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Abstract. We prove that a periodic entropy solution to a one-dimensional scalar conservation
law converges as time t → +∞ to a traveling wave. Moreover, the flux function is shown to be affine
on the segment [α, β] containing the essential range of the traveling wave profile, and the speed of
the traveling wave coincides with the slope of the line v = ϕ(u), u ∈ [α, β].
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1. Introduction. We consider a scalar conservation law

(1.1) ut + ϕ(u)x = 0, (t, x) ∈ Π = (0, +∞)× R.

The flux function is supposed to be only continuous: ϕ(u) ∈ C(R). We recall the
notion of an entropy solution to the Cauchy problem for equation (1.1) with initial
data

(1.2) u(0, x) = u0(x) ∈ L∞(R)

in the sense of Kruzhkov [6].
Definition 1.1. A bounded measurable function u = u(t, x) ∈ L∞(Π) is called

an entropy solution (e.s. for short) of (1.1), (1.2) if for all k ∈ R

(1.3)
∂

∂t
|u− k|+ ∂

∂x
[sign (u− k)(ϕ(u)− ϕ(k))] ≤ 0

in the sense of distributions on Π (in D′(Π)),and

(1.4) ess lim
t→0+

u(t, ·) = u0 in L1
loc(R).

Here sign u =
{

1 , u > 0,
−1 , u ≤ 0 and relation (1.3) means that for each test

function h = h(t, x) ∈ C1
0 (Π), h ≥ 0,

∫

Π

[|u− k|ht + sign (u− k)(ϕ(u)− ϕ(k))hx]dtdx ≥ 0.

Taking in (1.3) k = ±R, R ≥ ‖u‖∞, we derive that ut + ϕ(u)x = 0 in D′(Π), i.e., an
e.s. u = u(t, x) is a weak solution of (1.1). As was shown in [12] (see also [7, 8] for more
details), for every u0(x) ∈ L∞(R) there exists a unique e.s. to problem (1.1), (1.2).
We underline that ϕ(u) is assumed to be only continuous, and it is essential that we
have only one space variable ( in the multidimensional case some conditions on the
continuity modulus of flux functions are necessary for the uniqueness, cf. [7, 8] ).
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Let un(t, x) ∈ L∞(Π) be a sequence of e.s. of equation (1.1), which converges
weakly-∗ in L∞(Π) to a function u(t, x). The following result was established in [16]
(in the general case of multidimensional conservation laws).

Theorem 1.2. Assume that for almost each (t, x) ∈ Π the function ϕ(u) is not
affine in any vicinity of the point u(t, x). Then un(t, x) → u(t, x) as n → ∞ in
L1

loc(Π) (strongly).
Multidimensional version of Theorem 1.2 is proved with the help of a rather

complicated variant of H-measures, see details in [16]. But in the one-dimensional
situation the statement of Theorem 1.2 can be established by more common compen-
sated compactness method, in the similar way as in [17, 1] (see also book [3]). For
the sake of completeness we provide the proof of Theorem 1.2 in the next section 2.

Suppose that the initial data is periodic. Without loss of generality, we may
assume that the period equals 1, i.e., u0(x+1) = u0(x) almost everywhere in R. Then
the unique e.s. u(t, x) of problem (1.1), (1.2) is space periodic: u(t, x + 1) = u(t, x)
a.e. in Π and satisfies the following conservation property: for a.e. t > 0

(1.5)
∫ 1

0

u(t, x)dx = I
.=

∫ 1

0

u0(x),

see the proof in [14]. It is also known (see, for example, [9, Corollary 3.3]) that for two
e.s. u1(t, x), u2(t, x) of (1.1), (1.2) with initial functions u01(x), u02(x), respectively,
the following L1-contraction property holds

(1.6)
∫ 1

0

|u1(t, x)− u2(t, x)|dx ≤
∫ 1

0

|u01(x)− u02(x)|dx for a.e. t > 0.

Based on Theorem 1.2 and approach developed by G.-Q. Chen and H. Frid in [2],
we establish the following decay property of periodic e.s.

Theorem 1.3. Assume that the function ϕ(u) is not affine in any vicinity of the
point I. Then

(1.7) ess lim
t→∞

u(t, ·) = I in L1([0, 1]).

The statement of Theorem 1.3 follows from the more general result of [16] (in the
case ϕ(u) ∈ C2(R) one can rely also on [4]). For completeness we reproduce the proof
of Theorem 1.3 in section 3 below.

It turns out that in general case of arbitrary continuous flux ϕ(u) the following
asymptotic property holds, which is the main our result.

Theorem 1.4. There exists a 1-periodic function v(y) ∈ L∞(R) and a constant
c ∈ R such that

u(t, x)− v(x− ct) →
t→+∞

0 in L1([0, 1]).

Besides,
∫ 1

0
v(x)dx = I and ϕ(u) − cu = const on the minimal segment [α(v), β(v)]

containing values v(y) for a.e. y ∈ [0, 1].
Observe that the statement of Theorem 1.3 follows from Theorem 1.4. Indeed,

under assumptions of Theorem 1.3 the profile v(x) = I a.e. on R. Otherwise, by
Theorem 1.4

α(v) = ess inf v(y) < I < β(v) = ess sup v(y),
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and the flux function ϕ(u) = cu + const is affine in the vicinity (α(v), β(v)) of I. But
this is impossible in view of the condition of Theorem 1.3.

The proof of Theorem 1.4 is contained in the last section 4.
In the proof of Theorem 1.2 we will use results of the theory of measure valued

functions (Young measures). Recall (see [5, 17]) that a measure-valued function on Π
is a weakly measurable map (t, x) 7→ νt,x of Π into the space Prob0(R) of probability
Borel measures with compact support in R.

The weak measurability of νt,x means that for each continuous function g(λ) the
function (t, x) → 〈νt,x, g(λ)〉 =

∫
g(λ)dνt,x(λ) is measurable on Π.

We say that a measure-valued function νt,x is bounded if there exists R > 0 such
that supp νt,x ⊂ [−R, R] for almost all (t, x) ∈ Π. We shall denote by ‖νt,x‖∞ the
smallest such R.

Finally, we say that measure-valued functions of the kind νt,x(λ) = δ(λ−u(t, x)),
where u(t, x) ∈ L∞(Π) and δ(λ − u∗) is the Dirac measure at u∗ ∈ R, are regular.
We identify these measure-valued functions and the corresponding functions u(t, x),
so that there is a natural embedding L∞(Π) ⊂ MV(Π), where MV(Π) is the set of
bounded measure-valued functions on Π.

Measure-valued functions naturally arise as weak limits of bounded sequences in
L∞(Π) in the sense of the following theorem of Tartar (see [17]).

Theorem 1.5. Let un(t, x) ∈ L∞(Π), n ∈ N, be a bounded sequence. Then there
exist a subsequence ur(t, x) = unr (t, x) and a measure-valued function νt,x ∈ MV(Π)
such that

(1.8) ∀g(λ) ∈ C(R) g(ur) ⇀
r→∞

〈νt,x, g(λ)〉 weakly-∗ in L∞(Π).

Besides, νt,x is regular, i.e., νt,x(λ) = δ(λ− u(t, x)) if and only if ur(t, x) →
r→∞

u(t, x)

in L1
loc(Π).

2. Proof of Theorem 1.2. We use the notation Co A for the convex hull of a
set A ⊂ R. Evidently, if A is compact then Co A = [min A,max A] is the minimal
segment containing A.

The following technical lemma is borrowed from [13, Lemma 3.3].
Lemma 2.1. Assume that ν is a compactly supported finite nonnegative Borel

measure on R, [a, b] = Co supp ν; H(u) ∈ C(R), and for each k ∈ (a, b)

(2.1)
∫

(H(λ)−H(k))sign +(λ− k)dν(λ) = 0,

where sign +(λ) = (1 + sign λ)/2 is the Heaviside function. Then H(u) ≡ const on
[a, b].

For the sake of completeness we reproduce below the proof.
Proof. First, observe that by continuity of H(λ) equality (2.1) holds for each

k ∈ [a, b]. Since H(u) is continuous, there exist such k1, k2 ∈ [a, b] that

H(k1) = H−
.= min

u∈[a,b]
H(u), H(k2) = H+

.= max
u∈[a,b]

H(u).

Then it follows from (2.1) with k = k1, k2 that H(b) = H− = H+. Indeed, as-
suming that H(b) 6= H−, we claim that k1 < b and the nonnegative function
(H(λ) − H(k1))sign +(λ − k1) is strictly positive in some neighborhood (b − δ, b] of
the point b. Since ν((b− δ, b]) > 0 we conclude that the integral in equality (2.1) with
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k = k1 is positive, which contradicts to this equality. Hence, H(b) = H−. By the
similar reasons, using (2.1) with k = k2, we claim that H(b) = H+. Evidently, the
equality H− = H+ can hold only if H(u) ≡ const = H(b) on the segment [a, b]. The
proof is complete.

We denote

η+
k (u) = (u− k)+ = max(u− k, 0), ψ+

k (u) = (ϕ(u)− ϕ(k))sign +(u− k);

η−k (u) = (u− k)− = max(k − u, 0), ψ−k (u) = (ϕ(u)− ϕ(k))sign−(u− k),

where the functions sign±(u) = (sign u ± 1)/2. If u = u(t, x) is an e.s. of (1.1) then
it satisfies (1.1) in D′(R), and this yields

(2.2)
∂

∂t
(u− k) +

∂

∂x
(ϕ(u)− ϕ(k)) = 0 in D′(Π)

for all k ∈ R. Putting (1.3) together with (2.2) multiplied by ±1, we derive that for
each k ∈ R

(2.3) l±k
.=

∂

∂t
η±k (u) +

∂

∂x
ψ±k (u) ≤ 0 in D′(Π).

According to the Schwartz representation theorem, the distributions l±k = −µ±k , where
µ±k are locally finite nonnegative Borel measures on Π. Notice that l+k − l−k coincides
with zero distribution (2.2) and in particular µ+

k = µ−k = µk. As is easy to see, µk = 0
whenever |k| > M ≥ ‖u‖∞. Let |k| ≤ M and K ⊂ Π be a compact set. We choose a
nonnegative function hK = hK(t, x) ∈ C1

0 (Π) such that hK = 1 on the set K. Then

µk(K) ≤
∫

Π

hK(t, x)dµk(t, x) = −〈l+k , hK〉 =
∫

Π

[η+
k (u)(hK)t + ψ+

k (u)(hK)x]dtdx ≤

C(K, M) .= 2(M + max
|u|≤M

|ϕ(u)|)
∫

Π

(|(hK)t|+ |(hK)x|)dtdx.(2.4)

Now we consider a bounded sequence un = un(t, x) of e.s. of (1.1) and assume
that un ⇀ u as n →∞ weakly-∗ in L∞(Π). Passing to a subsequence ur = unr (t, x),
we can suppose that this subsequence converges to a bounded measure valued function
νt,x ∈ MV(Π) in the sense of relation (1.8).

Proposition 2.2. For almost every (t, x) ∈ Π the flux function is affine on
Co supp νt,x.

Proof. Obviously, ‖νt,x‖∞ ≤ M = sup
n∈N

‖un‖∞. Since ur(t, x) is an e.s. of (1.1),

then for all k ∈ R

(2.5)
∂

∂t
η±k (ur) +

∂

∂x
ψ±k (ur) = −µkr,

where µkr, r ∈ N, is a sequence in the space Mloc(Π) of locally finite Borel measures
on Π.

In view of (2.4) for each compact set K ⊂ Π 0 ≤ µkr(K) ≤ C(K, M), that is,
the sequences µkr, r ∈ N, are bounded in Mloc(Π). By Murat interpolation lemma
[11] (also see [17, Lemma 28]), the sequences (2.5) are pre-compact in the Sobolev
space W−1

2,loc(Π) for each k ∈ R. Recall that W−1
2,loc(Π) is a locally convex space
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of distributions l = l(t, x) such that lf belongs to the Sobolev space W−1
2 (R2) for

all f = f(t, x) ∈ C∞0 (Π). The topology in W−1
2,loc(Π) is generated by the family of

semi-norms l → ‖lf‖W−1
2

, f(t, x) ∈ C∞0 (Π).
By Tartar–Murat compensated compactness [10, 17] the quadratic functional

q(λ̄) = (λ1λ4 − λ2λ3), λ̄ = (λ1, λ2, λ3, λ4), is weakly continuous on the sequences
(η+

k (ur), ψ+
k (ur), η−l (ur), ψ−l (ur)) for all k, l ∈ R. By (1.8) this can be written as the

following commutation relation: for a.e. (t, x) ∈ Π

〈νt,x(λ), η+
k (λ)ψ−l (λ)− η−l (λ)ψ+

k (λ)〉 =
〈νt,x(λ), η+

k (λ)〉〈νt,x(λ), ψ−l (λ)〉 − 〈νt,x(λ), η−l (λ)〉〈νt,x(λ), ψ+
k (λ)〉.(2.6)

It is clear that (2.6) holds for (t, x) ∈ P , where P is a set of common Lebesgue point of
the functions (t, x) → 〈νt,x(λ), p(λ)〉, p(λ) ∈ C(R). Since the space C(R) is separable,
we see that P ⊂ Π is a set of full measure. We fix (t, x) ∈ P , ν = νt,x, and assume
that the segment [a, b] = Co supp ν is not trivial, i.e., a < b. Then it follows from
(2.6) that for each k, l ∈ (a, b) such that l < k

(2.7) 〈ν(λ), η+
k (λ)〉〈ν(λ), ψ−l (λ)〉 − 〈ν(λ), η−l (λ)〉〈ν(λ), ψ+

k (λ)〉 = 0

because, evidently, η+
k (λ)ψ−l (λ) = η−l (λ)ψ+

k (λ) ≡ 0. Since [a, b] is the minimal seg-
ment containing supp ν then

〈ν(λ), η+
k (λ)〉 =

∫
(λ− k)+dν(λ) > 0, 〈ν(λ), η−l (λ)〉 =

∫
(λ− l)−dν(λ) > 0

and (2.7) implies that for each l, k ∈ (a, b), l < k

I−(l) .=
〈ν(λ), ψ−l (λ)〉
〈ν(λ), η−l (λ)〉 = I+(k) =

〈ν(λ), ψ+
k (λ)〉

〈ν(λ), η+
k (λ)〉 .

Clearly, this can hold only if I−(l) = I+(k) = C, where C = const. In particular,
I+(k) = C, which implies that
∫

sign +(λ−k)(ϕ(λ)−Cλ− (ϕ(k)−Ck))dν(λ) = 〈ν(λ), ψ+
k (λ)〉−C〈ν(λ), η+

k (λ)〉 = 0

for all k ∈ (a, b). By Lemma 2.1, applied to the function H(λ) = ϕ(λ) − Cλ, we
conclude that ϕ(λ)−Cλ = const on [a, b], that is, ϕ(λ) is affine on [a, b] = Co supp νt,x.
In the case a = b this statement is trivially fulfilled. To conclude the proof, it only
remains to see that (t, x) ∈ P is arbitrary.

Now we are ready to conclude the proof of Theorem 1.2. Let, as above, ur be a
subsequence of un, convergent to a measure valued function νt,x in the sense of relation
(1.8), and let P ⊂ Π be the set of full measure defined in the proof of Proposition 2.2.
Suppose (t, x) ∈ P , [a, b] = Co supp νt,x. If a < b then u(t, x) =

∫
λdνt,x(λ) ∈ (a, b)

and by Proposition 2.2 the flux ϕ(u) is affine on (a, b). According to the assumption
of Theorem 1.2 this may happen only for a set of (t, x) of null Lebesgue measure.
Hence, b = a = u(t, x) for a.e. (t, x) ∈ Π, that is, νt,x(λ) = δ(λ−u(t, x)). This means
that the measure valued function νt,x is regular. By Theorem 1.5 the subsequence
ur → u as r → ∞ in L1

loc(Π). To conclude the proof it only remains to notice that
the limit function u(t, x) does not depend on the choice of subsequence. Therefore,
the original sequence un converges as n →∞ to the same limit u = u(t, x) in L1

loc(Π).
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3. Proof of Theorem 1.3. To prove the decay property, we use the approach
developed in [2], which relies on the precompactness of the rescaled sequence un =
u(nt, nx), n ∈ N. Recall that u(t, x) is an e.s. of (1.1), (1.2) with a 1-periodic initial
function u0(x) ∈ L∞(R).

As follows from [15, Corollary 7.1], after possible correction on a set of null mea-
sure, an e.s. u(t, x) is continuous on [0, +∞) as a map t 7→ u(t, ·) of [0,+∞) into
L1([0, 1]). Thus, we can and will always assume that u(t, ·) ∈ C([0,+∞), L1([0, 1])).

In view of (1.5),
∫ 1

0
u(t, x)dx = I =

∫ 1

0
u0(x)dx for all t > 0 (already without

extraction of a set of t of null measure).
Lemma 3.1. The sequence

un ⇀
n→∞

I weakly-∗ in L∞(Π).

Proof. We introduce the sequence vn = un−I. First observe that for each integer
m ∈ Z and p(t) ∈ L1((0, +∞))

(3.1) In
.=

∫

(0,+∞)×[0,1]

vn(t, x)p(t)e2πimxdtdx = 0 ∀n > |m|,

where i =
√−1 is the imaginary unit. Indeed, for m = 0 this reduces to the equality∫ 1

0
vn(t, x)dx = 0 following from (1.5). If m 6= 0 then using that un(t, x + 1/n) =

un(t, x) for a.e. (t, x) ∈ Π, we find

In =
∫

(0,+∞)×[0,1]

vn(t, x + 1/n)p(t)e2πim(x+1/n)dtdx =

e2πim/n

∫

(0,+∞)×[0,1]

vn(t, x)p(t)e2πimxdtdx = e2πim/nIn.

Since n > |m| then e2πim/n 6= 1 and we conclude that In = 0. In view of (3.1)

lim
n→∞

∫

(0,+∞)×[0,1]

vn(t, x)h(t, x)dtdx = 0

for all function h(t, x) of the kind h(t, x) =
∑l

j=1 pj(t)e2πimjx, mj ∈ Z, pj ∈
L1((0, +∞)), j = 1, . . . , l. Since functions of such kind are dense in L1((0, +∞)×[0, 1])
while the sequence vn is bounded in L∞((0, +∞)× [0, 1]), we obtain that vn ⇀ 0 as
n → ∞ weakly-∗ in L∞((0, +∞) × [0, 1]) and, in view of spatial periodicity, also in
L∞(Π). The proof is complete.

It is clear that un(t, x) = u(nt, nx) is an e.s. of (1.1), (1.2) with initial data
u0(nx). By Lemma 3.1 the sequence un converges weakly to the constant I. By the
assumption of Theorem 1.3, the flux function ϕ(u) is not affine in any vicinity of I.
Applying Theorem 1.2, we conclude that un → I as n →∞ in L1

loc(Π). This implies
that there is a subsequence ur = unr (t, x) such that for a.e. t > 0 ur(t, x) →

r→∞
I in

L1([0, 1]). Making the change of variables y = nrx and using the space periodicity of
u, we find that for a.e. t > 0

(3.2)
∫ 1

0

|u(nrt, y)− I|dy =
∫ 1

0

|u(nrt, nrx)− I|dx →
r→∞

0.
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We fix such t = t0 > 0. Then for all t > nrt0

(3.3)
∫ 1

0

|u(t, y)− I|dy ≤
∫ 1

0

|u(nrt0, y)− I|dy,

by the L1-contraction property (1.6) (with “initial time” nrt0). In view of (3.2) it
follows from (3.3) that lim

t→∞
u(t, x) = I in L1([0, 1]), and decay property (1.7) holds.

4. Proof of Theorem 1.4. If ϕ(u) is not affine in any vicinity of I then it follows
from Theorem 1.3 that v(y) ≡ I and α(v) = β(v) = I. Otherwise, assume that ϕ(u)
is affine on some maximal interval (a, b), −∞ ≤ a < I < b ≤ +∞: ϕ(u)− cu = const
on (a, b).

Let b < +∞ and u+ = u+(t, x) be the e.s. of (1.1), (1.2) with initial data
u0(x) + b − I > u0. By the comparison principle [7, 8] we see that u+ ≥ u. Since∫ 1

0
(u0(x) + b − I)dx = b while ϕ(u) is not affine in any vicinity of b, it follows from

Theorem 1.3 that u+(t, ·) → b in L1([0, 1]) as t → +∞. In view of the inequality
u ≤ u+, we find that (u(t, ·) − b)+ → 0 in L1([0, 1]) as t → +∞. In the similar way,
if a > −∞ then u ≥ u−, where u− = u−(t, x) is the e.s. of (1.1), (1.2) with initial
data u0(x) + a− I < u0. By Theorem 1.3 again we see that u−(t, ·) → a in L1([0, 1])
as t → +∞ because

∫ 1

0
(u0(x) + a − I)dx = a while ϕ(u) is not affine in any vicinity

of a. This implies that (a − u(t, ·))+ →
t→+∞

0 in L1([0, 1]). It follows from the above

limit relations that

(4.1) u(t, ·)− sa,b(u(t, ·)) →
t→+∞

0 in L1([0, 1]),

where sa,b(u) = min(b,max(a, u)) is the cut-off function (it is possible that a = −∞
or b = +∞).

We take a strictly increasing sequence tk → +∞ such that ctk ∈ Z and define
vk(x) = sa,b(u(tk, x)).

By the construction ϕ(vk) = cvk + const, which readily implies that vk(x− ct) is
an e.s. of (1.1), (1.2) with initial data vk. By the L1-contraction property (1.6) and
the assumption ctk ∈ Z, ∀t > tk

∫ 1

0

|u(t, x)− vk(x− ct)|dx ≤
∫ 1

0

|u(tk, x)− vk(x− ctk)|dx =

δk
.=

∫ 1

0

|u(tk, x)− vk(x)|dx → 0 as k →∞,(4.2)

where the latter limit relation follows from (4.1). Taking in (4.2) t = tl, where l > k,
we find

∫ 1

0

|vl(x)− vk(x)|dx =
∫ 1

0

|sa,b(u(tl, x))− vk(x− ctl)|dx ≤
∫ 1

0

|u(tl, x)− vk(x− ctl)|dx ≤ δk.

We see that vk is a Cauchy sequence in L1([0, 1]). Therefore vk converges as k →∞
to a 1-periodic function v. It is clear that a ≤ v ≤ b. In view of (4.2)

∫ 1

0

|u(t, x)− v(x− ct)|dx ≤
∫ 1

0

|u(t, x)− vk(x− ct)|dx +
∫ 1

0

|vk(x)− v(x)|dx ≤ δk +
∫ 1

0

|vk(x)− v(x)|dx → 0
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as t → +∞. Here k = k(t) = max{k : t > tk} → ∞. We also notice that

∫ 1

0

v(x)dx =
∫ 1

0

v(x− ct)dx = lim
t→+∞

∫ 1

0

u(t, x)dx = I.

This completes the proof of Theorem 1.4.
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