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Abstract: The paper proposes a scheme by combining the Runge-Kutta discontinuous Galerkin

method with a δ-mapping algorithm for solving hyperbolic conservation laws with discontinuous

fluxes. This hybrid scheme is particularly applied to nonlinear elasticity in heterogeneous media

and multi-class traffic flow with inhomogeneous road conditions. Numerical examples indicate the

scheme’s efficiency in resolving complex waves of the two systems. Moreover, the discussion implies

that the so-called δ-mapping algorithm can also be combined with any other classical methods for

solving similar problems in general.
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1 Introduction

The standard hyperbolic conservation laws can be generally written in the following form [10,30,33]:

ut + f(u)x = 0, (1)

∗Corresponding author. E-mail: pzhang@mail.shu.edu.cn.
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where u = u(x, t) is an unknown variable or vector for solution, and f(u) is the flux. However,

considerable applications involve spatially varying fluxes, e.g., in flow through porous media, water

wave equations, elastic waves in heterogeneous media, and traffic flow on an inhomogeneous road.

See [1, 5, 16, 17, 21, 23–25, 34, 35, 37, 39] and the references therein for discussions of the problem. In

this case, the equation or system for conservation is written as

ut + f(u, θ(x))x = 0, (2)

where θ(x) is a known scalar or vector denoting some spatially varying parameters.

For standard conservation laws of Eq. (1), study of numerical schemes focuses on the capture

of shocks. Although the first-order monotone scheme is able to resolve a shock, the profile can be

over smoothed by numerical diffusions. The Godunov theorem suggests that a high-order accurate

linear scheme can considerably reduce these diffusions. However, the dispersion that is due to the

linearity yields spurious oscillations in the vicinity of a shock. Thus, nonlinearity was introduced in

the high-order accurate scheme to suppress the oscillations, with the proposition of the total variation

diminishing (TVD) scheme, the Runge-Kutta discontinuous Galerkin (RKDG) scheme, the weighted

essentially non-oscillatory (WENO) scheme, and et al. See [2,10,15,20,23,30,33] and the references

therein for detailed discussions of the theory.

For conservation laws of Eq. (2), the aforementioned higher-order nonlinear schemes can be ex-

ploited for the capture of shocks. A straightforward treatment is to regard θ(x) as being continuous at

the cell boundary xj+1/2, or view θ(x) = θ(xj+1/2) as being locally constant around xj+1/2, and then

directly applies these schemes by taking the numerical flux as f̂j+1/2 = f̃(u−j+1/2, u
+
j+1/2, θ(xj+1/2)),

where f̃ is a classical Riemann solver. However, such a treatment was indicated not to be consistent

with the steady-state solution or stationary shock of Eq. (2), and oscillations were observed with rel-

atively sharp change in θ(x) [39–41]. We note that Eq. (2) usually gives a nonconstant steady-state

solution u = u(x), other than a trivial or constant solution that is implied in Eq. (1) or by setting

θ(x) as being constant in Eq. (2).

Zhang and Liu [39,40] proposed a so-called δ-mapping algorithm based on a thorough study of the

characteristic theory under the scalar form of Eq. (2). The algorithm first assumes an intermediate

state/value θj+1/2 = θ̄(θj , θj+1) of θ(x), which is somehow between the j-th and (j +1)-th cells, and

then maps uj and uj+1 onto the intermediate state θj+1/2. The mapping is based on the fact that the

flow f(u, θ(x)) (other than the solution variable u) is constant in a characteristic. With the mapped

values δj+1/2uj and δj+1/2uj+1, the two adjacent solution states are “unified” at a frozen state θj+1/2,

and a classical Riemann solver f̃(δj+1/2uj , δj+1/2uj+1, θj+1/2), e.g., the well known Godonov, Lax-

Fridrichs, or Engquist-Osher flux is used to approximate the flux f(u(xj+1/2, t), θ(xj+1/2)) at the cell
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boundary. Since the Riemann solver depends on the two cell states θj and θj+1 other than θ(xj+1/2),

it is implied that the flux f(u, θ) is essentially discontinuous with respect to θ or x.

The so called δ-mapping algorithm was further developed for solving Eq. (2), through combi-

nation with the RKDG scheme for the LWR model of traffic flow, with the WENO scheme for the

elastic wave in heterogeneous media [37] and the multi-class model of traffic flow [43]. These “hybrid”

schemes are different from the aforementioned “straightforward treatment” in that δj+1/2ui (other

than ui) were adopted in a classical numerical flux f̃ , where i refers to all involved cells for approx-

imating f(u, θ) at x = xj+1/2. These schemes were verified to be consistent with the stead-state

flow or stationary shock of Eq. (2). We mention that other schemes, e.g., those developed for Eq.

(2) in [1, 5, 16, 17, 21, 24, 34, 35], possess the same consistency and thus are able to well resolve the

solution profiles despite much differences between their formulations and those in [37,39,40,43].

The present paper proposes a hybrid scheme for solving Eq. (2) by combining the δ-mapping

algorithm with the higher-order accurate RKDG scheme. Since the RKDG scheme (as well as

TVD scheme) adopts a limiter that suggests nonlinearity or viscosity wherever near a shock, the

δ-mapping is also adopted in the limiter to maintain the aforementioned consistency with steady-

state solutions or stationary shocks. Precisely, uj∓1 are replaced by δjuj∓1 in the limiter referring

to the j-th cell, where δj corresponds to the θj state. Although the discussion succeeds to that

in [41], we deal with the system more than the scalar equation, and focus on the multi-class traffic

flow [4–9, 12, 13, 19, 27, 28, 36, 38, 42] and nonlinear elasticity in heterogeneous media [1, 23–25, 37].

The numerical results demonstrate that the scheme is robust in resolving the complex waves in

the aforementioned problems, which are comparable with those given by the hybrid scheme that

combines δ-mapping and the fifth-order accurate WENO scheme in [37,43], and those in [24].

The remainder of this paper is organized as follows. In Section 2, the RKDG scheme together

with its combination with the δ-mapping algorithm for the system of (2) is discussed in general.

In Section 3, the aforementioned hybrid scheme is implemented with detailed discussions for elastic

waves in heterogeneous media (Section 3.1) and for multi-class traffic flow (Section 3.2), respectively;

numerical examples are presented in this section. We conclude the paper by Section 4.

2 RKDG method combined with δ-mapping

2.1 General account of DG space discretization

A finite computational interval [0, L] is uniformly divided into cells: Ij = (xj−1/2, xj+1/2), with

∆j = xj+1/2 − xj−1/2, and xj = (xj−1/2 + xj+1/2)/2, j = 1, ..., N , which is shown by Fig. 1. For Eq.
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(2) with the initial condition:

u(x, 0) = u0(x), (3)

we proceed the following. We multiply Eq. (2) with a test function ω(x), and integrate the resultant

equation over Ij , which gives ∫
Ij

utω(x)dx+

∫
Ij

fx(u, θ)ω(x)dx = 0.

Then, we apply the integration by parts to the second term, and have∫
Ij

utω(x)dx−
∫
Ij

f(u, θ)ωx(x)dx+ f(u, θ)ω(x)|xj+1/2
xj−1/2

= 0. (4)

Similar procedures are applied to Eq. (3), which yields∫
Ij

u(x, 0)ω(x)dx =

∫
Ij

u0(x)ω(x)dx. (5)

 
0

x  
1

x  
1j

x   
−

 
j

x  
1j

x
+

 
N

x  
1N

x
+

 
1/2

x
−

 
1/2

x  
1/2j

x
−

 
1/2j

x
+

 
1/2N

x
+

 
0

I  
jI  

1N
I

+

 
3/2N

x
+

0 1 x

Fig. 1 Cell division for space discretization

Equations (4) and (5) are the weak formulations of Eqs. (2) and (3), on which the RKDG

method is based for spatial discretization. Assume that uh(x, t) is an approximation to u(x, t),

where uh(x, t) ∈ P k(I), and P k(I) is the space of piecewise polynomials of degree at most k. Then,

in each cell Ij , uh(x, t) can be expressed as a linear combination:

uh(x, t)|Ij =
k∑

l=0

uljφ
l
j(x),

where {φl
j(x)}kl=0 is a set of bases of P k(Ij). Usually, {φl

j(x)}kl=0 are taken as being orthogonal to

each other under the L2-norm, i.e.,

φl
j(x) = Ll(

2(x− xj)

∆j
), Ll(s) =

1

2ll!

dl

dsl
[(s2 − 1)l],

where Ll represent the Legendre polynomials. By taking ω(x) = φl
j(x), and replacing u(x, t) with

uh(x, t), Eq. (4) leads to the following ordinary differential equations (ODEs):

d

dt
ulj(t) =

2l + 1

∆j
(

∫
Ij

f(uh(x, t), θ(x))(φ
l
j(x))xdx− f̂j+1/2 + (−1)lf̂j−1/2), (6)
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for solving the coefficients ulj(t). Here, the numerical flux f̂j±1/2 is used to approximate the flow

f(u, θ) at the cell boundary x = xj±1/2, through the replacement of f(uh(xj±1/2, t), θ(xj±1/2)) by

f̂j±1/2. Similar operations are implemented on (5), which help derive the initial values of these

coefficients with

ulj(0) =
2l + 1

∆j

∫
Ij

u0(x)φ
l
j(x)dx. (7)

The approximation is theoretically of the (k+1)-th order of accuracy. To ensure the same order

of accuracy, all integrals are computed by the Gauss formula with sufficiently high accuracy (e.g.,

the two-point formula for k = 1). We refer the reader to [2, 10, 15, 20, 29] for general account of the

formulation.

2.2 Derivation of numerical fluxes

We omit the subscript “h” in uh, and denote by u±j+1/2(t) = u±h (xj+1/2, t), for the discussion

in this section. For θ being considered continuous at the cell boundary x = xj+1/2, the flow

f(uh(xj±1/2, t), θ(xj±1/2)) could be approximated by an classical numerical flux, which takes the

following form:

f̂j+1/2 = f̃(u−j+1/2(t), u
+
j+1/2(t), θ(xj+1/2)),

and which refers to the aforementioned “straightforward treatment”. However, this approximation

suggests non-consistency with the steady-state or stationary shock solution of Eq. (2), and non-

physical oscillations for sharp change in θ(x) [39–41]. Therefore, θ(x) should be viewed as being

discontinuous at x = xj+1/2, and the numerical flux should take the following form:

f̂j+1/2 = f̂(u−j+1/2, θ
−(xj+1/2);u

+
j+1/2, θ

+(xj+1/2)) (8)

For the studied problems in this paper, θ(x) is piece-wise constant, thus we simply set θ−(xj+1/2) =

θ(xj) ≡ θj , and θ+(xj+1/2) = θ(xj+1) ≡ θj+1. In an otherwise case, θ(x) could be properly approxi-

mated by a polynomial.

To alternatively exploit a classical numerical flux f̃ for the definition of f̂ in Eq. (8), we proceed

the following. We choose a certain intermediate state θj+1/2 between θj and θj+1, θj+1/2 = θ̄(θj , θj+1),

where θ̄ is an average between θj and θj+1, such that θ̄(θ, θ) = θ. Then, u−j+1/2 and u+j+1/2 are

“unified” by mapping them onto θj+1/2 state with the mapped values δj+1/2u
∓
j+1/2, and f̂ is given

by

f̂(u−j+1/2, θj ;u
+
j+1/2, θj+1) = f̃(δj+1/2u

−
j+1/2, δj+1/2u

+
j+1/2, θj+1/2). (9)

The mapping δj+1/2 is defined by the following. Given u∓j+1/2, we find δj+1/2u
∓
j+1/2, which maximizes
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γ ∈ (−∞, 1] under the restrictions:

f(δj+1/2u
∓
j+1/2, θj+1/2) = γf(u∓j+1/2, θj+1/2∓1/2), (10)

and

λl(δj+1/2u
∓
j+1/2, θj+1/2)λl(u

∓
j+1/2, θj+1/2∓1/2) ≥ 0, (11)

where {λl} are the eigenvalues of Eq. (2) with θ being fixed; moreover, we setλl(δj+1/2u
−
j+1/2, θj+1/2) ≥ 0, if λl(u

−
j+1/2, θj) = 0,

λl(δj+1/2u
+
j+1/2, θj+1/2) ≤ 0, if λl(u

+
j+1/2, θj+1) = 0.

(12)

By Eq. (10), we attempt to equalize the two flows with γ = 1, or at least maximize the flow at

θj+1/2. This is in accordance with the “supply-demand” concept used in the theory of fluid dynamics

or traffic flow [17, 21]. For the first equation of (10), the demand f(u−j+1/2, θj) is fully satisfied at

θj+1/2 with γ = 1, if it (or its components) is not larger than the capacity (or capacities) of f at

θj+1/2; otherwise, it is partly satisfied by reaching the capacity (or capacities) at θj+1/2. For the

second equation of (10), the supply f(u+j+1/2, θj+1) is fully available at θj+1/2 with γ = 1, if it (or

its components) does not exceed the capacity (or capacities) of f at θj+1/2; otherwise, it is partly

available by reaching the capacity (or capacities) at θj+1/2. Eqs. (11)-(12) imply a so called wave

entropy condition, i.e., valid information in a certain characteristic should go forward or backward

without turning back. As will be shown in Sections 3 and 4, Eqs. (10)-(12) are applicable to the

discussed problems.

2.3 Time discretization and limiter

Equations (6)-(7) can be rewritten as the following ODEs:

duh
dt

|Ij = Lh(uh), uh|Ij (0) =
k∑

l=0

ulj(0)φ
l
j(x), j = 1, ..., N, (13)

for which the (k+1)-th order TVD Runge-Kutta time discretization is adopted. Note that we retrieve

the subscript “h” in uh. The procedure is briefed in the following.

For a division {tn}Mn=0 of the time interval [0, T ], where t0 = 0, and ∆tn = tn+1 − tn, we set

u0j = ΛΠk
huhj(0). Then , for n = 0, ...,M − 1, uh

n+1
j are computed as follows:

(i) Set uh
(0)
j = uh

n
j ;

(ii) For i = 1, ..., k + 1, compute the intermediate functions:

uh
(i)
j = ΛΠk

h{
i−1∑
l=0

αiluh
(l)
j + βil∆tnLh(uh

(l)
j )};
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(iii) Set uh
n+1
j = uh

(k+1)
j .

All the procedure (together with the parameters αil and βil) is the same as that in [10], except

that the slope limiter ΛΠk
h is redesigned to guarantee the scheme’s consistency with a steady-state

solution or stationary shock.

For k = 1, the slope limiter that acts on the piecewise linear solution

uh|Ij = ūj +
2u1j
∆j

(x− xj), j = 1, ..., N,

is defined by

ΛΠ1
huh|Ij = ūj +

2

∆j
m(u1j , δj ūj+1 − ūj , ūj − δj ūj−1)(x− xj), j = 1, ..., N. (14)

Here, the definition of δj is similar to that of δj+1/2 by Eqs. (9)-(12). However, δj is used to map the

two adjacent averages ūj∓1 onto θj state for comparison with the average ūj . By Eq. (14) the average

of uh|Ij remains the same for the purpose of conservation; however, the slope or change in uh|Ij is

possibly limited which with resultant artificial viscosities helps suppress non-physical oscillations.

Eq. (14) gives the following cell boundary values,

u−j+1/2 = ūj +m(u−j+1/2 − ūj , δj ūj+1 − ūj , ūj − δj ūj−1), (15)

u+j−1/2 = ūj −m(ūj − u+j−1/2, δj ūj+1 − ūj , ūj − δj ūj−1), (16)

which are used in Eqs. (10)-(12). The minmod function m is defined by

m(a1, a2, a3) =


s min
1≤n≤3

|an|, if s = sign(a1) = sign(a2) = sign(a3),

0, otherwise.

For k > 1, the limiter ΛΠk
h is defined based on the definition of ΛΠ1

h, which follows almost the

same steps in [10, 15] (see also [41]). To ensure the numerical stability of a scheme, the time step

should satisfy the following CFL condition [10,15]:

∆t(n) ≤ C
∆j

α(n)
, C =

1

2k + 1
, (17)

where, α(n) = maxj maxi{|λ1(δju
(n)
i , θj)|, ..., |λr(δju

(n)
i , θj)|}.

The formulation is almost the same as that in the standard RKDG scheme [10], except that

uj and uj∓1 in the limiter are replaced by δjuj and δjuj∓1. It can be easily verified that all the

procedures guarantee the scheme’s consistency with the steady-state solution or stationary shock of

system (2). On the other hand, a “straightforward treat” that is without δj in Eqs. (14)-(17) does

not possess such a consistency and thus would suggest non-physical oscillations. We refer the reader

to [41] for a similar discussion for the scalar equation of (2).
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3 Numerical implementation

3.1 Application to elastic wave equations

We consider the following elastic wave equations:

ε(x, t)t − v(x, t)x = 0, (18)

(ρ(x)v(x, t))t − σ(ε(x, t),K(x))x = 0, (19)

where the strain ε(x, t) and the velocity v(x, t) are the unknowns, and the stress-strain relation is

given by

σ(ε,K) = Kε+ βK2ε2.

By setting u = (ε, q)T , θ(x) = (ρ(x),K(x))T , q = ρv, and f(u, θ) = (−q/ρ,−σ(ε,K))T , the system

of (18)-(19) takes the form of Eq. (2). For θ(x) being fixed, the two eigenvalues of the system are

easily shown as λ1 = −c, and λ2 = c, where c =
√

σε/ρ is the sonic speed.

To implement the numerical scheme in Section 2 for solving the system of (18)-(19), we only need

verify that Eqs. (10)-(12) are applicable. We can actually choose γ = 1, such that Eq. (10) is always

solvable with

δj+1/2q
∓
j+1/2 =

ρj+1/2q
∓
j+1/2

ρj+1/2∓1/2
, δj+1/2ε

∓
j+1/2 =

(1 + 4βσ(ε∓j+1/2,Kj+1/2∓1/2))
1/2 − 1

2βKj+1/2
,

where the intermediate state (ρj+1/2,Kj+1/2) = (ρj+1,Kj+1), and we set β = 0.3 in the simulation.

Eqs. (11)-(12) are self-evident in that there always hold λ1 < 0, and λ2 > 0. The mapped values

used in Eqs. (14)-(17) can be similarly derived.

The system of (18)-(19) is used to model a compound material consisting of alternating layers of

two different materials, in which case the density ρ(x) and the modulus K(x) are taken as piecewise

constants for x ∈ [0, 300], with

(ρ(x),K(x)) =

 (ρA,KA), 2k ≤ x < 2k + 1,

(ρB,KB), 2k + 1 ≤ x < 2k + 2,
k = 0, · · · , 149.

Precisely, we set (ρA,KA) = (1, 1), and (ρB,KB) = (3, 3). Initially, ε(x, 0) = 0, and v(x, 0) = 0; a

perturbation is put on the left boundary with v(0, t) = −0.2(1+cos(π(t−30)/30)), for t ≤ 60, which

is cleared up with v(0, t) = 0, for 60 < t < 70. Thereafter, the periodic boundary conditions are

applied to observe the development of the perturbation, which is actually regarded as going forward

to the infinite.
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Fig. 2 The strain and stress, (a)-(d) at t = 120 and t = 240.
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Fig. 3 The strain and stress at (a), (b) t = 840; (c), (d) t = 1500; and (e), (f) t = 2850.

Figures 2 and 3 show that the perturbation breaks up into a series of solitary waves, which

have similar shapes. However, the magnitudes and propagation speeds are different; the larger the
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magnitude, the faster the propagation. These results indicate the efficiency of the scheme in resolving

nonlinear elastic wave in heterogeneous media. See also [24,37] for comparison.

3.2 Application to multi-class traffic flow

The multi-class model proposed in [36] was extended to describe traffic flow on an inhomogeneous

highway road, which takes the same form of Eq. (2), i.e.,

ut + f(u, θ(x))x = 0, (20)

with u = (u1, ..., um)T = (aρ1, ..., aρm)T , f(u, θ) = (f1(u, θ), ..., fm(u, θ))T , and θ(x) = (a(x), b1(x), ..., bm(x))T .

Here, a(x) is the number of lanes, ρl and fl are the average density per lane and the flow of the l-th ve-

hicular species, and bl(x) = vl,f (x)/vf is the scaled free flow velocity with vf = maxxmax1≤l≤m{vl,f (x)}.

The average velocity vl ≡ fl/ul of the l-th vehicular species is taken as bl(x)v(ρ), where ρ =∑m
l=1 ρl, and v(ρ) is a velocity-density relationship. Thus, we have

vl(x, t) = bl(x)v(ρ), fl(u, θ) = bl(x)ulv(ρ) = blulv(
m∑
l=1

ul/a).

We adopt the same velocity-density relationship as that in [43]:

v(ρ) = vf (1−
ρ

ρjam
),

and assume that the m vehicular species are divided, such that bl(x) < bl′(x) (or vl,f (x) < vl′,f (x)),

∀l < l′. Then, we have

v1 +
m∑
l=1

ρl
∂vl
∂ρ

< λ1 < v1 < λ2 < ... < vl−1 < λl < ... < vm−1 < λm < vm, for u/a ∈ D, (21)

where D = {u/a| ρl > 0, ∀l, ρ < ρjam}, and {λl}ml=1 are m distinct eigenvalues of system (20) for θ

being fixed. However, these eigenvalues cannot be explicitly solved for m > 4. See [12, 42, 43] for

detailed discussions.

To implement the scheme in Section 2, we verify that Eqs. (10)-(12) are applicable. We

denote by δj+1/2ρ
−
l,j+1/2 = δj+1/2u

−
l,j+1/2/aj+1/2, δj+1/2ρ

−
j+1/2 =

∑m
l=1 δj+1/2ρ

−
l,j+1/2, and αl,j =

(bl,jaj)/(bl,j+1/2aj+1/2). For simplicity, we drop the subscript “j + 1/2” in the following equations,

thus the first equation of (10) is equivalent to

γ =
δρ−l v(δρ

−)

αl,jρ
−
l v(ρ

−)
, 1 ≤ l ≤ m. (22)

By adding up all numerators and denominators over l, respectively, we have

γ =
δρ−v(δρ−)

v(ρ−)
∑m

l=1 αl,jρ
−
l

≤ q(ρ∗)

v(ρ−)
∑m

l=1 αl,jρ
−
l

,

10



where q(ρ∗) is the maximum of the flux function q(ρ) ≡ ρv(ρ). Thus, the maximum of γ reads:

γmax = min(1,
q(ρ∗)

v(ρ)
∑m

l=1 αlρl
).

By the inequality of (21), the eigenvalues {λl}ml=2 are non-negative, and λ1 changes sign such that

λ1 ≷ 0, if ρ ≶ ρ∗. See [42, 43] for detailed discussions. By setting γ = γmax, this together with

Eq. (22) helps uniquely determine δj+1/2ρ
−
l,j+1/2, under the restrains of Eq. (11)-(12). Note that

δj+1/2ρ
+
l,j+1/2 in Eqs. (10)-(12) and the mapped values in Eqs. (14)-(17) can be similarly derived.

The scheme is applied to resolve complex wave breaking of the Riemann solution, which was

analytically discussed and numerically solved in [43]. The initial or Riemann data are given as

follows:

u(x, 0) =

uL, if x < x0,

uR, if x > x0,
θ(x) =

 θL, if x < x0,

θR, if x > x0.
(23)

For comparison, we set the same values of all model parameters as those in [43], and the following

values

m = 3, vf = 40m/s, L = 10000m, N ≡ L/△j = 800, T = 400s;

(bL1 , b
L
2 , b

L
3 ) = (0.5, 0.75, 1), (bR1 , b

R
2 , b

R
3 ) = (0.25, 0.375, 0.5),

are commonly applicable. Others such as ρL ≡ uL/aL, ρR ≡ uR/aR, r ≡ aL/aR, and x0 in Eq. (23)

are given in the caption. The eigenvalues used in Eq. (17) are estimated by Eq. (21). However, we

choose the Courant number C = 0.3, which is smaller than that in [43]. This is under the restriction

of Eq. (17).

(a) x
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0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

ρ1ρ2ρ3

(b) x

D
en
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ty

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

ρ1

ρ
ρ2

3

Fig. 4. Two wave breaking patterns associated with being strictly hyperbolic of system (20), with {ρl}3l=1 being

shown at t = 400s, and (a) x0 = 0.3, r = 2, uL/aL = (0.02, 0.03, 0.01)T , uR/aR = (0.2, 0.08, 0.15)T , and

θ̄(θj , θj+1) = θj+1; (b) x0 = 0.5, r = 3, uL/aL = (0.15, 0.05, 0.02)T , uR/aR = (0.2, 0.15, 0.35)T , and θ̄(θj , θj+1) = θj .
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Fig. 5. Two wave breaking patterns associated with being non-strictly hyperbolic of system (20), with {ρl}3l=1 being

shown at t = 400s, and (a) x0 = 0.4, r = 3, uL/aL = (0.1, 0.15, 0.05)T , uR/aR = (0.15, 0.1, 0.2)T , and θ̄(θj , θj+1) = θj ;

(b) x0 = 0.45, r = 0.4, uL/aL = (0.1, 0.2, 0.3)T , uR/aR = (0.1, 0.25, 0.2)T , and θ̄(θj , θj+1) = θj .

Figure 4 shows two wave breaking patterns corresponding to a strictly hyperbolic system of Eq.

(20). As normally we observe m + 1 = 4 waves: besides m waves that are associated with λl-

characteristic fields, for l = 1, 2, 3, there is a contact at x = x0. The inequalities of (21) suggest

that the characteristic speeds {λl}ml=2 are always non-negative, thus the related waves (shocks or

rarefaction fans) arise in the downstream of x = x0. However, λ1 can be positive or negative. In

Fig. 4(a), we see that the λ1-characteristics are all positive, thus those emitting from t = 0, for

x < x0 ≡ 0.3, are able to pass through the contact x = x0. In contrast, we see that the λ1-

characteristics in Fig. 4(b) are all negative, thus those emitting from t = 0, for x > x0 ≡ 0.5, are

able to pass through the contact x = x0.

Figure 5 shows two wave breaking patterns corresponding to a non-strictly hyperbolic system of

Eq. (2). We observe m+2 waves in Fig. 5. In this case, λ1-characteristic field “abnormally” suggests

two waves, which propagate downstream and upstream from the contact x = x0, respectively. In Fig.

5(a), the λ1-characteristics from the left side of x = x0 are not able to pass through x = x0 ≡ 0.4,

which (with λ1 < 0, for x = x−0 ) triggers a return λ1-wave on the upstream road. This meanwhile

suggests that λ1 = 0, for x = x+0 , which gives rise to a λ1-rarefaction on the downstream road. In

Fig. 5(b), it is symmetric that the λ1-characteristics from the right side are not able to pass through

x = x0 ≡ 0.45, which suggests λ1 > 0, for x = x+0 , and λ1 = 0, for x = x−0 . As a consequence, we

observe a return λ1-wave and a λ1-rarefaction on the downstream and upstream roads, respectively.

See [42, 43] for more details about the wave breaking properties of the system. Figs. 4 and 5

together with sufficiently more numerical tests indicate that the proposed hybrid scheme is able to

resolve these complex waves efficiently.
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4 Conclusions

Hyperbolic conservation laws with discontinuous fluxes involve many applications. In the precious

works [39–41], we proceeded a thorough study of characteristics for the scalar case of Eq. (2).

For this equation, it is the flow f(u, θ) (other than the solution variable u) remains constant in a

characteristic. Therefore, a δ-mapping algorithm was proposed to map each of the involved cell

values ui onto the cell interface by trying to equalize the two flows at θj and θj+1/2. For a system of

Eq. (2), the δ-mapping also tries to equalize the two flows, since the propagation of all characteristics

(or the “upwinding”) should locally resolve a steady-steady solution or stationary shock, although

usually the characteristic fields of the system cannot be analytically solved. In the case that the two

flows cannot be equalized, the mapped value δj+1/2ui is determined such that the flow on the cell

interface is “somehow” maximized [43].

By the mapping, we say that the solution values are “unified” on the cell interface, and that the

system is locally “standardized”. Thus, any classical schemes for Eq. (1) can be used to solve Eq.

(2) just by replacing all involved values ui with their mapped values δj+1/2ui in the scheme. The

present paper enhances this belief in that the adopted RKDG scheme highly resolves complex waves

in two application problems, which seems to conclude our studies in this trend. However, the so-

called δ-mapping or the underlying concept for upwinging should find more application problems for

further validation or improvement, especially when the characteristics cannot reach the cell interface

and the flow for determining a mapped value would be “somehow” maximized.

More relevantly, the maximization would inevitably occur in any traffic flow models (e.g., in

higher-order models [3, 18, 22, 31, 32]) by associating these models with Eq. (2), because their first

characteristic speed must be allowed to change from negative to positive or vice versa, so as to

reflect the dissipation or formation of a traffic jam. By considering traffic flow on a road network

(e.g., see [11, 14, 21, 26]), the maximization would take place at a junction for finding the “mapped

values” of the neighboring cell values on all incoming and outgoing roads. In this regard, multi-class

traffic flow on a road network poses a challenging for the future study.
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