (1.2) and the initial function ug is in
BV (RY)NL®(RY)NLYRY). Let F be a monotone, Lipschitz, two point numerical
fluz corresponding to f! that splits for 1 < i < d. Let u be the entropy solution to

(1.1) and ua. be defined by (3.2), where u, is the solution to (3.1)).

Then, for any positive R and T, there exists a constant C' depending only on f,
A, ug, R and T, such that

2
luae(t) = w1 (po,r)) < CAZH, [0, T].

4. KINETIC FORMULATIONS

In this section we supply certain kinetic formulations of the continuous and
discrete equations (1.1]) and . As a preparation for the error estimate, we also
regularize the kinetic equations by mollification. As explained in the introduction,
due to the application of the viscous approximations in the proof of the error
estimate, we assume A’ > 0 for these intermediate results.

4.1. Kinetic formulation of convection-diffusion equation.

Lemma 4.1. Assume that A’ > 0 and set B := A™'. Let u be the solution of
(T.1). Define g by g(A(2)) = f(2) for all z € R. Let S € C*(R),

(u) = /0 UGB () dn dalu) = B(AW)),

o =[S GG aat) = alAw)
and Sg(u) = S(A(u)). Then
Oba(u) + V- qa(u) — ASa(u) = —S4(u) [VA(u)*.
Proof. Multiplying by /s (u) gives
Optba(u) + ¥ (WV - fu) = Py (W) AA(u).

Using a change of variables A(o) = z,
i =ou( [ 100 02)
—o( [ S (40D (A0) A'(0) do)= 5/ (AW (w)

Hence
YAV - fu) =V - qa(w).
Similarly we obtain 1/, (u) = S’(A(w)). Finally, observe that
ASa(u) = 8" (A(w) [VA()|* + ¢ (u)AA(w).
(]

The above entropy equation can be rephrased in terms of the y function. Recall
that for any locally Lipschitz continuous ¥ : R — R,

(4.1) () — W(0) = / V(E)x(wE)de,  (ueR).

The next lemma reveals the equation satisfied by x(A(u); ¢), where u solves (1.1)),
i.e., the kinetic formulation of the convection-diffusion equation.
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Lemma 4.2. Assume that A’ > 0 and set B := A™'. Let u be the solution of
(L1). Define p(t,z,¢) = x(A(u(t, z));¢). Then
42) {B'(Qamg’(o Vp—Ap=0dm inD'((0,T) xR xR),
p(0,2,¢) = x(A(uo(2)); C), (z,¢) €R? xR,
where
m(t,z,¢) = 8(¢C — A(w)) [VA(u)*,
and g satisfies g(A(z)) = f(z) for all z € R.

Proof. By Lemma and 7
o [ SOBEOXAW: Q)+ [ S0 OxAw: g
R R

—A /R S'(Ox(A(w); ) d = /R 8'(C)aemit, z,C) dC.
[}

4.2. Kinetic formulation of discrete equations. Stability/uniqueness analysis
for differential equations often revolve around the chain rule. The chain rule breaks
down for numerical methods, but for us the next lemma will act as a substitute.

Lemma 4.3. Let S € C*(R) satisfy S’(0) = 0. For any g € CY(R) and any real
numbers a, b and c,

S'@la®) - ga) = [ S [ ") (2) d
+ / 5"(2)(g(z) - g(b)) d.

Proof. For any ¢ € R, integration by parts yields

¢ ¢
S(O)(9(C) — g(b)) = / §'(2)g' () dz + / §"()(a(2) — g(b)) d=.

Take the two equations obtained by setting ¢ be equal to a and b and subtract one
from the other. (]

To make the discrete and continuous calculus notations similar, we introduce the
discrete gradient

Dio=(Dlo,...,Dio), foranyo:Z% = R.

The upcoming lemma contains the equation satisfied by x(uqs;(), where u, is
the solution of the scheme ((3.1)).

Lemma 4.4. Suppose A’ > 0. Let {uq},cza be the solution to [B.1). Then
palt,€) = X(a(t);€) satisfies
Op + (FI(E) - D+ F3(&) - Dy) p — A(§)D— - Dyp = J¢(mp + ma),
Ca(0,8) = X(ua,0; ),
in D'(R x [0,T)) for each a € Z2, where
d

mr = Z <(F1i(§) — Fl(ta—e,)) D" x(ta; &)

=1

+ (le(f) - Fg(uaJrei))DiX(ua; 5))
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and

+ M(A('S) - A(uaei))DiX(u“;£)>‘

Proof. Since {us} is a solution of (3.1)),

(4.3) S (ua(t))druq(t +ZS’ (e (t)) DY F (g (), v, (1))

d
=35 (ua(0) DD} Ao 1),

for all t € (0,T) and a € Z%. By the chain rule
' (10 (£))Drtta (£) = DpS (e (1))
Consider the flux term. For each i, we have that F* = F§ + F%, and therefore
5" (ua () D F (ua(t), tate,; (t)) = S (ua(t)) D" Fi(uq) + 5 (ua(t)) D’ Fi(uq).
By Lemma with g equal to Fj and F%, we obtain
S (ua(O)D Fifua) = D Qi) = 3= [ S"GIFIE) = Filua-c) d

S (ua (1)) D', Fi(u;) = D} @h(ua) + 1~ / TS EF(R) ~ Fi(asa)

where

/S’ FZ z)dz for j =1,2.

Consider the term on the right-hand side of (| . Let

- /0 " S(2)A () de

Fix ¢ and apply Lemma 3| with g = A, a = uq, b = tuq—e,, and tqie,. Adding the
two equations yields

S'(uq) D" D', (A(uq)) = D™.D% R(uy)

1 tackes 1
tae S - A d:

1 tarmes "
+ A2 /ua S"(2)(A(z) — A(ua-e,)) dz.

Hence (4.3)) turns into
d

A5 (uq +Z (D"Qi (ua) + D', Qb (ua)) ZDZDZ

=1

d Ua—e; . .

=1 Uo
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d 1 Uate; "
L / §"(2)(A(2) — Altiase,)) dz
= Azx® Ju,

+ Xd; A%Q /u u S"(2)(A(2) = Alua_e,)) dz.
By equation (4.1)),
D Q4 (o) + D Qi) = [ SR O+ (F) (O (o) ds.
Similarly,
D' D R(ug) = /R S'(©)A'(€) DL Dl (ua; €) d.
Consider the right-hand side. For any g € C(R),
/ ()0l — g(b) dz = | $"€16(0) = 90) (x(b56) = x(as€)

Hence

1 ta—e; i i o 1 i _ Fi(y © v
i [ FE) = o) s = = [ SUO©) = Filua-c)) D' x(uai€) d.

—1 ZaJrﬂi . . . . .
& - Rl e = [ SO - Filuare) Dix(mie) de
Similarly,
1 [Uete
[ SRR - Al dz
-1 " i
= 5 | 5O Aase) = A©) Dl x{uoi€) d.
1 e
e SO - Ao dz
—1 1" 7 .
= 7 ST OA(© = Alta-c) D x(uai€) .
The result follows. O

For a function u : R — R we define the shift operator S, by S,u(z) = u(x +y).

Then the discrete derivatives may be expressed as
A Snn o —
Diu= :l:iiAZ; u’

where Azx; = Axe;.

Making a change of variable ( = A(£), we can obtain an equation satisfied by
X(A(uaz); €), where ua, is the numerical solution ([3.2]), resulting in the “discrete”
kinetic formulation to be utilized later.

Lemma 4.5. Suppose A’ > 0. Let {us} be the solution to (3.1) and define ua,
by (3.2). Let G; : R — R? satisfy Gj(A(u)) = F;(u) Vu, for j = 1, 2. Then
P2 (t, 2, ¢) = X(A(uaq(t,)); ) satisfies

B'(¢)8:p™ + (G1(¢) - Dy + Gy() - D-)p™" = D - Dy pB% = 0¢(ny” + ng?),
p2(0,¢) = x(A(ur,); €),
in D'(R x IIy), where
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d
ng" =3 (G1(0) ~ GLA(S-ar,uar)) DEX(A(uas); ()

1=1
d

+ ) (G5(0) — G4(A(Sas,unx))) DYy x(A(uaz); €)

=1
and
na” Z A, (AlSazuaq) — DY x(A(uar); €)
d

i=1

Proof. Let S € C°(R) and define S4(§) = S(A(€)). By Lemma [4.4]
O / Sa(E)x(tta; €) d + / SAO)FL(E) - D + FY(€) - Dy )x(1ua; €) de

/ SA(€)A(€)D_ - Dy x(ua:6)d / S, (€)(mp + ma) dE.

Let ¢ = A(€) and note that x(ua; &) = x(A(uq); A(E)). The terms on the left-hand
side are straightforward to verify. Next,

/ S (E)mp(€) de
R

d
=" [ S AONGHA©) - Gl (Aluar DD XAl A©)A(€)de
d
+3 [ S AN GHA©) - GhAluare D x(Alua) AQ)A'(€) de
d | 4 |
=2 / S'(Q)(G4(O) — G (Aluae,))) D' x(Alua); C) d¢

d
+3 [ SQEHO - GiAtar))PEA): O

A similar computation shows the second equality involving nﬁ“’. O

4.3. Various regularizations. In this section we study mollified versions of Lemma
and Let us first introduce some notation. Let J € C°(R) denote a function
satisfying

supp(J) C [-1,1], /RJ(:L‘) dx =1and J(—z) = J(x)

for all z € R. That is, J is a symmetric mollifier on R with support in [—1,1].
For any o > 0 we let J,(z) = 0~ 1J(0c7'z). For any n > 1, J®" is a symmetric
mollifier on R™ with support in [—o, o]™. In general the dimension of the argument
will define n, so to simplify the notation we write J, instead of J&™.

Let 1 : R? — R be a continuous function and u,v € L*(R). Then we define

(W) % fog) / / Buy), () F (& — 92)g (@ — yo) dyadys,
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where f,g € L1(R). Similarly, we let

Wlu,w) ¥ = / (uy), v(@) @ — ) dy.

This notation generalizes in an obvious way to functions of several variables.
We start by introducing regularizations of sign(-) and x(u;-)

Lemma 4.6. Fore > 0, define
3

sign, (€) =2 |

0

J(OdC,  xe(us) = /R X Q)€ — €) dC.

Then

(i) For each &, u xe(u;€) € C(R) and duxe(u; §) = Jo(§ — u).
(ii) For all u and &

Signa (5) - 2Xa(u§ f) = SignE (f — 'u,) .
(iii) For any u
[ Detws) = x(us)] de < .
Proof. We first prove (i). Let H.(o) = J:(o). Since J:(§ — ¢) = J.(¢ = &),

lim » / (x(u+ b5 €)= x(; ) (€ = €) dC
R

h*)OE
— lim % (Ho(u+h— &) — Ho(u—€)) = J.(u—&).

h—0

Next we prove (ii). Let 0 = ¢ — &. By the symmetry of J_,
X = [ x(uio + (o) do.
R

A calculation (or (5.24)) yields
X(uso+§) = x(u—§&o) —x(=§0).

Note that x(—¢;0) = —x(& —0o). Hence

w8 = [ (=60 +ME-0MO

R
It follows that
sign. (€~ 2:(6€) = =2 [ x(u=§OLO A +2 [ ((66) ~ X(&-LO &
R R

= 7+ D.

Since (x(&;¢) — x(&; —()) is antisymmetric in ¢ and J; is symmetric it follows that
T3 = 0. Now

u—_E E—u
Ty = -2 Jo(C)d¢ =2 J.(¢) d¢ = sign, (€ —u) .
=2 [ adc=2 [ 10 dc = sign. (€~ )
To prove (iii), note that

IXe(u; €) = x(u; §)| = 0 whenever § ¢ (—¢,6) U (u—&,u+¢).
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For e > 0 and f € C(R), let R : R? — R be defined by

(4.5) /}R (@)X 0)J(C — o) do = BRI (1, ) + F(Q)xe (3 0),

for all u,¢ € R.

Now we are ready to provide “regularized” versions of Lemmas and
As the mollification will take place on a slightly smaller region, we introduce the
notation I := (rg, T — o) x RY.

We start with the regularization of the kinetic formulation of the convection-
diffusion equation.

Lemma 4.7. Assume that A’ > 0. Let u be the solution of (1.1)) and define
Pe,ryrg +— X(A(u), ) * J’rg & Jr & J£~
Then for (t,z,() € II? X R, the function pe rr, satisfies
B,(C)atpe,r,ro + QI(C) : vps,r,ro - Aps,r,ro + atR£;7r0 +V. Rg:m«(, = aan,e,r,roa
where
Rg,r,ro = Rg(A(’LL), C) * JT ® JTO’
with RI defined by [@.F), and
Pt €)= (¢ = A) VAW % Ty, @ T, ) (8 ),

Proof. Starting off from Lemma take the convolution of equation (4.2)) with J.
and apply (4.5). Finally, convolve the resulting equation with J, ® J,,. O

Next up is the regularization of the kinetic formulation of the discrete equations.

Lemma 4.8. Under the same assumptions and with the same notation as in

Lemmal[{.5, define
P2r 0 = X(A(uag); ) * Jry ® Jp ® Je.

For (t,z,¢) € II}? x R, the function p2%,  satisfies

&,7,T0

B(Q)0upLs . + 9 (Q) - Vpor = Ap2E 4+ GL(Q) - (D — V)p=r
+GH(CQ) - (D= = V)p22, + (A —D_ - Dy)pPr, + O REAT

€,77T0
G, Az G Az A A
+ D+ : Rf:‘ﬁl“ﬂ‘o +D_ - REJQ“J‘O = 8C (nA,Ie,r,m + nG,l:S,r,rg)'

Here, RI'2%2 = RI(A(uaz), ) * Jp ® Jpy with R coming from (&.5). Furthermore,

€,7,70
A A A A
Naerry =Na *(Je ® Jp @ Jpy) and ng% .. = ng” * (J- @ Jp @ Jiy).

Proof. In view of Lemma and (|4.5]),
B'(Q)0p2" + (G1(Q) - Dy + G5(C) - D-)p2” = D+ Dy p2*
+ ORE (un, ) + Dy - B (une, )+ D RE* (une, €)= 0c(ni% +nd%),

where p27(t,x,¢) = x(A(uaz); ¢) and nﬁf”a =n4% x J. and néza =n4" x J.. Take
the convolution of the above equation with J, ® J,.,. Recall that G} + G4 = ¢’ and
add and subtract to obtain the result. (]
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5. PROOF OoF THEOREM [3.1]

We are now ready to embark on the proof of the error estimate (Theorem [3.1)).
Instead of working directly with the microscopic contraction functional (1.8]), we
introduce a regularized version Q. of it. For u,v,£ € R, define

(5-1)  Qc(u,v;8) = sign, (§) xe(u; €) + sign. (&) Xe(v;€) — 2xe (u; )X (v36),
where sign, and x. are given in Lemma [£.6] One may show that

/ (e €) — X (0:€))2 d = / Q- (u, v: ) de.
R R

This equality is, however, not directly useful to us, since we will be working with
functions like x.(A(u); &) with A(-) nonlinear, but see the related Lemma

5.1. Main error equation. We will use the kinetic formulations of the convection-
diffusion equation and the difference method to derive a fundamental equation for
the error quantity Q. (A(u(t,z)), A(uax(t,x)); ) (properly regularized).

Lemma 5.1. Assume that A’ > 0. With the notation of Lemmal/.7 and[{.8, define

Qe,r,ro (C) = QE(A(u)’ A(“Am); C) (uﬂimc)
Then, for all (t,x) € II7?,

(5.2) /R B (C)0hQemry dC + /R Q) - VQerrra de

(Jro @ Jp) @ (Jpy © Jy).

(53) = / AQE,T7TD dC + 2/ va,T,To . (ZV - (D+ + D—))pa 70 dg
R R
(5.4) - / (sign, (C — A(uag)) * Jry ® J)ORE, ., dC
(5.5) - / (sign, (¢ — A(u)) * Jp, @ Jr)atRf,. AT d¢
R
(5.6) - / (sign, (C — Auns)) % Jro ® J)V - RE, - dC
R
(5.7) . /(Signs (€ — A(w) * Jry ® Jy) (D+ REVA® ¢ p_. RS2 TAO*) d¢
R

- / (sign, (¢ — Au) % Jy ® J,)(G1(C) - (D4 — V)

(5.8) £ GH(Q) - (D=~ V)p2E,, dC.
69+ [ i €= AW) * Ty © T)A = Do Dy, dC
G10) =2 [ (L= Aw) Ty @ T nd de

(5.11) -2 /R Eng.erro(C)dC,

where

Enzerr (C) =—=Vperrg - (D+ + D_)p?ﬁm
(5'12) +(‘]E(<_A(UA36))*JT0 ®J )nAETT'O
+ (JE(C - A(’LL)) * J”‘O ® J )nA JESTTO "
Proof. By definition,

QE,T‘,TO (ta xz, C) = Signe (g) pE,T,To (tv €z, C) + Signs (C) P?fgro (t7 €z, C)
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- 2/)577‘,% (t? T, C)p?f,m (tv Zz, C)

Hence,

6t/RQE,T,mB’(C) dCZ/Rsigng (Q) Ou(peryro + PEE ) B'(C) dC

By Lemmas [4.7] and [4.§]

Fi=- /RSigns (Q)9'(C)* V(Pperry + P2 1y) S

T

+ [ sign, (©) A(pe,r,m + Pﬁf,m) dg

%\

T2

Slgn (C)at( E’I‘TOJ’_RET’I‘AOQ:)dC

%\

TE

sign. (Q) (V- B, + Dy - REER" + D RERRT) dc

—

7 4
T

+ [ sign, (¢) (8471,4,5,,”77,0 + 5¢nﬁf57,,7m) d¢

%\

TP

sign. (¢) (G1(¢) - (D+ = V) + G5(Q) - (D = V)) p2y,, dC

%\

78
+/RSlgnE (C) (A -D_- D+)p5'rrg dC
'27
+ / sign. () Ocni ., dC.
R

T8
Similarly for 5 we obtain
72 =2 [ (0 Vo) i€
T}

_2/ ps,r,roApéf’ro + Aps,r,rop?,;f;ro dC
R

922

+2/quryroatRsBrrAf+ps7roatRsBrrU C
R

73
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G A G A
+2/p€r7‘ov Rgrro+p5TT0D+ RETT0x+p€TToD RETTode
R

T

A
-2 /']R pgyr,roagnAimm + pg r,ro a(nA £,r,T0 dC

75
73

9 / Derra (G1(Q) - (Dy — V) +G4(Q) - (D — V) g2, dC

p1

=2 [ e (A= Do Dy dC
pe

2 /R Perrira DS o dC.

'9'28

We compute J; + Z term by term, and thereby explain each of the terms (5.3)—
(5.11) in the lemma. We start with

T s 7= [ 400 VQer .
R
which gives the last term in ([5.2)).

To make the second derivative terms a complete derivative we need to add and
subtract. Hence we may write

% “"% A/errod<+4/VpsrT0 VpsrrodC
= A/ QEJ“,TO dC+2/ Vpa,r,ro : (D+ +D*)p€Af,ro dC
R R

+ 2/ Vpa,'r‘,?“o (2v - (‘DJF + D*))pEAf,ro dCa
R

which explains and the first term in Eag e rro-
By Lemma [ 1t follows that

sign, (€) — 2pe rr, = sign, (¢ — A(u)) * Jp, ® Jr,
Signa (g) - 2p8 7,70 Signe (C - A(U’Ai)) * JT'(J ® J’

Hence,
T34 TP =~ /R (sign. (C — A(ua)) * Jpy @ J)OREL, dC
- [ e (= Aw) <y @ Jr)atRf;:ff d,
which explains and Similarly,
T4 7 = = [ (signe (€ = Alws) « Iy © 1)V - R, e
N /R (sign, (€ — A(u)) % Jr, @ J,) <D+ RELAT L p_ . % A) dc,

which explains the presence of (5.6) and (5.7)).
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Performing integration by parts we obtain, using Lemma
7+ 75 = | (i €= Alwsn)) < 1y © Tk
+ (sign, (€ — A(w) * Jyy ® )% 1.1, dC
= =2 [ (¢ M) > Ty © T

+ (JE(C - A('LL)) * JTO ® Jr )nA LE,T,T0 d(a

which explains the two last terms in Eaz.crr,-
Similarly,

T+ T = - / (sign, (¢ — A(w)) * Jny ® J,)(G4(C) - (D4 — V)
=+ GIZ(C) : (D— - v))pe 70 d<7
and
DA g / (sign, (C — A(u)) % Ty ® J,)(A — D_ - Dy)p7, dC.
R

explaining the terms and .
Finally, integration by parts yields

T+ TP = —2/@@ — A(w)) % Ty @ 0BT, dC,
R
which is the term (5.10]). O

5.2. Dissipative term. In this subsection we are concerned with finding an upper
bound on . In the continuous setting, this “dissipative” term is negative,
cf. , which comes as a consequence of the chain rule of calculus. The following
elementary lemma will help us contend with the lack of a discrete chain rule.

Lemma 5.2. Let a and b be two real numbers. Then there exist real numbers
7 =17:(a,b,() and § = 0.(a,b,() such that T and 6 are between a and b, and

(513) I =90b8) = (@) de = L~ )b a),
G [ =B ~ M) de = I~ )b - a)

Furthermore, whenever a # b:

0
b
TG0 = [ e e ds
b

T(C=7) = ey || 2O -©)as

(ii)
(Je(C=0) = J(C—7))(b—a) =

(iii)

b

o [T 906 - b+ a)) de;
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(iv)

J=(¢ = 0=(a,6,0)) = J=(¢ = 7(a,b,¢)) =
= (Je(¢ = 0:(b,a,)) = Jo(C = 7e(b, a,())) -

Proof. To prove , note that
b
[ ac-90- 006 ~x@e) e = [ ric-ap-od

By the mean value theorem there exists a 7 between a and b such that

b b
/ JE<<—5><b—£>d§:Jg<<—r)/ (b— &) de.

Equation (5.13) follows in a similar way. The proof of (i) is immediate. Let us
prove (ii). By (i)

(¢~ =m0 = [ e (1-25=5) ae

It remains to observe that

2b—§ 26— (b+a)
b—a b—a
To prove (iii), note that

b
Js<<—a><bfa>2:z/ Jo(C — a)(b - €) de.

Hence (iii) follows by (i). To prove (iv), observe that the expression on the right-
hand side of (ii) is symmetric in a and b. O

The next result can be viewed as a dlscrete counterpart of the the chain rule,
enabling us to write the nonlinear term n properly regularized, on a form that
resembles a parabolic dissipation term hke

Lemma 5.3. With the notation of Lemmal[].5, for each 1 <i <d, let

TRpi = Te(A(uns), Saz, A(uaz); C);  Tay: = Te(A(uas), S—az Aluaz), )
and

Onsi = 0-(Aluas), Saz, Aluaz), Q) Oa,,; = 0:(A(uas), S—aw, Aluas), ),

where 7., 0. is defined in Lemmal[5.3 Then
(i)

d
W3 L6, 0) = 5 3 I~ 7, (D Aluas)?
i=1 ) .
+§ZJ5(C ngc,i)(D Aluaz))™
i=1

(i) for1<i<d,

D' xe(A(uaz); ¢) = Jo(¢C — 0%,.,) D (A(uaz)),
DZXS(A(UAI)K) = E(C_ng,i) 7(‘4(qu))'
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Proof. By the definition (£:4) of n3®, recalling that S, commutes with function
evaluation,

na® * J.(t, z,¢)

ZA:.;‘Q/JE ¢— § SALEL (uAac)_5)(X(SAMA(UA$)7§)_X(A(qu)7§))d§

=

d
1
£y / (€ — )(S-an, Aluas) — ) ((S-ar Altan);€) — (Aluan); ) dé.
=1 z
Hence (i) follows by Lemma To prove (ii) note that by Lemma

D /R N(A(uag)i€)J-(C — €) de

= AL / J(C = ) (X(Saz; Aluns); §) — x(A(uaz); €)) dé
- J (C GAI 7,) l (A(UAI))

The same argument applies to 6 Az O

We have now come to the key result of this subsection, namely a lower bound
on the discrete dissipation term ([5.12)).

Lemma 5.4. Let Eng e r, be defined in Lemmal[5.1, Then

Enverre > Z(Rg + R;,) everywhere in (ro, T — o) x R x R,
k=1
for all positive numbers Ax, €, r, and rq, where
d
RT(O = Z((JE(C - Txx,i) —Je(C— HA;C :))D A(UA:C) * Jrg ® Jr)Ou, Pe,ryro
i=1
d .
R (Q) = Z((JE(C - T&z,z’) —J(C— egx,i»Dl—A(qu)) * Jrg @ Jr )0, Perros

=1

RO =3 Z [((F:(¢ = Awan) = (¢ = AL, ) * T © )
% (Je(C = A) (O, Alw)? % Iy @ 1) .
NGEE zdj (V¢ = Awan)) = J(C = ATz, ) * Iy @ T, )

N
Il
_

X (Jo(C = A()(Or, W) 5 Ty, @ 1) |.
Proof. By Lemma
(JE(C - A( )) * ‘]7"0 ® Jr)n%,me,r,m

d
D _(Je(C = AQw) x Try @ J)(J=(C = 745, ) (D Alwaa)) x Jpy © 1)

d
b5 = AWy © )~ 78, DL A(usn)P iy © )
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Observe that
D oo = Do (X AW); €)% Ty @ Jy) = J(C — A())O, A1) % Ty © .
Using Lemma [5.3] once more gives
(DY + DL)pe = (Jo(C = 04, )DL Alung) * Jpy @ J;
+ Jo(¢ = 0x,.,)D" Aluag)) * Jry ® Jy.
Hence,

Vperro - (D + D)ooy,

d
= D€~ A)r A 5 ry © )G = 8K )DL Auae) 0y .7

+ Z )0z, A(u) % Jry @ J)(Je(C = Oxy ) D- Alung)) * Jry ® Jr).

Adding and subtracting we obtain
~Vpewro  (Ds+ D)p2f,, = F" + Ty + R + Ry,

where
d
%Jr = — Z(JE(C - A(u))aw,A(u) * JTO ® JT)(JE(C - TIw,z)DiA(qu) * JTO ® JT)’
=1
d
Ty =- Z(JE(C — A(u)) 0z, A(u) * Jry @ Jr)(J=(C = T&x,i)Di—A(uAﬂc)) * Iy @ ).
=1

For each 1 < i <d,

Jo(C = Ause)) = 5 (J(C = Aluar) = (¢~ AGE, )

t 5 (¢~ Alwan) — 1.(¢~ A7z,
1

5 (Je(C = AL, ) + (¢~ A7, )

1
2

It follows that
(J(¢ — A(uaz)) * Jry ® JT)nA,E,T,ro = %f + 5 + R; + Ry,

where
d
Ty = 5 S (C— AL ) % Ty © T (LG — A)) (Br, Aw)) % Ty, @ ),
i=1
d
Ty = % Z(Je(C - A(T&c,i)) * Jry @ Jp)(Jo(C — A(u))(axiA(“))Q * Jry @ Jr).
i=1
Note that s ,
EAx,e,r,ro = Z(%j_ + ﬁ + Z R+ + Rk
k=1 k=1
Now,
3 1
DTt =5 D €= AW) % ey © T (¢ — X, (D Aluse)) % Jry © J;)
k=1 i=1

- Z )0, A(u) * Ty @ J)(Je(C = X, JDL Alung) * Jpy ® Jy)
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(Je(¢C = A(TXM)) * Jro @ Jp) (Je(C = A(w)) (0, A(1)? * Jpy © Jr)

+
N | =

=1

2

JE(C - A(u))JE(C - A(Txx,i» (aaciA(U) - Dj_A(qu))

Il
N | =
=

=1

(u,unz

@ T ©
> 0.

The obtained inequality holds for all (¢,,¢) € (ro, T — 1) x R? x R. Similarly,

3

Z T (t,z,¢) >0 for all (¢,2,¢) € (ro,T —ro) X R? x R.

i=1
This concludes the proof of the lemma. O
5.3. Bounding error terms. We are going to estimate a series of “unwanted”
terms coming from Lemmas [5.1] and To this end, we will need to gather three
technical lemmas, the first one being a simple application of Young’s inequality for
convolutions.

Lemma 5.5. Let ¢ : R2 — R be a measurable function, and u,v : R* — R be
measurable functions satisfying

(@), v(w2))| < Ki(@)Ka(za) (21,2 € RY),
for some K, € LP(R%),1 < p < 00, and Ko € L*(R?). Then
(u,v)
[eo) " eyl

for any g € LY(R) and f € LY(R) where p~! + ¢! = 1.
If ¢ € L>(R?), then

(u,v)

ey = il @) 182l @ay 1l o) 9l ey

(5.15) [y ™7 o] < Wy 1 s ey gl ey
Proof. Observe that
(u7v)
fotwnn) s soe],,,

<[] KK | - )l oo~ )] dindyeds
R4 xR4 x R4

= [ (K * [f) (K2 * (gDl v ey -

By Holder’s inequality,
(B [f1) (B (gD 1y < KL ] poo (ay (12 % 191l 1 ey -
By Young’s inequality for convolutions, K1 % [l pecgay < 1K1l 1oy [1f Il paga
and [ % gl ey < 11Kl 21 ey 19] 1 ey Betuation (B18) follows, since
[, L otaton. oo @ =m)ata—se) dusdsn| < 1] oy 1o Dol oy
U

The next lemma is at the heart of the matter, permitting us to estimate some
terms involving convolutions against approximate delta functions.

Lemma 5.6. For real numbers a and b, let 7 = 1.(a,b,() and 0 = 6.(a,b,() be as
in Lemmali2
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(i) For f € L _(R), define

loc
7D = [0¢=m) = L~ ap Q) de
Then
EACE=
(i) For f € L(R), define

T2(f) = / (Jo(C = 8) — J(C —7)(b— a)F(C) dC.

b
[ 10cts+ g ae)

Then )
| 72(f)] < 2 IFll e gy 16— al -
(iii) Suppose {fe}.oo C WL (R) and assume that there exists f € W, (R) such

loc loc
that fo — f in VVli)Cl(R) Then
<

i 72| < | [ 17°@)

Proof. Assume that a < b. By Lemma [5.2] and Fubini’s Theorem,

2 b
T = Gage [ (10O = (= I)@) (- ©) e

Since 9¢(b — £)? = —2(b — &), integration by parts yields

b b— 2

(5.16) 7 = [ 06l O de
Then statement (i) follows, since
(5.17) (b-8° _ 1, whenever a < ¢ <b

' (b—a)? =" =s=T

By Lemma 5.2}

1 b
TN = 5oy | IO~ (@ h) s

As ||f x Jellpoo vy < 1|l oo (g)» We may conclude that

2 1 ’ _
TN < 5= | Wlime 126 = (a+ )] d.

This implies statement (ii), because
b
1
[ 126~ @b dg = 50,

Finally, we establish statement (iii). By the triangle inequality and Young’s
inequality for convolutions,

1fix Je = f/HLl(V) <|Ifi- f/HLl(V) 1 *Je fIHLl(V)
for any compact V C R. Hence (f.xJ.) = fin L (R) as ¢ | 0. By (5.16) and
(5.17)) it follows that
b 2 b 2
Ll / 0-9° . _ / 1y (0= )
i 72 (1) = limy [ (7 IO gz i = [ F© Gz e
The estimate follows thanks to (5.17). O

We need one more lemma bounding some specific convolution integrals.
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Lemma 5.7. Suppose f € C(R) and let Rf : R? — R be defined by ([A.5). Then

(5.18) Rl(w¢) = [ (f0) = FO) oo =) dor
for all u,( € R. Furthermore, if f is Lipschitz continuous, then
(519) [ IR @] de < 21 lul

R

Suppose A’ >n >0 and let g be defined by go A= f. For a,b € R, let

Z(a.b) = / sign, (C — a) RY (b;C) dC.
R
Then
(5.20) 1Z(a,b)] < 411f 5

Proof. Observe that

/ flo)x(u;0)J(¢ — o) do
R

- /R (F(0) — F(O)x(:0) (¢ — o) dor+ F(C)xe (us ).

RE(u,0)

Let ¢'(0) = (f(0) — f({))Je(¢ — o). Equation follows, since
[ 710) = HONX(w )¢ = 0)do = aw) ~ a(0) = [ (0) do
R 0
To prove observe that

[ w0l dc < [ ol ( [ 150~ 1)1 - o) dc) o

The result follows as

/R 11(0) = F(OI (¢ — o) dor < [F .
Let us prove . Take

’ C ’
HY (b;C) =/ R? (b;0) do.
0
Integration by parts yields

Z(a,b) = 2 / J.(¢ — a)H (b:¢)dC = —(HY (b;-) % J.) (a).

b
"(b;a) / / Je(w — o) dw do.
o Jo

Due to the symmetry of J.,

b
ba //g (w—0)dwdo
0o Jo
b
//g w—o0)dwdo
o Jo
b
://g (w—0)dwdo
o Jo

By 19,
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[ e oyasa
= [ dentta) ([ - oydo)as

- [ntese( [ o) io) s

Note that .
/0 Je(w—0)do = /Rx(a;a)JE(w —0)do = x:(a;w).
Hence,
17 (0) = [ /@) (xlbre () = i) () de
Set

Aa, b;w) = x(b;w)xe(a;w) — x(a;w)xe (b;w).
To find the support of A(a, b;w) we first observe that A(a, b;w) = —A(b, a;w). This
reduces the situation to the following cases:

0<a<b: |Mabw) <1
b<a<0: [Ma,biw)| <Tjq_pj<es
a<0<b: |MNa,bw) <1
It thus follows that
|1 (0,0 <2/l =

Statement (5.20)) follows as g'(A(2))A'(z) = f'(z), which implies [|¢'[| o, < || f[ly;, 77"
g

We have now the tools needed to start estimating the error terms in Lemmas 5.1
and starting with those in Lemma

Estimate 5.1. Let Rli be defined in Lemma |5.4. Then there exists a constant
C =C(d,J) such that

Proof. Let us first make an observation regarding the similarity of these terms.
By statement (iv) of Lemma recalling also the definition of Qim ;, and Tfm- in

Lemma [5.3]
S, (Je(€ = 20) = J(C = 03,.))
= Je(( = 7 (Sar, A(uaz), A(uaz), €) = Je(€ = 0-(Sar, A(uaz), A(uaz), )
= = (¢ = 72,0) = T~ 0L,.)
Recalling that pe .., = X<(A(w); ) % Jy, ® Jy, which implies
R{(¢)+ Ry (€)

zfzSA

d
=1
d

/}R RE(Q) + Ry (Q) dC

Ax Ax
=0 (14 2 ) ID-Awa s -
L1(T150) r r

[(JE(C - TA_x,i) —Je(C - ng,i)) D (upg) % (Jry @ Jr)] Oz, Pe,r,ro

+ Z [(JE(C - Tgmz) —J(¢— oga:z)) D" (upz) * (Jro ® JT)} Oz Perro
i=1
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d
= — Z(SA% - 1)8xip5,r,7"0

i=1

x [(JE(C = Tagi) — Je(C— Hgm)) D' (upg) * (Jrg ® Jr)}

- —AwZ( — Ta0) — Jo(C — 05,,))DE A(usa)) Xe(A(w);0)
(u, uAT) (Jro ® 890@J ) (JTO &® Dijr)-

By statement (ii) of Lemma 5.6

1) || R©+ R (O]

7Aa:

< 55 I (Al e oy D Alan) [

By Lemma

|[ 7t o+ rrow],,

| Jrg @ O, Jr @ Jpy @ DY

Az~
o < 72;1D1A(um)l}mnﬂ

X HaachHLl(Rd) }|D3LJT||L1(W) :
Recall that |0z, Jr || 11 (gay < 2 ||J’|| r~1. Note that

| D J,(2)] = |J (@i + Az) — Jp ()| [ [ I ()
J#i
1
< 5 1o ez ne [T (),
J#i

Hence

; 1 Az
(5.22) ||D+Jr||L1(Rd) 3 ||J’|| /nmngw dv; =2|J'|| - <1+ >

R r T

The estimate follows from ([5.22)) and (5.21]). O

Estimate 5.2. Let Ry be defined in Lemma . Then there exists a constant
C=C(d,J) such that
)

|[mr o+ 0],
Az

2
< CW D+ A(uae)ll g2 maey IVA@ L2 (117 ma) -

Proof. Let us consider R . The term R, is treated the same way. By Lemma

‘/RRJ(C)dC‘SfZ‘/ ¢ Alwar) = (¢~ AE, ) Je(C — Alw) de|
x (0, AW ) () © (Jry @ )
< ;zdj\ / fj() 06 (- — A(w) » J.(€))] de]

u,u Az)

X (8%‘4(“)) (Jro ® Jp) ® (Jry @ J7).
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By Young’s inequality for convolutions,

2
[Je(- — A(u)) x Jé”LOO(]R) < |[Je(- = A(“))HL%(R) HJé”Ll(R) = ) 1Tl oo 191l

Hence,

d

A ! 4
| / RE(Q) S| < =5 Wl I loe 3o | D Alua)| (92, Aw)?
i=1
(u, uA,)

(Jrog @ Jr) @ (Jrg @ Jr).
Applying Lemma with K (u) = |u|, Ka(v) = v2, p=q =2, we get

|7

Now

S W 1711 ZHU (wae)l| o g1y 19 AW 2

HJro ® Jrll L2 @xray [r0 @ Jrll 11 @xra) -

70)

d

d+1
[ Tre @ Jrll L2 @xmay = 1roll L2 (w) H (el L2y = \/7 HJ”LJ?r(R

i=1
t

Estimate 5.3. Let Rf be defined in Lemma and suppose d = 1. Then there
exists a constant C = C(J) such that

tim [ RE(Q)+ Ry (©)dc

LY(IT?)
Az Az
<0 (Ml + 5 by + 52 ) 1Dl -

Proof. We consider R; . The R; term can be treated similarly. Note that for d =1,

/R R () d¢ = / (Je(C = Aluny)) — Je(C = ATE)) nacrne (€ d¢ 37 Ty @,

where n4 ¢, is defined in Lemma The map ¢ — N4 e rr (¢, 2, () belongs to

Wlicl (R) for each fixed (¢,z) € (ro, T —19) x R. Due to Lemmas and
ii_% e A erro(C) = B/(C)atpr,ro Q) + 9/@)3:6,07’,7‘0 () — 3§pr,ro (©)

in L'(R) for each fixed (t,z), where

Prro(€) = X(A(w); €)% Jrg @ .
By statement (iii) of Lemma [5.6]

hm/R+ %‘)/&IUM B'(()0uprro (C uﬂ(“ . ®J,

(uag)
SazA(uaz) (uas)
+ 90 (O d| 3 1y 0 7,
A('U'AJE)
SazA(uas) (uAm)
+|/ 3 02pr.0u(€)] dC ,®
UAI

=N+ %+ T
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We consider each term separately. Let B(() = £ or equivalently A(§) = (. Tt follows
that

SA.L'A(U/A.E) (u’ AL
A</ BOXAWY Ol dc| 7 oudn| @ Jy @y s
A(uaz)
SazUAz (u7 Az)
= / Ix(u; §)] d€ 101 Tro| @ T @ Ty @
UAx
(u,u

<Az |DyA(ung)| * T 100 g | @ Ty @ Ty @

By Lemma [5.5]
x

17l Ly ey < 2 17" 1D+ a1 11y -
Observe that ¢'(A(£))A'(§) = f/(£) and d¢ = A’(£)d€. Hence,
SazA UAI)

Aluaz)

Sazunz

/ PO (s ) de

Ax
< Az ||fHLip |Dtunq|
By Lemma [5.5]

Az
1%l ey < 211l = 1T | o 1D+ uae | 21 11y -

Ox(Aw): Q)| de| “3 1y ©10:01] © 0 0,

(u qu)

Ire @ 05| @ Jry @ Iy

(u,u Az)

I @ |0pdr| @ Jry @ Jp.

Similarly,

SazA(uaz)
azlf (A Q) dg

A(uAJ)

(u, uAT)

Jry ® |02, @ Jpy @ Jr

< Az | Dy Auna)| "y @ 020, © Jry © Iy
By Lemma [5.5]

Ax
||%”L1(H¥’) < 27,72 17" | o ||D+A(UAI)||L1(HT) :

Estimate 5.4. Let U be the second term in (5.3), Lemmal[5.1] that is,

UZQ\/VPE,T,To‘(Qvi(D-F‘FD )psrmdg
R

Then there exists a constant C = C(d, J) such that

Az? Az
Ul ) < O5 (1+) 1A a1 (o 275780 -

Remark 5.1. The BV norm may be replaced by the L' norm at the expense of an
extra factor r 1.

Proof. Clearly,

By Young’s inequality for convolutions,

10: pe,rro | oo (1170 xmy < IXCAQW); )| poo (117 xmy 16 @ Oy Ir © T [l L1 (g xma xR

/ vps,r,?‘o ! (2V - (D+ +D_ )ps ,TT0 dC
R

L(Iy)

< ”vps,r,roHLOO(H;Ox]R;RgC) ||(2v - (D++D- )ps JT5T0 ||L1(HTO><R R
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<8y Trll pr gy < 201 [l 771
We have
(20,, — (D + D))PAE, = x(A(use)i?) % Je @ (205, — (D, + D)), @ Ty,

Using Taylor expansions with remainders,

i i 1 A 243
(D + D%) —28,,) Jy(z) = AT /0 (z — Ax)°0;. Jr(x; + 2) dz JLIi Jr(25)
1 ’ 243
+ 5AL 7Am(z + Az)°0;, Jp (v + 2) dz H Jr(xj)

J#i
=: 0, (91 (2) + (),
see for instance [25] p. 25]. Hence
(200, — (D + DL))p27 o = On, (X(Alune); ) * Je ® (01 +95) @ Jr) -

By Young’s inequality for convolutions

H(2a$z - (D:- + Di—))p?ﬁro ||L1(H;° xR) < [Ix(A(uaz); ')HLl([O,T]xR;BV(Rd’))

x |1 + @5]| 11 gy -
Note that ||X(A(UAI)7)HLI([O,T]XR,BV(Rd)) = ||A(uA5E)||L1([07T]7BV(R‘Z))' NOW, as
On, Jr(i 4+ 2) <73 J"|| o Ljgy2|<r» it follows that
It = 555 [ (e = AaVoEaai+ )

(r+ Azx) Az
N 17" )l 0 (z — Ax)?dz
1 Az? Ax
NN = (1+— .
317 55 (1457

The same estimate applies to ¢b. O

dl’i

IN

IN

Estimate 5.5. Let 7 be the term (5.9)) from Lemma that is,
7 = [ (sign. (¢ = Alw) « Iy © J)(A = D Dy, de
R

Then there exists a constant C = C(d, J) such that

Az? Ax
1y < 055 (1452 Btuasd s v -

Remark 5.2. At the cost of an extra factor 7—!, the BV norm may be replaced by
the L' norm.
Proof. First note that |sign, (¢ — A(u)) x J,, ® J.| <1, so

7] < |[(A—-D_ 'D+)P§f7roHL1(HTxR)'

Now,
(02, — D' DL)pAe, = x(A(une); ) #Je © (02, — DLDL)I, @ .
Using a Taylor expansion [25] p.24],

1

(5% - Di—Di)Jr(x) = 6AL2

Az
/ (z — Az)0; Jp(z; + 2) dz H Jr(x;)
0 j#i
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_ 1
6Az2

=: 0a, (] (z) + P ().

0
/ (z 4+ Az)305 Jy (2 + 2) dzHJ z;)
-Ax

J#i

Hence,
(02, = DLDL)p=Y 0 = Ony (X(A(ung); ) % Jo @ (9] + 95) © Jry) -

By Young’s inequality for convolutions,

H(aii - DD )psrroHLl(HTXR < [Ix(A(uas); ')HLl([O,T]X]R;BV(Rd))
x ||t + %Hu(nw) :

It remains to estimate the L' norm of ¢} and b:
It | _ ‘ M(z — A2 O3 Jo(wi + 2) dz’ dz;
Pl L1 (ra) 622 Jg A ;I\ Li i

Az
- r+ Az HJ(g)H ‘/ (2 — Aw) dz
o 1Jo

3Az%r4
oy an)
12 r3 r )
A similar estimate applies to ¢b. O

Estimate 5.6. Let .77 and 95 be the terms from (5.8) in Lemma that is,
7= [ (signe (¢ = ACw)) x Iy @1, GA(G) - (D = Vo, e,

Ty = /]R (sign, (¢ — A(u)) * Jpy @ J2) G5(C) - (D— = V)p2y, dC,

where Gi(A(u)) = Fy(u) for j = 1,2. Then there exists a constant C = C(d,J)
such that

Ax Ax
il < 05 (14 52) Wilm e PG s v sy

fork=1,2.

Remark 5.3. Again the BV norm may be replaced by the L' norm at the cost of
an extra factor 1.

Proof. Consider .73. We can change variables ( = A(&), which yields

7 = [ (signe (A(6) = A@W) = 01y © T FL(Q)- (D = V),
Then observe that
I71 1oy < L (D4 = V) (X(A(uas)i ) * Je @ Jr @ Jrg )l 1 1 0w -
We have
(DY = 02) (X(Aung); ) * Jo @ Jr ® Jyy)
= X(A(uaz); ) * Je @ (DY — 0p,)Jr @ Iy

By Taylor expansions,

Az
i _ 2
(DYy = 0z,)Jp(z) = Az /0 (Az — 2)0; Jp(x; + 2)dz lei Jp(25)

=: Oy, p(T).
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By Young’s inequality for convolutions,

H(Fll)/<D3r - 89%) (X(A(UAGJ); ) *Je @ Jp ® JTO)HLl I xR
( )

< H(Ff)/HLoc(R) [x(A(uaz); ')||L1([0,T]xR;BV(Rd)) ||<P\|L1(Rd) :

It remains to estimate ||| 1 ga):
Aw
el pr ey = /‘/ Az — 2)0y, Jr(x; + 2) dz| da;
A
< —2||J’H rt ””/ (Az - 2)d=
r? 0

Az A
— 17 52 (1455,
from which the estimate of 7] follows. Similar arguments apply to 7. O

Estimate 5.7. Consider the terms (5.4), (5.5), (5.6), and (5.7) from Lemma[5.1}
Suppose A’ > 1 and set B := A7, Let

% - /R(Signs (C - A(U’Aac)) * JTO ® Jr )6t e rro(C) d(,

= / (sign, (C — A(w) x Ty ® Jy) REA(C) dC,
R
T = / (sign, (C — Aluny)) % Jry ® J,) V- BY, (¢ dC,

7 = / (sign, (C — A(w) % Jry ® Jy)
R
x (Dy - REERT(Q) + D- - REERT()) dc,
where

RI.,(Q)=RI(A(w), () * Jry ® J; and RIEE (C) = RI(A(uas), €) * Jpy ® Jr

g,7,T0

for any function f, and R{ is defined in equation ([4.5). Then
15l oo 110y < 8— |||, for k=1,2,

175l oe 0y < 8* 1]l Zl\lelup,

i=1

120y < 85 (1 n ) 1SS
k=1 1=1

Proof. Consider .77. Moving the t derivative onto J,,, we have that

(ACI‘v)

= [ sign. (¢ = Alwsn)) R (Aw).d "5 gy, @0, 9000,
R
By Lemma [5.5] equation (5.15), Lemma [5.7 and equation (5.20) with f(z) = 2
€ €
17l e iy < 45 1m0 ® Trlla gy 102 Tr0 @ Jrll o oy < 87 1]l

The L* bound on % follows similarly.
Let us consider Jz:

(u Am

d
T3 = Z/ sign, (¢ — A(uaz)) Ré’? (A(u),¢) d¢ JT0 @y @ Jpy @ By, J.
— JR
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By Lemma equation ([5.15)), Lemma and equation (5.20) with f(z) = fi(2),

d d
3 3
17l Los 70y < 45 D M illuip 105 T2l 1 gy < 8777 17l e D il -

i=1 i=1
The terms in .7, are estimated in the same way, but in view (5.22)) we can utilize
the bound

1 Ax
vy @ Dol iy < 211l (1 i ) |

U
5.4. Concluding the proof of Theorem Recall that Q., cf. (5.1), was
introduced as an approximation to the contraction functional @, cf. (1.8). Recall
the basic property [12] B3]
(5.23) lu—wv| = / Q(u,v; ) dg, u,v € R.
R

To argue for this relation, note that

Q(u,v;€) = Ix(u; &) + [x(v; €)= 2x(u; E)x(v;€) = (x(u; &) — x(v;€))*.
Next, observe that

(5.24) x(u; ) — x(v;§) = x(u—v;§ —v);
indeed, for any S € C}(R),

[ 5@ - xtseae = | "6 de = / " S04 v)do (hereo =€)
R u 0
:/S’(a+v)x(u—v;0)d0
R

= [ Sextu-ve-vde
Hence, the claim follows:
[ xtus) = xtos€)?de = [ xtu—vig = o)l de = u—ul.
Let us quantify the approximation properties of Q..

Lemma 5.8. Let A’ >n >0, B=A"', and f = go A. Define
P= [ Q4. AR OB(C) dC~ a1,
M = [ Qu(Aw). ) O (€) dC = sien (u=0) (F(u) = F(v).
and
N = [ QuA). Aw):¢) dC ~ | AGw) ~ A,
for any v and v, and where Q. is given by . Then
Pl<165, M| <8, |N|<s .
n n n

Proof. Because A’ > 0, Q(u,v;&) = Q(A(u), A(v); A(€)). Hence we can use ((5.23))
and a change of variables to obtain the identify

P= / (Qe(A(w), A(v): €) — Q(A(u), A(v); ) B'(C) dc.
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By definition of @ and the equality |x(u;&)| = sign (&) x(u; &),

Q(A(u), A(v); ¢) = sign (¢) x(A(u); ¢) + sign () x(A(v); ¢)
= 2x(A(u); O)x(A(v); €).
Thus,

P= / (sigm, (¢) xe (Au); ¢) — sign (€) x(A(u): €)) B'(C) d¢
+ / (sigm, (¢) xe (A(v); €) — sign () x(A@): O)) B'(¢) d¢

+2 / (e(AG); Ox(A(W): €) — xe(Aw): Oxe(A(w): ) B'(C) dC
=P+ P, + Ps.

Finding that the measure of the support of the integrand is bounded by 4¢ for P,
P, and P3, we conclude that

|P| < 16¢ || Bl »

and then the bound on P follows since ||B’[| < n~'.
To prove the inequality for M, note that

sign (u — v)(f(u) — f(v))
_ / sign (u — v) (x(u; ) — x(v; O))f'(¢) dC

/ Ix(u Q) de
/R [sign (¢) x(u; €) + sign (¢) x(v: €) — 2x(u; Ox(w: O] £(C) dic.

Changing variables, we arrive at

/R Q-(A(u), A ¢yd¢ = / Q.(4 A F(Q) dc,

and, since sign (¢) x(w;¢) = sign (A(¢)) x(A(w); A(C)), we find that

i< [
“

+ Q/R [xe (A(w); A(Q))x=(A(v); A(Q)) = x(A(w); AQ)x(A(v); AT (O] dd.

sign, (A(C)) xe(A(u); A(C)) — sign (A(C))X(A(U);A(C))‘ FACQIRS

sign. (A(0) x(A(v); A(Q)) = sign (A(0) x(AW); AQ)] 1£/(Q)] d¢

Each of the three integrands is bounded by 2 and has support where |A({)| < ¢, i.e.,
where |¢| < e/n, hence |M| < 8¢/n. The proof of the bound on |N| is similar. O

Concluding the proof of Theorem[3.1. We shall choose a positive test function ¢ <
1, such that |V¢| and |A¢| are bounded by C¢. This will be convenient when we
estimate terms containing V¢ or Ag.

A test function with the necessary properties can be defined as follows, fix R >
dv/d and define ¢ : R¢ — R by

3e) = 1 if 2| < R+ V4,
~ exp((R+ Vd —|z|)/v/d) otherwise.
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Define ¢ = ¢ x J" and note that ¢(z) = 1 for 2 € B(0, R). Note that ¢ is weakly
differentiable and satisfies

8

, qg{—fg;ﬂa%(x) 2l > R+ Va,
0 lz| < R+ Vd.

It follows that |[V¢(x)| < In order to bound A¢ we first note that

Lo >
1 _ .
i \f| |> o(x), for |z| > R+ Vd.

1 _

= — <f for |z| > dV/d.
7<) o

x) whenever |z| > R 4 v/d. Hence

Furthermore,

It follows that |A¢| é

|Ag(x)] < Egb(x) for |z| > R+ 2Vd.

If x| < R+ 2V/d it follows by the lower bound ¢(z) > e~2, that there exists a
constant C' = C(d, J) such that |[A¢(z)| < C'|p(x)|.
The next lemma estimates how far |ua, — | is from it regularized counterpart

(AJ:

[ B (elAua O~ xe(Awi ) d6 5 gy w0, 0 0, .0
Lemma 5.9. With the notation and assumptions of Lemma

L1 B Qe (Atuan). Awi€) d ~ s, — ul o do

(5.25) _
<0 (r ot ol ).

(5.26)

Il

— sign (uas —u) (f(u) - f(um))} : v¢] dadt < CT <7’ +70 + 6]l 1 gy ;) ,

(5.27) / /Rd

where the constant C' only depends on the initial data, A, and f.
Proof of Lemma[5.9 We establish (5.25)) as follows:

L] B0 (Aluan). Aw: ) e = s = ulfo o

/Rd/ /Rd/ (A(uaz(s,y)), Alu(s,y)); ¢) d¢
|UA;ct£U—utx) — y) dyds| ¢ dx
<[]

/ Qs (Aluns), Alu); €) dC

/QWO (uae), A(u); C) dC

- A(usr) = A 20| ot £ €T (14 10+ folsgen ).

/ (A(uas (5. 9)), Alu(s, )): ) ¢

— luax(s,y) —u(s,y)||Jry(t — 5)Jr(x — y) dydsp dx
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T
[ st )~ usats.)l + luteo) = uts. )]
R4 JO R
X Jpo (t — 8)J(x — y) dydsdx

9

< 165/ pda +2 (\uo\Bv(Rd) + |uaz (0, .)|BV(Rd)) (r+79).
]Rd

The bounds (5.26]) and (5.27)) are proved in the same way. O

Writing the equation in Lemma as

/ B0y dC + / (O Qerr dC = / AQurpry dC + €57,
R R R

we multiply by ¢, integrate over ¢ € [rq, 7] where ro < 7 < T —rg, and integrate by
parts in z, finally obtaining

L[ B©@mco ] do ["[ [ (0@ Voo

:/ / /Qs,r,roA¢d<dxdt+/ / geAfTOQdedt.
T0 Rd R T0

Combining this with Lemma [5.9] gives

/R use—ulo | do- / /R s (wae ) (Fua) — f() - V6 dad

<[] 1Atan - Al sodsar+ [ [ €2, oduat
T0 Rd T0
€
#0r(rame ).

where Cr depends (linearly) on T'. Using properties of ¢, this can be rewritten as

€,r,ro?

A(7) — Alro) <c/ (t)dt + €07

where
A = [ uss(t.) = u(t.2)] () da,
isArmrTo / / EAL, G dudt + Cr <T+To+;)-
Gronwall’s inequality then implies that
A(T) < Alro) + e (Alro) + 2,7,

Recall that u depends on 7, and we now make this dependence explicit by writing
u and A”. Our aim is to estimate ua, — u’. By (2.2,

/ ‘qu(T,-) —UO(T,')’ dzdt — C\/n
B(0,R)

< A"(r)

Az, T
£,m,70

<Cr HUAz ro,-) — u®(ro, - + Cré€

||L1(Rd)

—SAx,T
< Cro + [[uae(0,-) = ol 1 gay + CrEo g
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Next, we estimate the terms in the integral of £27 . these are the terms in

g,r 7‘07
(5.3)—(5.11). By Estimate
Az’ A
(5.28) // |second term in (5.3)| dxdt < C’—i (1 + x> ,
P r

r

where C' depends on the initial data.
The integral of the terms (5.4)—(5.7)) is bounded by Estimate

11 A
// |+...+|dxdt§05(+(l+x>).
e n\ro r r

The integral of (5.8)) is bounded by Estimate [5.6]as follows:

//H |(5-8)| dmdt<0— <1+M)

The integral of (5.9)) is bounded using Estimate

Az? Az
HT

The term ([5.11)) is bounded using Estimates [5.1] and [5.2] (if d > 1):

1 1 1
5.29a // G1Y)| dedt <CAz | 5 + -+ ——| .
oo [ 160 (5t )

If d = 1, we can use Estimate [5.3] to achieve the better bound

1
(5.29b) // liny (B-T1)| ddt < CAw < + 1 + > :

e—0 To
Finally, the term (5.10) is non-positive.
The fraction Axz/r will turn out to be uniformly bounded (in fact vanishingly
small), so we can overestimate it by a constant. Thus the bounds (5.28))—(5.29b))

I
e,r,10"

give the following estimate for £

—Az,T 15 € 5 Ax Az Ax
ey <Cr|T+m0+ -+ —+—+—+ 5+ ——
e n r r 21 /rord

nro  nr
If up € BV(R?), |Juaz(0,-) — Uoll 1 (gay < |wo| gy (gay A, so that

HUAw(T» ) —u’(r, ')HLl(B(o,R))

A A A
SCT<A$+\f+T+7‘o+ L i . )

nro nroT r? g2y /rord
Now we set r =19 = /7], € = r4; using that r < 1, the above simplifies to

Az
a7 =0 sy < Or (’”* )
ro2

Finally, minimizing with respect to r yields

2
|uas (T, ) — u’ HLI(B(O Ry < CrAziodd,
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Remark 5.4. If d = 1, the above estimate gives a convergence rate of 1/10, which
is better than the rate reported in [23]. However, when d = 1, we can use (5.29b)
instead of (5.29al). Then we have no terms with € in the denominator, so we can send
€ to zero in 1) before taking absolute values and integrating. Proceeding
as above, i.e., setting r = 1o = /7, this yields the bound

Az
[uaa(r, ) —u’(r, ')HLl(B(o,R)) <Cr (r " r2> ’
which gives the rate 1/3 [25].

APPENDIX A. WELL-POSEDNESS OF DIFFERENCE METHOD

In this appendix we establish the well-posedness of the semi-discrete method.
We also collect a series of a priori bounds.
Introduce

d
lolly = Axdz loa| and |o|py = ZZ |0ate; — Oal-
e}

a =1
If these quantities are bounded we say that o = {0} is in £*(Z?) and of bounded

variation. Let u(t) = {uq(t)}aeze and ug = {14(0)}4eze and define the operator
A N2 — 424 by

d
(AW)a =D D’ [F(ttas tate,) — D Auq)] -

i=1
Then (3.1)) may be considered as the Cauchy problem
vy A(uw) =0, t>0,
u(0) = wp.
This problem has a unique continuously differentiable solution for small ¢, since A
is Lipschitz continuous for each Az > 0. The solution defines a strongly continuous

semigroup S(t) on /1. We want to show that this semigroup is ¢! contractive. This
follows by the theory presented in [14], given that A is accretive, i.e.,

Z sign (uq — Vo) (A(u) — A(v))a > 0.

for any u and v in ¢'(Z%) [32] [34].
Lemma A.1l. The operator A : (*(Z%) — (*(Z4) is accretive.

Proof. By definition
d

(A(u) — A(v))a = Z DL [Fi(uavuoz+ei) — F'(va Varte;) — Di(A(“a) - A(Ua))] :
i=1
Let 0; F* and 0, F* denote the partial derivatives of F* with respect to the first and

second variable respectively. Since F* is continuously differentiable there exist for
each (o, ?) some number 7, ; such that

Fi(uoc; ua+ei> - Fi(va7ua+ei) = alFi(TaJauaJrei)(ua - Uoc)
and similarly a number 6, ; such that
Fi(va,uaJrei) - Fi(vavva+ei) = 82Fi(va, Ou,i) (Uate;, — Varte,)-

Let w, = uy — v, then

Fi(ua7u(l+€i) - Fi(vavvoz-&-eqz)
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= F'(ta, Uare,) — F (Vo Uare,) + F(Va, tate,) — F' (Vo Vate,)
= 01 F (Tiy Uate; ) Wa + 02 F (Ve 0n.i ) Warte, -
Let A’ = a. Then there exist some &, such that
Aua) — A(va) = a(§a)wa

Using these expressions we obtain
> sign (ua — va) (A(u) — A(v))a
(A1) = Z Z sign (wq) D* [81Fi(7a,i, Ugte; )W + O F (vg, Oa,i)Warte, |
a =1
d . .
- ZZsign (wa) DD (a(ba)wa) == T — .

a =1

Consider .73 first. Since

Dl_ [alFi(TaJaua-i-ei)wa + 82Fi(va;9a,i)wa+ei] = A |:al (Ta zyua-&-e,)

— O F (Ta €eiis ua)wa e; T 0o F ('Uou oa,i)wa+ez' — 0o F" (Ua—eiaeoc €ei,i )wa:|

it follows that

1 Ai[,' Z Z |:61 Ta iy Uate; )|wa| - 81 (Ta—ei,ia ua) Sign (wa) We—e;

a =1

+ 82F1 (Uou ea,i) Sign (wa) wa-i—el 62 (Ua eq 904 e;,l )|wa|:|

Z {Z O F Ta isUate;)

+ Z O F Uom ,i SIgn (woz) Werte; — Z 0o F ’Ua, ea,i)|wa+ei @

woél - Z a1 Toc 7y ua+61) Sign (wa+€i) w

Since each F* is monotone, it follows that .7; > 0. Considering 7, we have

= 2 Z Z { (Eate;)sign (Wa) Warte,

=1 «
= 2a(€a)lwal + al€a—c,) sign (wa) wa-c,
from which it follows that %5 < 0. O

Lemma A.2. Suppose F' is monotone for each 1 < i < d. For any positive T,
there exists a unique solution u = {uq} to (3.1) on [0, T] with the properties:

(1) [Ju(®)lx < [luoll1-

ii) For every a € Z* and t € [0,T),

inf{ugo} < ua(t) < supfugo}-
8

(iif) [u(t)|pv < |uolpv
(iv) If v ={v.} is a solution of the same problem with initial data vy, then

[u(t) = v(@)][x < lluo —voll1-

Proof. Parts (i),(iii) and (iv) follows since S(t) is a contraction semigroup. Part
(ii) follows from [9]. O
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Note that the ¢! bound in [(i)] implies that u,(t) exists for all ¢, and not only
for ¢ small.

Lemma A.3. Suppose F' is monotone for each 1 < i < d. If u is a solution to

(31 and A(uo) € £1(Z%), then for each h > 0,
Ju(t +h) —u(t)|le < [|A(uo)ller P
Proof. Suppose that ||u/(t)|| < C. Then

t+h
/ u'(s)ds
¢

and so Lipschitz continuity would follow. We claim that

0

t+h
lu(t + 1) — u(t)]| = < / e/ (s)]| ds < Ch,

(A.2) F v @l < 0.
Indeed,
a ., 0
7w Ol = Z I A@)ll
= % [Agcd Z sign (A(u(t))a) A(u(t))a
~ Aaf ngn )o) DA () e
and

d
BAMD)a = o 37 DL [F (1), s, (1)) — D Alwa(1)]
i=1

_ ipi (00 F (1o (£), thor o, (8) )l (£) + 0o F (1 (£), Uy e, (£)) 1l 1o, (£)]
- i DD} a(ua(t))uy(t)

_ Z D [01F (1), ttaser (£) A())or + 02F (e (), e, (£)) A(u(t) s, ]
+ iDiDiawa(t))A(u(t»a.

Considering the similarity between this computation and (A.1)), it is seen that .
holds. We conclude that ||u/(¢)|] < |.A(uo)| and so the lemma follows
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