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Abstract

We study a 2× 2 system of non-strictly hyperbolic conservation laws arising in three–
component gas flooding for enhanced oil recovery. The system is not strictly hyperbolic.
In fact, along a curve in the domain one family is linearly degenerate, and along two other
curves the system is parabolic degenerate. We construct global solutions for the Riemann
problem, utilizing the splitting property of thermo-dynamics from the hydro-dynamics.
Front tracking simulations are presented, using the global Riemann Solver.

1 The Three-Component Gas Flooding Model

We consider a simplified compositional displacement model for a three-component system at
constant temperature and pressure [11],

(1.1) (C1)t + (F1(C1, C2))x = 0 , (C2)t + (F2(C1, C2))x = 0 ,

associated with initial data

(1.2) C1(0, x) = C̄1(x) , C2(0, x) = C̄2(x) .

The independent variables (t, x) are normalized such that the overall velocity is 1. Here Ci is
the overall ith component volume fraction, and Fi is the overall ith component flux. For the
third component, we trivially have

C3 = 1− C1 − C2 , F3 = 1− F1 − F2 .

The couplet (C1, C2) takes values in a triangular domain

D = {(C1, C2) | C1 ≥ 0, C2 ≥ 0, 1− C1 − C2 > 0} .

For the phase behaviors that are considered in this paper, there exists a subset D2 ⊂ D,
referred to as the two-phase region, where the fluid splits into two phases, the liquid and the
gaseous phases. In the single phase region D1 = D \D2, we trivially have

F1(C1, C2) = C1, F2(C1, C2) = C2.
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We briefly derive the equations in the two-phase region. We denote by cil and cig the com-
position of component i in the liquid and gaseous phases, respectively. For (C1, C2) ∈ D2

the compositions cil and cig, together with the liquid phase saturation S, satisfy the following
equations,

(1.3) Ci = cilS + cig(1− S), Fi = cilf + cig(1− f), i = 1, 2,
3∑
i=1

cil =
3∑
i=1

cig = 1.

Here f = f(S,C1, C2) is the fractional flow of liquid, and S takes values between 0 and 1 in
the two-phase region. Typically, for given (C1, C2), the mapping S 7→ f is S-shaped with an
inflection point. The K-values, defined as

(1.4) Ki =̇
cig
cil
, i = 1, 2, 3,

are determined by a phase behavior model and can either be taken as constant or a function of
(C1, C2) (e.g. [31]). For given (C1, C2) and Ki, one can calculate cil, cig and S by simultaneous
solution of (1.3), and (1.4). This simultaneous solution of equations is called a flash calculation
in the engineering literature and can be complicated for the systems with more than three
components [19]. In case of composition dependent K-values, the equilibrium compositions
are determined by an iterative procedure [29]. Next, the results of flash calculations are used
to calculate f and Fi.

For fixed (cil, cig) for i = 1, 2, the values (C1, C2) are linear functions of S. In the phase
coordinate (C1, C2), as S varies from 0 to 1, the trajectory of the couplet (C1, C2) is the
straight line connecting the equilibrium points (c1g, c2g) and (c1l, c2l). When S = 0, we have
(C1, C2) = (c1l, c2l), and when S = 1, we have (C1, C2) = (c1g, c2g). These lines are called tie-
lines. The curves of the end-points of these tie-lines, namely the points (c1g, c2g) and (c1l, c2l),
form the boundaries of the two-phase region. One may artificially extend the tie-lines into
single-phase region. We assume that the tie-lines do not intersect in the domain D, such
that any point (C1, C2) ∈ D lies on one unique tie-line. See Figure 1 (left) for a plot of the
two-phase region and the tie-lines.

It is well-known that the system of conservation laws (1.1) is not hyperbolic. There exist two
curves in D2 where the two eigenvalues as well as the two eigenvectors of the Jacobian matrix
of the flux function coincide, and the system is singular. On the other hand, the system (1.1)
has many interesting properties. Indeed, one family of integral curves of the Jacobian matrix
are straight lines, which coincide exactly with the tie-lines. This motivates a parametrization
of the tie-lines and a variable change of the unknowns. Without loss of generality, we retain
the equation for C1 in (1.1) and write

(1.5) C = C1, F = F1, C2 = αC + β, F2 = αF + β ,

where α and β are defined as

(1.6) α =
c2l − c2g
c1l − c1g

, β = c2g − αc1g .

Here α indicates the slope of a tie line, and β its interception point with the line C1 = 0.
Under the assumption that the tie lines do not intersect with each other in the domain D, one
may parametrize the tie lines with β [16, 18], and consider α = α(β). Treating (C, β) as the
unknowns, the system (1.1) becomes

(1.7) Ct + F (C, β)x = 0, C(α(β))t + βt + F (C, β)(α(β))x + βx = 0.
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Figure 1: Illustration of three-component phase diagram with constant K-values
(K1,K2,K3) = (0.05, 1.5, 2.5). Left plot uses the (C1, C2) coordinate, which the right plot
uses the (C, β) coordinate. The two red curves are the boundary of the two-phase region, and
green lines are tie lines.

associated with the initial data

(1.8) C(0, x) = C̄(x), β(0, x) = β̄(x).

The tie lines are now horizontal lines in the (C, β)-phase plane, illustrated in Figure 1 (right).

Construction of solutions of the Riemann problems can be challenging for three-component
systems [23]. In [32], the following Lagrangian coordinates (ϕ,ψ) was introduced,

(1.9) ϕx = −C, ϕt = F, and ψ = x− t.

Straight computation leads to the following system(
C

F − C

)
ϕ

−
(

1

F − C

)
ψ

= 0,(1.10)

βϕ + α(β)ψ = 0.(1.11)

The thermodynamics process described in (1.11) is decoupled from the fractional flow in
(1.10) (also known as the hydro-dynamics). Solutions of Riemann problems could be rather
simply constructed if this coordinate change were well-defined in the whole domain D. In
fact, given left and right states (CL, βL) and (CR, βR), one could first solve (1.11) for β,
then substitute the solution into (1.10), and solve a scalar conservation law with possibly
discontinuous coefficients.

Unfortunately, (1.10)-(1.11) does not offer this possibility, since the quantities C
F−C and 1

F−C
do not allow a single-valued function between them. Furthermore, the coordinate change is
only valid in the set when F > C. Indeed, let J be the Jacobian matrix for this coordinate
change,

J =̇
∂(ϕ,ψ)

∂(t, x)
=

(
F −C
−1 1

)
, so det(J) = F − C.

Thus det(J) = 0 when F = C, and the coordinate change is not valid there. Furthermore,
det(J) < 0 when F < C, so the resulting conservation laws are not equivalent to the original
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ones. See Wagner [38] for a discussion on the equivalence between the Eulerian and Lagrangian
coordinates for the Euler’s equations of gas dynamics.

If F < C, we define different Lagrangian coordinates,

(1.12) ϕ̃x = C, ϕ̃t = −F, and ψ̃ = x− t.

The Jacobian matrix J̃ for this coordinate change is

J̃ =̇
∂(ϕ̃, ψ̃)

∂(t, x)
=

(
−F C
−1 1

)
, so det(J̃) = C − F > 0.

Formal computation leads to the following system:(
C

C − F

)
ϕ̃

+

(
1

C − F

)
ψ̃

= 0,(1.13)

βϕ̃ − α(β)ψ̃ = 0.(1.14)

Nevertheless, the splitting nature can still be utilized in both numerical computation and
theoretical analysis. In this paper we construct solutions for global Riemann problems, taking
advantage of the splitting property. Given left and right states (CL, βL) and (CR, βR), we
would first solve for β, using either (1.11) if F > C, and (1.14) if F < C. This gives us a-priori
information on waves connecting different tie-lines. The global Riemann solver for (1.7) can be
constructed based on this information. The Riemann solver is then used to generate piecewise
constant front tracking approximate solutions.

The construction of the Riemann solver is closely related to that of a scalar conservation law
with discontinuous coefficients. Additional difficulties arise from the lack of strict hyperbolic-
ity. It is well-known that for hyperbolic conservation laws some additional constraint is needed
on discontinuities in the weak solution to ensure uniqueness. These constraints are referred to
as entropy (or admissible) conditions, and the corresponding shocks as “admissible shocks”.
Well-known conditions include the Kruzhkov condition [24] for scalar conservation laws, Lax
condition [27] for genuinely nonlinear systems, Liu condition [28] which also allows certain
local linear degeneracies, and the vanishing viscosity approach by Bianchini & Bressan [2, 3]
for scalar equations and for strictly hyperbolic systems. These conditions are equivalent for
the same system where ever the conditions are applicable.

For non-hyperbolic systems, there has not been a unified entropy condition. A generalized
Lax entropy condition was proposed by Keyfitz & Kranzer [22] for a model of elasticity. In
connection with scalar conservation laws with discontinuous flux function, Gimse & Risebro
[9, 10] introduced the shortest-path criterion, and proved its equivalence to the vanishing
viscosity limit. We remark that these two entropy conditions are different for certain cases of
Riemann problems, and would give very different entropy weak solutions. In this paper, we
adopt the Gimse & Risebro admissible condition.

Riemann problems for this type of non-strictly hyperbolic systems arising in simulation of
multiphase flow in porous media have been studied by many authors. Buckley and Leveret
[4] first developed the scalar conservation law for the water flooding which is a two phase
flow without mass transfer between phases. Later, Helfferich, Hirasaki and Pope extended the
models to the more complicated processes such as polymer flooding and gas flooding [11, 12,
33]. For the polymer flooding models, Johansen, Tveito and Winther [14, 15, 17] constructed
global Riemann solvers for an adsorptive model under various assumptions, and conducted
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numerical simulations with front tracking. Isaacson and Temple [13] studied the Riemann
problem of a non-adsorptive polymer flooding model, and constructed approximation solutions
using Glimm’s Randon Choice. Using the generalized Langmuir isotherm for the adsorption
functions in multi-component chromatography, Riemann solutions were constructed by Rhee,
Aris & Amundson in a celebrated paper [34], taking advantage of the fact that the system is
Temple class [37]. Dahl, Johansen, Tveito & Winther [5] constructed Riemann solutions for
a model of multi-component displacement in two-phase flow without mass transfer between
phases. Juanes and Lie [21, 26] applied the Riemann solver of Isaacson and Temple to three
component water alternating gas flooding model yet without mass transfer between phases.

The mass transfer between phases makes the partially miscible gas flooding Riemann problem
complex and the complexity increases as the number of components and phases increase. Helf-
ferich [11] identified paths for connecting waves of different families for such complex systems,
allowing an elegant but heuristic construction for solutions of Riemann problem. However,
an exact global Riemann solver is unfortunately more complicated than what Helfferich [11]
predicted. The two-component displacements can be modeled with scalar conservation laws
and Johns developed a front tracking algorithm for such systems [18]. The global Riemann
solver for three component systems is complicated. Instead of developing a general Riemann
solver, many authors have solved the Riemann problems for specific boundary conditions
[18, 23, 25, 35]. The structure of solution is very different for different boundary condition
and fluid phase behavior.

Gas flooding displacements are usually modeled with more than three components [7] and the
solutions of Riemann problems of such systems are very complicated [20, 30]. The solution
can be constructed as several consecutive three component systems [20], however the solution
is still complex. The other approach to simplify the solutions is to use the decoupled nature
of thermodynamics in the gas flooding problem such that the solution can be constructed
by calculating intersecting tie lines [20, 39]. However, the assumptions of such solutions are
invalid for some fluids [1] and solutions of intersecting tie lines can be non-unique [40]. The
current work presents a global Riemann solver for three-component systems by extending the
splitting approach developed in [8, 32]. The splitting of hydrodynamics from tie lines greatly
simplifies the solution to gas flood problems.

The rest of the paper is organized as follows. In Section 2 we give some basic analysis, the
precise assumptions on the model, along with the main results. Wave behaviors of both
families are analyzed in detail in Section 3. In Section 4 we connect various waves and
construct global existence of solutions for Riemann Problems. Some numerical simulation
using wave front tracking algorithm is performed and the results presented Section 5, to solve
the three-component slug injection problem with mass transfer between phases. Finally, some
concluding remarks are provided at the end of the paper.

2 Basic analysis, precise assumptions, and the main results

We assume that in the phase plan (C1, C2), no two tie-lines intersect in the domain D. Using
(1.6) and (1.3), we have

(2.1) α(β) =
β(1−K2)(K1 −K3)

β(K1 − 1)(K2 −K3) + (K2 −K1)(1−K3)
.
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Computation shows that the intersection point of any two tie-lines is outside the domain D if
the K-values satisfy one of the following conditions

(2.2) K3 < K2 < 1 < K1, or K1 < 1 < K2 < K3.

Such conditions are called strictly ordered K-values in the petroleum engineering literature
[30]. This labeling of components can be different from the conventional ordering of compo-
nents based on molecular weight. Under the assumption (2.2), every couplet (C1, C2) ∈ D
corresponds to a unique couplet (C, β).

Defining the unknown vector

(2.3) u =̇ (C, β)t,

the system (1.7) can be written into the quasi-linear form

(2.4) ut +A(u)ux = 0, where A(u) =

[
FC Fβ

0 Fα′(β)+1
Cα′(β)+1

]
.

The matrix A(u) has the following eigenvalues and right-eigenvectors

(2.5) λC = FC , rC =

[
1
0

]
, λβ =

F + [α′(β)]−1

C + [α′(β)]−1
, rβ =

[
−Fβ

FC − λβ
]
.

Here the labeling of the two families are not with respect to wave speed. We referred to
λC and λβ as the eigenvalues for the tie-line and non tie-line families, respectively. Sample
integral curves for the β-eigenvectors (nontie-line paths) are plotted in Fig. 2. The values
(C = −[α′(β)]−1, β) gives the envelope curve of the tie lines.

A computation on the directional derivative of λβ in the direction rβ gives

(2.6) ∇λβ · rβ =
1

(Cα′(β) + 1)2
α′′(β)(FC − λβ)(F − C) .

This indicates that along the curve F = C, the eigenvalue λβ remains constant. This curve
lies between the two groups of integral curves (see the green curve in Fig. 2), and is a β-
integral curve (see the proof of Lemma 3.2), along which the β-family is linearly degenerate.
This curve is referred to as the equi-velocity curve, and we will use the abbreviation EVC
throughout this paper.

Furthermore, (2.6) also indicates that along a β-integral curve, the derivative of λβ changes
sign at the point where FC − λβ = 0. The S-shape of the map C 7→ F (C, β) for any fixed β
gives rise to exactly two such points in the two-phase region. At these points we also have

λC =
∂F

∂C
=
F + [α′(β)]−1

C + [α′(β)]−1
= λβ , rC = rβ = (1, 0)t ,

i.e., the two eigenvalues as well as the two eigenvectors coincide, so the system is parabolic
degenerate. These points are referred to as the umbilical points. As β varies, we have two
curves in the two-phase region, one on each side of the EVC, where the system is degenerate.

For the convenience of our analysis, we introduce a new functional. For fixed β and parameter
a, we define a function F(C;β, a) as

(2.7) F(C;β, a) =̇
F (C, β) + a

C + a
.
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Figure 2: Integral curves for the β-family in the phase plane (C, β), corresponding to the case
in Fig. 1. Here, the red curves are the boundary of the two-phase region and are called binodal
curves.

This function takes the value of the slope between the point (−a,−a) and (C,F ), see Figure 3
plots (a) and (b) for an illustration. For a = [α′(β)]−1 the function takes the values of
λβ. Note that for fixed β and a, the function C 7→ F reaches its minimum and maximum
values at Cmin and Cmax respectively, where the lines (−a,−a)–(Cmin, F (Cmin)) and (−a,−a)–
(Cmax, F (Cmax)) are tangent to the graph of F (C, β) in plot (a).

We now state the precise assumptions on the functions F (C, β) and α(β) as follows.

A1. The map β 7→ α is C2 either strictly concave α′′ < 0 or strictly convex α′′ > 0.

A2. The function F (C, β) is C2. For any fixed β, the map C 7→ F is an S-shaped function
with a unique inflection point. In the two-pause region, the map C 7→ F is strictly
convex FCC > 0 on the left of the inflection point, and strictly concave FCC < 0 on the
right of the inflection point.

A3. The length of tie-lines in the two-phase region is a monotone function in β, such that
the followings hold. Between any two tie-lines, say with β1 and β2, either everything
point on the line β = β1 can be connected to some point on the line β = β2 by at least
one β-integral curve, or every point on the line β = β2 can be connected to some point
on the line β = β1 by at least one β-integral curve.

We remark that, the explicit expression for integral curves of the systems with constant K-
values shows the same behavior as (A3) [6]. However, for phase behavior with composition
dependent K-values, if the order of K-values changes, (A3) may not hold [23].

Below is the main result of the paper.

Theorem 2.1. The Riemann problem for (1.7) has a unique global solution for any Riemann
data uL and uR. Furthermore, in the phase plane (C, β), the path of the β-wave lies on the
same side of the EVC as the left state uL.
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(a) (b)

Figure 3: Functions F (C, β) and F(C;β, a). a = 0.2 on the left plot.

3 Basic Wave Behavior

3.1 The C-waves

We first recall the Liu admissibility condition [28] for shocks. Let u+ = Sβ(σ)(uL) for some
σ ∈ IR be a point on the β-shock curve through the left state uL. We say that the shock with
left and right state (uL, u+) satisfies the Liu admissibility condition provided that its speed
is less or equal to the speed of every smaller shock, joining uL with an intermediate state
u∗ = Sβ(s)(uL), s ∈ [0, σ].

When β is a constant, then two equations in (1.7) are the same. This scalar conservation law,
where C is the unknown, has a Buckley-Leverett type flux function [4]. Solutions of Riemann
problems are well-understood, see for example [36]. We referred the waves there as C-waves.
Let (CL, β) and (CR, β) be the left and right states, the solution of the Riemann problem is
constructed such that all shocks satisfy the Liu admissibility condition, and it could consist of
composite waves. To construct these wave, if CL > CR, we make the concave upper envelope
of the flux function, while if CL < CR, we make the lower convex envelope, and the C-waves
are constructed accordingly. See Figure 4 for an illustration. All C-shocks satisfy the Liu
admissible condition.

3.2 The β-waves

The waves that connect two different tie lines, i.e., two different β values, are referred as
β-waves.
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Figure 4: Solutions to Riemann problems for C-waves. Left: If CL < CR, the lower convex
envelope L-M1-M2-R gives a shock L-M1, a rarefaction fan M1-M2 and a shock M2-R. Right:
If CL > CR, the upper concave envelope L-M -R gives a rarefaction fan L-M and then a shock
M -R.

3.2.1 The β-shocks

We recall the Lax admissible condition for shocks. Along a shock curve of the ith family in
the (x, t) plan, the nearby characteristics of the same family must merge into the shock. For
scalar conservation law with general flux function, Lax condition is necessary but not sufficient.
However, if the flux is strictly convex or concave, these two conditions are equivalent.

In our model, the system is degenerate along two curves, therefore it is difficult to define
admissible shock loci across these degenerate curves. Indeed, shock locus might be discontinu-
ous, thus it is unclear how to apply the Liu condition. Since the β-family is strictly convex or
concave, we apply instead the Lax admissible condition. We remark that the Lax condition,
combined with the minimum jump condition [9] will eventually yield the unique solution for
Riemann problems, proved in Section 4.

For a β-shock, the C value is not constant across the shock. We first show that the Lax
admissibility condition for β-shocks for the system (1.7) is equivalent to the same condition
for the scalar equation (1.11) or (1.14), for F > C or F < C respectively.

Lemma 3.1. Let (C, β) be piecewise continuous solution of (1.7), and let (CL, βL) and
(CR, βR) be the left and right state of the a β-shock that satisfies the Rankine-hugoniot condi-
tion. Then, we have

(3.1) sign
(
F (CL, βL)− CL

)
= sign

(
F (CR, βR)− CR

)
.

Furthermore, the followings hold.

• If F (CL, βL) = CL, then F (CR, βR) = CR, and this shock is a contact discontinuity.

• If F (CL, βL) > CL and F (CR, βR) > CR, then the shock (CL, βL)-(CR, βR) satisfies the
Lax condition if and only if (βL, βR) is a shock for (1.11) that satisfies the Lax condition.
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• If F (CL, βL) < CL and F (CR, βR) < CR, then the shock (CL, βL)-(CR, βR) satisfies the
Lax condition if and only if (βL, βR) is a shock for (1.14) that satisfies the Lax condition.

Proof. Let (CL, βL) and (CR, βR) be the left and right state of a β-shock, respectively, and
let σβ be the shock speed. The Rankine-Hugoniot condition requires

σβ(CL − CR) = FL − FR,(3.2)

σβ(αLCL + βL − αRCR − βR) = αLFL + βL − αRFR − βR.(3.3)

Here we used the short hands

FL = F (CL, βL), FR = F (CR, βR), αL = α(βL), αR = α(βR).

We can eliminate CR or CL by multiplying (3.2) with suitable factor and subtract the remain-
ing equation from (3.3). Simple calculation gives

(3.4) σβ =
FL + σ̃−1β

CL + σ̃−1β
=
FR + σ̃−1β

CR + σ̃−1β
, where σ̃β =

αL − αR

βL − βR
.

Note that σ̃β is the Rankine-Hugoniot speed for (1.11) in the Lagrangian coordinate.

In the phase plane (C1, C2), the two tie-lines associated with βL and βR intersect at the point
where C1 = −σ̃−1β . Under our assumption, this point lies outside the domain D, either to the

left or to the right of D. Assuming it is on the left such that −σ̃−1β < 0, we illustrate the
geometric meaning of (3.4), in Figure 5 for an illustration. This clearly implies (3.1). The
case where the intersection point is on the right of D is completely similar.

Figure 5: Illustration for β shock. Here the red and blue curves are graphs for FL and FR,
and ∗ is the point (−σ̃−1β ,−σ̃−1β ). The green line has slope σβ. Then, the CL, CR must be

selected from the corresponding graphs of FL and FR that intersect with the green line.

For the rest of the proof we only consider the case −σ̃−1β < 0. If FL = CL, i.e., the left state

is on the EVC, then by (3.4) we have σβ = 1, and we must have FR = CR for every state
(CR, βR) that could be connected to (CL, βL) with a β-shock. Thus the right state must also
lie on the EVC. Along such a shock curve, the second eigenvalue λβ ≡ 1, and the β-family
is linearly degenerate. This discontinuity is actually a contact discontinuity, proved later in
Lemma 3.2.
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Otherwise if FL > CL, by (3.4) we have σβ > 1, and therefore FR > CR. In order to show
the equivalence of the two Lax conditions, i.e.,

α′(βL) > σ̃β > α′(βR) ⇐⇒ λβ(CL, βL) > σβ > λβ(CR, βR),

it suffices to show that the mapping

s 7→ F + s−1

C + s−1

is strictly increasing for any fixed F and C with F > C. This fact can be easily verified.

The proof for the case FL < CL is completely similar. The same results can be shown similarly
for the case where the intersection point of the two tie-lines is on the right of D.

3.2.2 β-rarefactions.

A β-rarefaction wave will connect (CL, βL) to (CR, βR) along the integral curves of the β-field.
Similar to Lemma 3.1, we have the following Lemma.

Lemma 3.2. Consider piecewise continuous solutions of (1.7), and let (CL, βL) and (CR, βR)
be the left and right states of a β-rarefaction wave in the two phase region. Then, we have

(i) If F (CL, βL) = CL, then F (CR, βR) = CR, and this wave is a contact discontinuity.

(ii) If F (CL, βL) > CL then F (CR, βR) > CR, and (βL, βR) is a rarefaction wave for (1.11).

(iii) If F (CL, βL) < CL, then F (CR, βR) < CR, and (βL, βR) is a rarefaction wave for
(1.14).

Proof. In the phase plane (C, β), the β-rarefaction curves are the integral curves of the second
eigenvector of the Jacobian matrix of the flux function for (1.6), given in (2.5). Let s 7→
R(s)(CL, βL) denote a β-rarefaction curve initiated at (CL, βL) where s is the parametrization
of the curve such that R(0)(CL, βL) = (CL, βL). We first show that the EVC is an integral
curve. It suffices to show that (Cs, βs)

t is parallel to the eigenvector rβ. Indeed, taking partial
derivative in s of the equation F (C, β) = C, we get

FCCs + Fββs − Cs = 0, i.e.,

(
Cs
βs

)
·
(
FC − 1
Fβ

)
= 0.

If F = C, we have λβ = 1 and so rβ = (−Fβ, FC − 1)t. Thus (Cs, βs)
t is parallel to rβ,

as claimed. This proves (i). By the uniqueness of the integral curves, (ii) and (iii) follows,
completing the proof.

4 Global solutions of Riemann problems

The solution of a Riemann problem is the key building block in a front tracking algorithm.
In this section we construct solutions for Riemann problems with any Riemann data, taking
advantage of the splitting property in the Lagrangian coordinates.
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4.1 Connecting C-waves with β-shock

Connecting C-waves with a β-shock results in the Riemann problem for a scalar conservation
law with discontinuous coefficient function. Let uL = (CL, βL)t and uR = (CR, βR)t be the left
and right states of the Riemann data, and assume that βL-βR is connected by a single β-shock.
We consider an implicit Riemann problem for a scalar conservation law with discontinuous
flux function,

(4.5) Ct + F̂ (C, x)x = 0, F̂ (C, x) =

{
FL(C) = F (C, βL), x > σβt ,
FR(C) = F (C, βR), x < σβt ,

with initial Riemann data

(4.6) C(0, x) =

{
CL, x > 0 ,
CR, x < 0 .

Note that the wave speed σβ is unknown, and it will be determined after the Riemann problem
is solved. This feature makes the Riemann problem solver implicit.

In order to remove the implicit feature, we recall the definition of the function F(C;β, a) in
(2.7). Given βL and βR, we define the F functions

(4.7) FL = F(C;βL, σ̃β), FR = F(C;βR, σ̃β) , where σ̃β =
βL − βR

α(βL)− α(βR)
.

Note that relation between the graphs of FL and FR are topologically identical to that of the
graphs of FL and FR. Riemann problem for a scalar conservation law with (FL, FR) as the
flux function, will generate the same types of waves if using (FL,FR) as the flux functions,
although with different wave speeds. The advantage of using FL and FR lies in the fact that
β-waves will be stationary. This makes the construction of Riemann solution clearer. For the
Riemann data (4.6), we are now consider the following scalar equation

(4.8) Ct + F(C, x)x = 0, where F(C, x) =

{
FL(C), x ≤ 0,

FR(C), x > 0.

Existence and uniqueness of Riemann solution for scalar conservation law with flux function
with spacial discontinuity was established by Gimse & Risebro [9], using the minimum jump
condition, under the assumption that the flux functions f(u, x) are smooth in u. Our flux func-
tions F(C, x) are only continuous and piecewise smooth in C. Nevertheless, the construction
of the Riemann solution remains rather similar.

We denote (u1, u2; f) the Riemann problem for a scalar conservation law ut + f(u)x = 0 with
u1, u2 as the left and right states. The construction follows a three-step algorithm.

S1: Given FL(C) and CL, we identify the set

IL(CL,FL) =̇
{
Cm; (CL, Cm;FL) is solved by waves of non-positive speed

}
∪ {CL} .

S2: Given FR(C) and CR, we identify the set

IR(CR,FR) =̇
{
CM ; (CM , CR;FR) is solved by waves of non-negative speed

}
∪{CR} .
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S3: Find the β-wave position (Cm, βL)-(CM , βR) by

minimizing
∣∣CM − Cm∣∣ in the set

{
Cm ∈ IL, CM ∈ IR,FL(Cm) = FR(CM )

}
.

Next Theorem guarantees the existence and uniqueness of the Riemann solution.

Theorem 4.1. Consider the Riemann problem with uL = (CL, βL) and uR = (CR, βR) as
the left and right states, where βL and βR is connected with a single β shock. There exists a
unique solution for this Riemann problem.

Proof. We first observed that it suffices to prove the existence and uniqueness of the path
for the β-shock. Once this path is located, the solution for the Riemann problem is uniquely
determined. We define the set for the values of the flux function on the set IL and IR as

(4.9) JL(CL,FL) =̇
{
FL(C);C ∈ IL

}
, JR(CR,FR) =̇

{
FR(C);C ∈ IR

}
.

We first claim that the intersection of these two sets are not empty,

(4.10) JL(CL,FL) ∩ JR(CR,FR) 6= ∅ .

Indeed, due to the properties of our flux function, it is convenient to list all the cases. Given
FL, let (C0,FL0 ) and (C2,FL2 ) be the minimum and maximum points, respectively. Also we
let C1 be the unique point such that C0 < C1 < C2 and FL(C1) = 1. See Figure 6 for an
illustration. There are 4 cases.

Figure 6: The set IL and JL are the x and y coordinates for the thick curves in (L1)-(L4).
The set IR and JR are the x and y coordinates for the thick curves in (R1)-(R3).

• If CL ≤ C0, then we have

IL = (0, C0], JL = [FL(C0), 1].
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• If C0 < CL < C1, then let C̃L be the unique point such that C̃L < C0 and FL(C̃L) =
FL(CL). We have

IL = (−∞, C̃L] ∪ {CL}, JL = [FL(CL), 1].

• If C1 < CL < C2, then let C̃L be the unique point such that C̃L > C2 and FL(C̃L) =
FL(CL). We have

IL = {CL} ∪ [C̃L, 1), JL = [1,FL(CL)].

• If CL ≥ C2, then we have

IL = [C2, 1), JL = [1,FL(C2)].

We note that 1 ∈ JL in all cases.

Now, given FR, let (C3,FR3 ) and (C4,FR4 ) be the minimum and maximum points for FR
respectively. There are 3 cases, illustrated in Figure 6.

• If CR < C3, then let C̃R be the unique point such that C̃R > C3 and FR(C̃R) = FR(CR).
We have

IR = {CR} ∪ [C̃R, C4], JR = [FR(C̃R),FR4 ].

This includes the case where CR lies in the single phase region on the left of D2.

• If C3 ≤ CR ≤ C4, then we have

IR = [C3, C4], JR = [FR3 ,FR4 ].

• If CR > C4, then let C̃R be the unique point such that C̃R < C4 and FR(C̃R) = FR(CR).
We have

IR = [C3, C̃R] ∪ {CR}, JR = [FR3 ,FR(C̃R)].

This includes the case where CR lies in the one phase region on the right of D2.

We note that 1 ∈ JR. Thus JL ∩ JR is non-empty, proving (4.10).

To see that there is a unique solution to the minimizing problem, we first exclude the possible
isolated points in the sets IL, IR, and denote the sets by ILo , I

R
o . On the set ILo , the function

FL(C) is strictly decreasing, while on the set IRo , the function FR(C) is strictly increasing.
Given F ∈ JL ∩ JR, let CM ∈ IR and FR(CM ) = F , and let Cm ∈ IL and FL(Cm) = F .
Denote also DF =̇ CM − Cm. Then, the function F 7→ DF is strictly increasing, and there
exits a unique minimum for the map F 7→ |DF |.
Finally, if FL(CL) and/or FR(CR) are/is in JL∩JR, there could be multiple minimum paths.
In this case, we will select the path with the more isolated points. This yields a unique path
for the β-shock.
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We have an immediate Corollary on the location of the β-shock.

Corollary 4.2. In the setting of Theorem 4.1, the path of the β-shock lies on the same side
of EVC as the left state of the Riemann data.

Sample Riemann problems connecting single phase and two-phase regions. Let lt
be the tie-line that is tangent to the two-phase region, and let (Ct, βt) be the tangent point.
This tie-line lies in the single phase region, and the the flux function F (C, βt) = C. Consider
another tie-line l2 through the two-phase region with the flux F (C, β2). The solutions for
the Riemann problems with left and right states on each of these tie-lines are illustrated in
Figure 7, where we plotted the functions F (C, ·).

Case 1. If the left state is lt, then it will be connected to the point M with a C-contact disconti-
nuity that travels with speed 1. Note that M is on the EVC. In fact it is the endpoint
of EVC as it reaches the single-phase region. From M one can connect to any R on the
tie-line l2 on the red curve by solving a Riemann problem of a scalar equation, which
will yield a shock of speed ≥ 0.

Case 2. (a) If the right state is on lt, and the left state is on the the right side of the EVC on the
tie-line l2, then the wave path L-M-R will go through the upper point for M. (b) On the
other hand, if the left state is on the left of the EVC on the tie-line l2, the wave path
L-M-R will go through the lower point for M.

Figure 7: Riemann solver for the special case, where a tie-line is tangent to the two phase
region, plots of the functions C 7→ F (·, βL) and C 7→ F (·, βR), where blue curve is for the left
state, and red curve is for the right state.

Finally, if the left or right state are in the single-phase region along a tie-line extension, the
single-phase region and two-phase region is connected by a C-wave [?].

These discussions indicate that there are two ways that a wave path can connect states in the
single-phase and two-phase regions: (i) through tie lines, and (ii) through the point M in Case
1. This point M is referred to as the Plait Point.
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4.2 Connecting β-rarefaction wave to C-waves

Definition 4.3. In the (C, β)-plane, given a β-integral curve C, a curve Ĉ is called the critical
curve of C, if for every fixed β the β-eigenvalue

λβ(C, β) = F(C;β, α′(β)−1)

has the same values on the curves C and Ĉ, and the curves C and Ĉ are separated by the
degenerate curve.

Due to the S-shape of the flux function C 7→ F , the existence and uniqueness of the critical
curve is clear. Next Lemma provides its relative location to the β-integral curves.

Lemma 4.4. Let C1 ∪C2 be a β-integral curve, separated by the degenerate curve with C1 on
the left and C2 on the right, lying on the same side of EVC. Let C3 and C4 be the corresponding
critical curves for C1 and C2 respectively. Then, either C3 is on the left of C2 and C4 is on
the left of C1, or C3 is on the right of C2 and C4 is on the right of C1.

Proof. We parametrize all these curve with β, i.e., C1 is the graph of the function β 7→ C1(β)
etc. We first observe that

λβ(C1, β) =
F (C1, β)α′ + 1

C1α′ + 1
=
F (C3, β)α′ + 1

C3α′ + 1
= λβ(C3, β)

implies

(4.11)
F (C1, β)− C1

F (C3, β)− C3
=
F (C1, β)α′ + 1

F (C3, β)α′ + 1
=
C1α

′ + 1

C3α′ + 1
.

Along C1, using (2.6), the directional derivative of the β-eigenvalue is

(4.12) ∇λβ · rβ =
α′′(β)(F (C1, β)− C1)

(α′(β) + 1)2
.

Along C3, the directional derivative of the β-eigenvalue is the same as in (4.12). We must
have

(4.13) λβC(C3, β)C ′3(β) + λββ(C3, β) =
α′′(β)(F (C1, β)− C1)

(C1α′(β) + 1)2
.

Note that λβ(C1, β) = λβ(C3, β), and we will simply write λβ. Also, since α(β) is a function
of β, we will drop the independent variable and simply write α, α′, α′′.

Using the partial derivatives

λβC =
(Fc − λβ)α′

Cα′ + 1
, λββ =

Fβα
′ + Fα′′ − λβCα′′

Cα′ + 1
,

and the identities (4.11), we can solve (4.13) with respect to C ′3 and obtain

C ′3(β) =
1

(FC(C3, β)− λβ)α′

[
(C3α

′ + 1)2

(C1α′ + 1)2
· α
′′(F (C1, β)− C1)

(C3α′ + 1)

−Fβ(C3, β)α′ − F (C3, β)α′′ + λβC3α
′′
]

=
1

(FC(C3, β)− λβ)α′

[
(F (C3, β)− C3)α

′′

C1α′ + 1
− Fβ(C3, β)α′ − (F (C3, β)− λβC3)α

′′
]
.
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Fix a point on C3, denoted as (C3, β), let C5 denote the β-integral curve through (C3, β),
parametrize it in β. We have

C ′5(β) = −
Fβ(C3, β)

FC(C3, β)− λβ
.

Direct computation gives

C ′3(β)− C ′5(β) =
α′′

(FC(C3, β)− λβ)α′

[
F (C3, β)− C3

C1α′ + 1
− F (C3, β) + λβC3

]
=

α′′

(FC(C3, β)− λβ)α′

[
F (C3, β)− C3

C1α′ + 1
− F (C3, β) +

F (C1, β)α′ + 1

C1α′ + 1
C3

]
=

α′′

FC(C3, β)− λβ
[F (C1, β)C3 − F (C3, β)C1]

=
α′′C1C3

FC(C3, β)− λβ

[
F (C1, β)

C1
− F (C3, β)

C3

]
.

The factor FC(C3, β)−λβ changes sign crossing the degenerate curves, and the term F (C1, β)/C1−
F (C3, β)/C3 changes from positive to negative as it crosses EVC. We always have C1 ≥ 0, C2 ≥
0. We have the following conclusion:

Case 1. If α′′ < 0, then on the left of EVC, we have

FC(C3, β)− λβ > 0, F (C1, β)/C1 − F (C3, β)/C3 < 0, → C ′3 > C ′5.

By the uniqueness of the β-integral curve, C3 lies on the right of C2. Similarly, C4 lies
on the right of C1.

If these curves lie on the right of EVC, then we have

FC(C3, β)− λβ < 0, F (C1, β)/C1 − F (C3, β)/C3 > 0, → C ′3 > C ′5.

Then, C3 lies on the right of C2, and similarly C4 lies on the right of C1.

Case 2. If α′′ > 0, a completely similar argument shows that C3 lies on the left of C2, and C4

lies on the left of C1.

These two cases are illustrated in Figure 8, on the left of EVC.

Next Theorem establishes the existence and uniqueness of solutions for a Riemann problem
which contains β-rarefaction waves.

Theorem 4.5. Consider the Riemann problem with uL = (CL, βL) and uR = (CR, βR) as
the left and right state, where βL and βR is connected with a single β rarefaction wave. There
exists a unique solution for this Riemann problem.

Proof. Under our assumptions, given βL and βR, then either (i) every point on β = βR can be
connected to βL through a β-integral curve, or (ii) every point on β = βL can be connected
to βR through a β-integral curve. To fix the idea, we consider case (i), while case (ii) can be
treated in a completely similar way.
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Case 1 Case 2

Figure 8: Two possible relations between the curves C1, C2, C3 and C4.

Recall the definition of the function F(C;β, a) in (2.7). We denote now

FL(C) = F(C;βL, α′(βL)−1), FR(C) = F(C;βR, α′(βR)−1).

Let C̄, Ĉ be the two values where FR reaches its min and max value. Then, there exists
two integral curves through each of C̄ and Ĉ that connect to βL. We denote these curves as
C1, C2, C̃1, C̃2.

On the line β = βL, we denote by I ′ the set of C values that can not be connected to the
right with a β-integral curve. Clearly, this set includes the C values between the curves C1

and C2, and those between the curves C̃1 and C̃2.

Given uL, we let ĨL denote the set of C values on the line β = βL such that the Riemann
problem (CL, C;FL) is solved with non-positive speed, and the point C can be connected to
β = βR along a β-integral curve. Recall the sets IL and IR used in the proof of Theorem 4.1.
We have

ĨL = IL \ I ′.

Furthermore, let ÎL denote the set of the corresponding C values on the line β = βR that can
be connected to the set ĨL through a β-rarefaction curve.

We will only consider the case where the β-rarefaction path lies on the left of the EVC, while
the other case can be treated similarly. We consider the two Cases in Figure 8 separately.

Case 1. We assume first that CL lies on the left side of EVC, and we identify the set ÎL for
all cases of CL locations. In Figure 9 we show three different situations.

• If CL < C2, then ĨL contains the interval on the left of C1 and ÎL contains the interval
on the left of C̄. The set ÎL ∩ IR includes exactly one point.

• If C2 < CL < C3, then ĨL contains an addition point CL, and ÎL contains an additional
point which can be connected to CL through a β-integral curve. The set ÎL∩IR includes
either one point or two points. If it includes two points, one of then must be the isolated
point in ÎL, which will be selected.

• If C3 < CL < C0, we denote the integral curve through CL by C4 and it corresponding
critical curve by C5. Then the set ĨL includes the point CL plus the interval on the
left of the critical curve C5. The set ÎL consists of the point on C4 and the interval on
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Figure 9: Three situations for different locations of CL and the corresponding sets of ĨL (with
thick three line on L) and ÎL (with thick red line on R).

the left of the point that can be connected to ĨL with integral curve, where the right
endpoint lies on the left of C5. Thus, the set ÎL ∩ IR includes exactly one point.

Case 2. The proof is very similar, except in the case when C3 < CL < C2, where there exists
composite pathes, see Figure 10. In the plot on the left, CL can be connected to C̄ as follows:
From CL, the path follows a β-integral curve, until it intersects with the critical curve C3 at
a. Then it takes a horizontal path, through a C-shock, until it reaches the curve C1 at b.
From there it follows C1 to reach C̄. In the plot on the right, we show another path. In fact,
at any point ā before reaching a, one could take a horizontal path to reach the critical curve
of the integral curve through CL at b̄, then take the β-integral curve from there to reach the
line β = βR at a point to the left of C̄. Thus, we redefine the set ÎL to include the points on
the line β = βR that can be connected to the set ĨL through a composite path. Clearly, ÎL

includes all C ≤ Ĉ. Following a same argument as for Case 1, we conclude the uniqueness of
the path.

Figure 10: Case 2, when C3 < CL < C2, the β-wave path consists of two β-rarefaction waves
with a C-contact in between.

Similar to Corollary 4.2, we immediately have the next result on the position of the β-
rarefaction wave.

19



Corollary 4.6. In the setting of Theorem 4.5, the path of the β-rarefaction lies on the same
side of the EVC as the left state uL.

4.3 Global existence and uniqueness of solutions for Riemann problems

Proof. (Of Theorem 2.1.) We now complete a constructive proof for the main Theorem. Given
a left and right state uL = (CL, βL) and uR = (CR, βR), the solution of the Riemann problem
is constructed in two steps. We first solve the β-wave using information beaded on (βL, βR)
and the equation (1.11). This determines the type of β-wave that will connect to the possible
C-waves on the left and right. Thanks to Theorem 4.1 and Theorem 4.5, there exists a unique
path for the location of the β-wave. Then, the C-waves are constructed by solving the scalar
conservation laws, possibly for both left and right equations with β = βL and β = βR. The
uniqueness of these C-waves follows from standard theory for scalar conservation laws. Thus,
combining with Corollary 4.2 and Corollary 4.8 we complete the proof of Theorem 2.1.

We have two immediate Corollaries.

Corollary 4.7. The two-phase region is invariant for Riemann problems. Furthermore, the
EVC cuts the region into two sub-regions, where each one is invariant for Riemann problems.

For example, if both uL and uR lie on the left (or on the right) of the EVC with FL ≥ CL

and FR ≥ CR, then the solution remains on the same side of the EVC and F ≥ C.

Combining Corollary 4.7 and Corollary 4.6, the next Corollary follows.

Corollary 4.8. Let uL = (CL, βL) and uR = (CR, βR) be the left and right states of the
Riemann problem, where (βL, βR) is connected with a single β-wave, i.e., either a β-shock or
a β-rarefaction wave. Then, the path of β-wave wave and the left state lie on the same side
of the EVC. Furthermore, the solution path in the phase plane (C, β) crosses the EVC exactly
once.

5 Numerical Simulations with Front Tracking

The Riemann solver as described in section 4.3 is implemented in a front tracking algorithm.
The results of the front tracking is demonstrated for several examples and are compared with
finite difference simulation results.

Let ε > 0 be the parameter for the front tracking algorithm. We discretize the space for β
values, and let Bε = {βn} denote the set of the discrete values for β, with

(5.1) βn > βn−1,
∣∣βn − βn−1∣∣ ≤ ε, n = 1, 2, · · · , N − 1 .

We let αε(β) denote the piecewise affine approximation to α(β), with αε(βn) = α(βn) for
every n.

Next, we need to discretize C along each tie line. Unfortunately, the C grid is not constant
and depend on the β-wave. Therefore, we need to update the Cε = {Cn,m} after calculating
a new β-wave. The set of Cε = {Cn,m} denote the discritized values for C, with
(5.2)
Cn,m > Cn,m−1,

∣∣Cn,m − Cn,m−1∣∣ ≤ εC , n = 1, 2, · · · , N−1 , m = 1, 2, · · · ,M−1 .

20



Then we estimate f(S) with piecewise linear f ε(S). The parameter εC is ε devided by a
constant.

The discrete initial data is piecewise constant uε(0, x) = (Cε(0, x), βε(0, x)), where βε takes
only the values in Bε. Let xi be the points of discontinuities in the discrete initial data. We
denote the cell values as

βε(0, x) = βi, Cε(0, x) = Ci, xi−1 ≤ x < xi.

At t = 0, a set of Riemann problems shall be solved at every point xi where the initial discrete
data has a jump. The rarefaction fronts are approximated by jumps of size less than or equal
to ε (Figure 11, Left). One can use the result of the Theorem 4.5 to calculate the intermediate
points, where both approaches result to the same solution (Figure 11, right). Each front is
labeled to be either C-front or β-front, and it travels with Rankine-Hugonoit velocity. At
a later time t > 0 where two fronts meet, a new Riemann problem is solved. The process
continues until the final time T is reached. In case of variation of injection condition, the
initialization process should be repeated.

The β and C values calculated by front tracking has a significant different behavior. The
definition of αε(βn) constrains the values of β in the solution to Bε, unless the initial data
contain values out of Bε. However the C values of solution are not necessarily in Cε even if all
the initial data are in Cε. Therefore, to control the number of fronts, C-waves with the same
velocity should be merged into one C-wave, and C-waves smaller than a threshold should be
eliminated.

We used a three component system with properties shown in tables 1 and 2 at 2650 psia and
160◦F. Peng–Robinson equation of state [31] is used to calculate phase compositions.

TC(◦F) Pc(psi) ω

C10 611.161 305.76 0.5764
CO2 87.89 1071 0.225
C1 -116.59 667.8 0.008

Table 1: Fluid characterization for the ternary system

CO2 C1

C10 0.0942 0.0420
CO2 - 0.1

Table 2: Binary interaction coefficients for the ternary system

Slug injection is commonly used in gas flooding where the boundary condition at x = 0 is
changed at different times (or cycles). Furthermore, the finite difference simulation with single–
point upwind flux estimation is used to simulate gas flooding. We compared the simulation
results of the front tracking algorithm with the finite difference simulations. Example 2 has
initial oil shown by R in Figure 12 and slug composition by L1, which changes to L2 at
t = 0.2. Figure 12 compares the compositions at t = 0.8 and figure 13 shows the comparison
of composition profiles at t = 0.8.

Example 3 is simulation of a problem with variable initial condition. In addition, the com-
position at x = 0 is varied at different times to mimic the slug injection process. Figure 14
shows the fronts of the example, and Figure 15 shows the profiles at different times.
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Figure 11: Estimation of large β-rarefaction with smaller waves (Left) and convergence of
results to the correct solution (Right)

Figure 12: Comparison of the composition path calculated by finite difference simulation and
front tracking
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Figure 13: Comparison of the composition profiles calculated by finite difference simulation
using 10,000 grid blocks and front tracking with ε = 0.05

Figure 14: Fronts for variation of initial condition where two slugs are injected.
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Figure 15: Composition profiles at t = 0.0 (bottom), 0.1, 0.2, 0.3, 0.4 and 0.5 (top)
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< x x < C β

0 0.2 0.52 0
0.2 0.4 0.3 0
0.4 inf 0.318 0.5

Table 3: Initial condition for example problem 3

< t t < C β

0 0.1 0.05 0.5
0.1 0.2 0.5 0
0.2 inf 0.01 0

Table 4: Injection condition for example problem 3

6 Concluding remarks

Through a constructive proof, we show the existence and uniqueness for solution of global
Riemann problem for a two phase flow model with three-component gas flooding in reservoir
simulation. The construction of Riemann solution offers a front tracking algorithm, allowing
numerical simulations for case studies.

A more interesting and challenging problem is the existence of entropy weak solutions for the
Cauchy problem, established as the convergence limit of the front tracking approximate solu-
tions. Towards this goal, one needs to establish proper a-priori estimates on the approximate
solutions, in particular, some bounds on the total variation in certain form for compactness.
The key step in these analysis is the wave interaction estimates. In the literature among
models on reservoir simulation, the existence of entropy weak solutions is only available for
non-adsorptive models for two phase polymer flooding, under specific assumptions. For our
problem, due to the various degeneracies and the nonlinear resonance, this remains an open
problem.
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