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Abstract

The paper is concerned with the Burgers-Hilbert equation u; + (u?/2), = H[u], where
the right hand side is a Hilbert transform. Unique entropy admissible solutions are con-
structed, locally in time, having a single shock. In a neighborhood of the shock curve, a
detailed description of the solution is provided.

1 Introduction

Consider the balance law obtained from Burgers’ equation by adding the Hilbert transform
as a source term:

u?
Ut+<2>x = Hlu]. (1.1)
Here
PR | flx—y)
R (1.2)
y|>e

denotes the Hilbert transform of a function f € L2(IR). The above equation was derived in
[1] as a model for nonlinear waves with constant frequency. For initial data

u(0,z) = u(x), (1.3)

in H2(IR), the local existence and uniqueness of the solution to (1.1) was proved in [7], together
with a sharp estimate on the time interval where this solution remains regular. See also [§]
for a shorter proof. For general initial data @ € L2(IR), the global existence of entropy weak
solutions was recently proved in [4] together with a partial uniqueness result. We remark
that, in this general setting, the well-posedness of the Cauchy problem remains a largely open
question.

In the present paper we consider an intermediate situation. Namely, we construct solutions of
(1.1) which are piecewise continuous, with a single shock. Our solutions have the form

u(t,z) = Lp(x — y(t)) + w(t, T — y(t)),



where ¢ — y(t) denotes the location of the shock. Here w € H?(] — 0o,0[U]0, 400[), while
¢(z) = 2 |z| In|z], for x near the origin.

In Section 2 we write (1.1) in an equivalent form, and state an existence-uniqueness theorem,
locally in time. The key a priori estimates on approximate solutions, and a proof of the main
theorem, are then worked out in Sections 3 to 5.

The present results can be easily extended to the case of solutions with finitely many, non-
interacting shocks. An interesting open problem is to describe the local behavior of a solution
in a neighborhood of a point (tg, xg) where either (i) a new shock is formed, or (ii) two shocks
merge into a single one. Motivated by the analysis in [12] we conjecture that, for generic initial
data

o € H*(R)NC}RR),

the corresponding solution of (1.1) remains piecewise smooth with finitely many shock curves
on any domain of the form [0, 7] x IR. We thus regard the present results as a first step toward
a description of all generic singularities. For other examples of hyperbolic equations where
generic singularities have been studied we refer to [2, 3, 5, 6, 9]. The possible emergence of
singularities, for more general dispersive perturbations of Burgers’ equation, has been recently
studied in [10].

2 Statement of the main result

Consider a piecewise smooth solution of (1.1) with one single shock. Calling y(¢) the location
of the shock at time ¢, by the Rankine-Hugoniot conditions we have

u” (t) +ut(t) .

. (2.1)

y(t) =
where u~,u" denote the left and right limits of u(t,z) as  — y(t). Here and in the sequel,
the upper dot denotes a derivative w.r.t. time. It is convenient to shift the space coordinate,
replacing x with x — y(t), so that in the new coordinate system the shock is always located at
the origin. In these new coordinates, the equation (1.1) takes the equivalent form

up + (“;) —juy = Hu. (2.2)

We shall construct solutions to (2.2) in a special form, providing a cancellation between leading
order terms in the transport equation and the Hilbert transform.

Consider a smooth function with compact support n € C>°(IR), with n(z) = n(—z), and such
that

n(z) =1 if Jol <1,
n(z) =0 if |z|>2, (2.3)
n'(z) <0 if zell,2].
Moreover, define
pla) = 2L (2.4)



Notice that ¢ has support contained in the interval [—2,2] and is smooth separately on the
domains {z < 0} and {x > 0}.

In addition, we consider the space of functions
H = H?*(]— o0,0[U]0,+oo[). (2.5)

Every function w € H is continuously differentiable outside the origin. The distributional
derivative of w, is an L? function restricted to the half lines ] — oo, 0] and ]0, +oo[. However,
both w and w, can have a jump at the origin. It is clear that the traces

{ um = w(0-), { b = w,(0—),
(2.6)
ut = w(04), b= w,(04),

are continuous linear functionals on H.
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Figure 1: Decomposing a piecewise regular function u = ¢ + w as a sum of the function ¢ defined at
(2.4) and a function w € H?(IR \ {0}), continuously differentiable outside the origin.

Solutions of (2.2) will be constructed in the form
u(t,z) = (x)+ w(t, z). (2.7)

In order that the shock be entropy admissible, the function w should range in the open domain

D = {w e H2(R\ {0}); w(0-)> w(o+)}. (2.8)

By (2.6)-(2.8), for = &~ 0 this solution has the asymptotic behavior

w(t) + b () + 2R L o1) |23/ if z<0,
u(t,z) = (2.9)
wt(t) + bt (t) o + 2l o) - |32 if 2>0),
for suitable functions u*,b*. Here and throughout the sequel, the Landau symbol O(1)

denotes a uniformly bounded quantity.

Inserting (2.7) in the equation (2.2) and recalling (2.6), one obtains

u” 4+ ut

) (o +wy) = Hig] + Hlu] (2.10)

wt—i-(sO—i-w— B)

To derive estimates on the Hilbert transform, the following observation is useful. Consider a
function f with compact support, continuously differentiable for z < 0 and for > 0, with a



jump at the origin. Then, for any z # 0, an integration by parts yields!
1 [ 1
Hf@) = » [ £ bl yldy+ 2 [f01) = f0)] lfal. (211)

A similar computation shows that, to leading order, the Hilbert transform of w near the origin

is given by . -
Hw|(z) = % In |z| + O(1), (2.12)

with u™,u™ as in (2.6). On the other hand, for z ~ 0 one has

(1) + (o) - 2O o0

ut —u~

= <sign (x) - 5 +0Q1) - |z 1n|a:|> . (2.13)

2sign (z) - (14 In|z)
m
+ _ —
= ——— Infa| + O(1).

The identity between the leading terms in (2.12) and (2.13) achieves a crucial cancellation
between the two sides of (2.10). It is thus convenient to write this equation in the equivalent
form

wrt (b= Y = Hlp - e+ (Hul - (- F ) 210

Definition. By an entropic solution to the Cauchy problem (2.10) with initial data
w(0,:) = w € D, (2.15)

we mean a function w : [0,T] X IR — IR such that

(i) For everyt € [0,T], the norm |[w(t, )| g2(m\{0}) remains uniformly bounded. As x — 0,
the limits satisfy

u (t) = u(t,0—) > u(t,04+) = u'(t). (2.16)
Indeed, if f € C2°(IR), then for a suitably large constant M we have
: flx—y) : fle+y)
7 -H[f](x) = lim 2 dy = — lim 2 dy
[ ]( ) e—0+ ly—z|>e Yy e—=0+ ly—z|>e Yy

([ )

i ([ M) F'(@+9) Inlyldy — lim [f(a —<) ~ f(@)]Ine

e—=0+

Flimesor [f(z 4 €) — f(@)] Ine + [f(@ — M) — f(@)]In M — [f(e + M) - f(a)]In M

= /jof'(:ery)ln\y\dy: /jof'(y)lnlw—yldy.

By approximating f with a sequence of smooth functions with compact support we obtain (2.11).



(i) The equation (2.14) is satisfied in integral sense. Namely, for every tg > 0 and xo # 0,

calling t — x(t; to, zo) the solution to the Cauchy problem

uw” (t) +ut(t)

b= o) +ultn) - OO 2(to) = 70, (2.17)
one has .

wito, z0) = w(m(O;to,xo))+/O F(t, 2(t; to, 20)) dt (2.18)
with

F = Hg] — ¢ps + (H[w] - (w - u_;w)%) : (2.19)

A few remarks are in order:

(i)

The bound on the norm |Jw(t,-)| 2 implies that the limits in (2.16) are well defined.
By requiring that the inequality in (2.16) holds we make sure that the shock is entropy
admissible.

Since w(t,-) € H?(IR\ {0}), the right hand side of the ODE in (2.17) is continuously
differentiable w.r.t. . Combined with the inequalities in (2.16), this implies that the
backward characteristic ¢ — x(t; to, xo) is well defined for all ¢ € [0, to].

In [11], a function satisfying the integral equations (2.18) was called a broad solution.
The regularity assumption on w(t,-) and the fact that the source term F' in (2.19)
is continuous outside the origin imply that w = w(t,x) is continuously differentiable
w.r.t. both variables ¢, z, for = # 0. Therefore, the identity in (2.14) is satisfied at every
point (¢, x), with = # 0.

The main result of this paper provides the existence and uniqueness of an entropic solution,
locally in time.

Theorem 1. For every w € D there exists T > 0 such that the Cauchy problem (2.2), (2.15)
admits a unique entropic solution, defined for t € [0,T].

In turn, Theorem 1 yields the existence of a piecewise regular solution to the Burgers-Hilbert
equation (1.1), locally in time, for initial data of the form

u(0,2) = ¢(x) +w(x),

with w € D.

The solution w = w(t, z) of (2.14) will be obtained as a limit of a sequence of approximations.
More precisely, for n = 1, we define

wi(t,:) = w for all ¢>0. (2.20)



Next, let the n-th approximation wy,(¢,2) be constructed. By induction, we then define
wn+1(t, ) to be the solution of the linear, non-homogeneous Cauchy problem

wrt (4w 2 ) = H - o+ (Bl - (-5 )0 ) . 220

with initial data (2.15).

The induction argument requires three steps:

(i) Existence and uniqueness of solutions to the linear problem (2.21) with initial data
(2.15).

(ii) A priori bounds on the strong norm |[wy(t)|| g2(m\ {0y), uniformly valid for ¢ € [0, 7] and
alln > 1.

(iii) Convergence in a weak norm. This will follow from the bound

Y lwnsa(®) = wall oy < oo

n>1
In the following sections we shall provide estimates on each term on the right hand side of
(2.21), and complete the above steps (i)—(iii).

3 Estimates on the source terms

To estimate the right hand side of (2.21), we consider again the cutoff function 7 in (2.3) and
split an arbitrary function w € H?(IR \ {0}) as a sum:

w = v+ v+ U3, (3.1)
where
w(0-) - n(z) if x <0, we(0—) - 2 n(z) if =<0,
vi(r) = vo(x) =
w(0+) - n(z) if x>0, wy (0+4) - xn(x) if x>0,
(3.2)
vy = w— v — V. (3.3)
The right hand side of (2.21) can be expressed as the sum of the following terms:
. . : . u” +ut
A = Hy], B = py,, C = Hlva+vs], D = Hlv]— (w—72 )gpx. (3.4)

The goal of this section is to provide a priori bounds of the size of these source terms and on
their first and second derivatives.

Lemma 1. There exists constants Ko, K1 such that the following holds. For any ¢ €10, 1/2]
and any w € H?(IR\ {0}), the source terms in (3.4) satisfy

Al 2 —s0)) + | Bllazem—sa)) < Ko 023, (3.5)
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IC g2 —s6)) + 1D 2y sy < K103 |wll gz(mgoy) - (3.6)

Proof. 1. We begin by observing that the function ¢ is continuous with compact support,
smooth outside the origin. Therefore, the Hilbert transform A = HJyp] is smooth outside the
origin. As |z| — oo one clearly has

Alx) = O(1)-z71, Ay(z) = O(1)- 272, Age(z) = O(1)-273. (3.7)

In addition, as x — 0, we claim that

A(z) = O(1) -z In? |z, Ag(z) = O(1)-1n?|z|, Agz(x) = O(1) - . (3.8)
Indeed, to fix the ideas, let 0 < < 1/2. By (2.11) we have
2
meHgl@) = [ S hmle-yldy = b+ bt b, 3.9
-2
where:
-1 2
n= ([ 4 [) dwmle-siar = o, (3.10)
-2 1
T 0 1 T 14z
512 = / —ln|x—y|dy+/ In|z—y|ldy = </ —/ >ln|ydy = 0O(1) -zlnz,
-1 0 —x 11—z
(3.11)
and moreover,
- 1 0
5ho= [ llymle—gldy+ [ ~Inlylnfo - yldy
0 -1
z/2 x 0 0
= / +/ +/ / In|y|In|z — y| dy
0 z/2 z—1 -1 (312)
z/2 x x
= / -I-/ 1n|y|ln|x—y|dy—/ Inly—1|ln|z —y+ 1| dy
0 x/2 0
= I31+ I32+ I33.
We now have
I~ z/2
Bl < 3] [T ildy = 02kl
0
|Is2] < ln’;v’/ In|z —y|ldy = O(1)-xIn?|z|, (3.13)
z/2

xT
Bol < [ mji-alisalldy = 0(1)-a"
0

Hence H[p] = O(1) - z1n? |z|. This yields the first estimate in (3.8).



Next, we estimate the derivative 70, H[p] = 0yI1 + 0y12 + 0, I3. The term |0,11| is uniformly
bounded, while

m ] b 01
— 0Ly = / dy+/ dy—/ dy = O(1)-In|z|. (3.14)
2 0o T—Y 2 T =Y 1Ty

Differentiating I3 w.r.t.  we obtain

—x/2 0 _
T ol = / +/ n!y\d n / ln!y\
2 —1 —z/2) T— 3z/2) T —
x—e€ 3x/2
+lim / +/ Iny
=0 x/2 T+e L=

Assuming 0 < z < 1/2, we obtain

—z/2 ] x/2 —1
[y < [T =y = o)l
-1 r—y -1 Yl

0 1 0 1
—z/2 T =Y —x/2 T

z/2 1 z/2 1
/ il dy < / aly dy = O(1) - In|z|,
0 0

(3.15)

r—y x/2
b
/ Mdy < ln’ ’ / = O(1) - In?|x|.
3z/2 T — Y 3z/2 L —

The remaining term is estimated as

3x/2 3z/2
</ o ) =T (/ o ) Pty < 2@ < 2
/2 /2

Combining the previous estimates we obtain 9, H[p](x) = O(1)-In?|z|. This gives the second

estimate in (3.8).

8

3
Finally, we estimate the second derivative of the Hilbert transform 0,,H|p| = Z Oz (L) -
i=1
By (3.10) and (3.14) we obtain
Orlh = O(1),
T 1 1 0 1 In |z|
— Opalo = —/ dy—l—/ dy = O(1)- ——. (3.16)
2 20 (T —y)? _1 (z—y)? M T

—z/2
</ / ) LT < / ) b,
—z/2 (x —y)? 32/2 (x —y)?

(3.17)
In|lz/2| 31In|3z/2 3z/2 ]
Infz/2] | 3In] /\%(/ nmdy)

€ Zr z/2 XY




Assuming 0 < x < 1/2, we obtain

/11/2 1n|y! d‘ < ln ‘/ — o). 2.

0 0o
/ In |y| _d ) < / In [y| dy = 0(1)_lnl$|’

—xz/2 (CL‘— —z/2 z? Z
(3.18)
2 Inyl 2 Inlyl In []
d‘g/ dy = O(1) ——,
[ o (@27 W
1
/ In |y| d‘ < ln’ ‘/ _ 0(1).1n]x|
3z/2 (z—y) 3z /2 (z—y Z
The remaining term is estimated by
3z/2 z/2 _
a</ 1nry|>dy_ax</ 1n|xy|dy>
z/2 T—Y —x/2 Yy
(3.19)
_ /x/2 1 dy+ln|x/2| B ln|3x/2]’
—a/2 Y(@—Y) z z
where
x/2 1 /2 1 1 1 /2 1 9
d:/ 1 _d:/ b ayl < 2 320
/x/z yae—y) ‘ —2/2 y(fﬂ—y z) Y —a/2 (T —Y) Y . 320
Therefore, by (3.16) and (3.18) — (3.20), we have 9, H[y](z) = O(1) - In e
x

2. The function B = @y, is smooth outside the origin and vanishes for |z| > 2. As x — 0,
the following estimates are straightforward:

1
Ba) = O()-lol ?lal,  Bule) = O llal.  Bule) = 0()- S (321)
3. Next, we observe that v € H2(IR). Moreover, there exists a constant C,, such that
lvsllmz2my < O+ lwllg2(m\foy) -
Clearly, the Hilbert transform H[vs] satisfies the same bounds. Hence
[Hvs]]| oy = O) - wll zr2(my o) - (3.22)

We observe that v is Lipschitz continuous, has compact support and is continuously differen-
tiable outside the origin. Since vy has better regularity properties than ¢, the same arguments
used to estimate the Hilbert transform of ¢ also apply to H[vs]. More precisely, as in (3.7)
for |z| — oo we have

Hivo)(z) = O(l)-x_l, Hlvo),(z) = (’)(1)-1:_2, Hlvo|pz(x) = (’)(1)-3:_3. (3.23)



As in (3.8), for x — 0 we have

2 2 In |z
H[w](z) = O1)-zn®z],  Hwl(z) = O1)-In%z],  Hve(z) = O1)-——.
(3.24)
The only difference is that in (3.23)-(3.24) by O(1) we now denote a quantity such that

O] < C-|lwllgz2mqoy) > (3.25)

for some constant C' independent of w.

4. Finally, observing that the the function vy in (3.2) has compact support, for |z| — oo we
have the bounds

D(z) = Hlvi|(z) = O1) -z} D.(z) = O(1)-z72, Dyo(z) = O(1)-273. (3.26)
On the other hand, for x — 0 we claim that
D) = O(1),  Di(a) = O()-Ifal,  Dulx) = O)-|z[™,  (3.27)

where O(1) is a quantity satisfying (3.25). Indeed, without loss of generality we can assume
0 <z < 1/2. Recalling the construction of w and ¢, we have

u 4+ ut ut —u ) Inlx
<w—;—%—)¢x: ( F)1|’+Ou) (3.28)

The Hilbert transform of v; is computed by

mHvi] = /+oov1(y)dy

—00 T 7Y

-1 2 1 + 3z/2 4
(/ +/)U1(y)dy+/ dy+< / ) . dy+/ Ty
-2 1 =Yy - 3z/2) T —Y z/2 T Y

The first term on the right hand side is bounded and the last term vanishes, in the principal
value sense. The second term is computed by

0 _
/ Y gy = u(—lnfe|+mlz+1) = —u In|e]+O1)- ],
S I (V)

while the remaining integrals are estimated by

x/2 1 ut
/ +/ dy = v"(In|z| —Injz —1]) = vt In|z|+O(1)-|z|.
0 3z/2) T Y

Combining the previous estimates we obtain

(ut —u™)In|z|

H[v| = - + O(1). (3.29)
Next, we estimate the derivative D, (z). We have
+ 4y + oy + oy
Oz <w - u—;—u) oy = O(1)-In|z|, (w - u—;—u) Opz = %—1—0(1). (3.30)
7r
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To estimate the derivative of H[v,] we write

0 _
0, Hloy] = / /) —uly / v g
" = ( _1 (r—y)? Y
z/ 31/2
+8x< / ) W) 4, +a/
0 3z/2) T Y

The first term on the right hand side of (3.31) is uniformly bounded. The second term is
estimated by

(3.31)

Furthermore, we have

/2 ! v1(y) B @/2 ! —vi(y) dut
! (/0 +/3r/2> x_ydy B (/D +»/3:c/2> (‘T—y)Q dy+ z

(3.32)
—3u™ 4u™ u™
= +0(1)+ — = —+0()
Lastly, since v1(z) = u™ for z €]0,1], we have
3;1:/2 /2 ut
Oy / = 0, Loy = 0. (3.33)
—z/2 Y
Combining the previous estimates we thus obtain
0, Hnl(x) = "+ o)
. H[vq](z) = — )
Together with (3.30), as  — 0 this yields the asymptotic estimate
u” +ut
Du(z) = H[vi]s — [(w - 2)%} = O(1) In|z]. (3.34)
X

The second derivative D,, is estimated in a similar way. Indeed, by (3.1)—(3.3) and (3.30),
we have

u” +ut ut +u” ut +u”

u” Fut u” 4 ut

s 1
- L jom--

T x

On the other hand, differentiating (3.31) and recalling (3.32) and (3.33) we have

0 Q=
- 8:1:xH ’Ul = (/ / ) 2U1 —|—/ Lg dy
1 (=)
+ax / _Ul dy - U2 + 8£$/
0 32/2 (. —y)? T —z/2 ?/

11

(3.36)




As before, the first term is uniformly bounded while the last term is zero. The second term is
computed by

/0 2u™ (T
dy = — +0O(1). (3.37)

The third term is estimated by

@/2 ! —v1(y) z/2 ! 201 (y) 2ut 6uT
Ox / +/ DYy = / + dy — +
( 0 3z/2> (z —y)? 0 3x/2 (x —y)3 z? z?

(3.38)
3u™
= — +0(1)
Combining above estimates (3.35)—(3.38) we obtain
— 4yt
Dy = H[vl]mx - |:(w - u—5u>¢x:|
- (3.39)
1 (u”  3u™ 4dut ut —u~ 1 1
- - (4 - 1) - = 01) ~.
7T<l‘2+332 x2>+ T2 +O()x O()m

5. By the estimates (3.8), (3.21) it follows

U n? |z| 1/2 L da 1/2
IA+ Bllgz2m -6y = O1)- (/5 2 df”) = o) </5 1=7/3> (3.40)
= O(1)- (632 = O(1)-62/3,

Similarly, the estimates (3.6) follow from (3.22), and (3.26)-(3.27). |

4 Construction of approximate solutions

In this section, given an initial datum w € D, we prove that all the approximate solutions w;,
at (2.20)-(2.21) are well defined, on a suitably small time interval [0, 7).

As in (2.6), we define
u = w(0-), u, (t) = wn(t,0-),
{ at = w(0+), { uf(t) = wy(t,04).
To fix the ideas, assume that the initial data w € H?(IR\ {0}) satisfies

o _ M,
u” —ut = 64, 10l g2 (m\g0y) = 707 (4.1)

for some (possibly large) constants dg, My > 0.

Choosing a time interval [0, T'] sufficiently small, we claim that for each n > 1 the approximate
solution w,, satisfies the a priori bounds

u, (t) —ua~| < 6o,
{ {quEt; _aJr{ - 58 |wn ()| m2(m\10}) < Mo, forallt € [0,7]. (4.2)

12



This will be proved by induction. For n = 1 these bounds are a trivial consequence of the
definition (2.20). In the following, we assume that the function w, = wy, (¢, ) satisfies (4.2),
and show that the same bounds are satisfied by wy,41. We recall that wy,11 is defined as the
solution to the linear equation (2.21), with initial data (2.15).

A sequence of approximate solutions w®) to the linear equation (2.21) will be constructed by
induction on k = 1,2, ... For notational convenience we introduce the function

(1) + (1)

altw) = ) + walt,z) - 2 (43)
As in (2.17), call t — x(t;to, o) the solution to the Cauchy problem
T = a(t,z(t)), x(tp) = xo . (4.4)
We begin by defining
w(t,z) = w(x). (4.5)
By induction, if w®) has been constructed, we then set
to
w* D (tg, m0) = w(x(0;t0,20)) +/ F®(t,2(t; to, x0)) dt (4.6)
0

where F*) is defined as in (2.19), with w replaced by w*) and u®(t) = w(t,0+) replaced by
w® (t,04), respectively.

Assuming that w, satisfies (4.2), we will show that every approximation w® to the linear
Cauchy problem (2.21), (2.15) satisfies the same bounds, on a sufficiently small time interval
[0,7]. Our first result deals with solution to the linear transport equation (4.7). We show
that, within a sufficiently short time interval, the H? norm of the solution can be amplified
at most by a factor of 3/2.

Lemma 2. Let w, = wy,(t,x) be a function that satisfies the bounds (4.2) for all t > 0, and
define a = a(t,x) asin (4.3). Then there exists T > 0 small enough, depending only on &y, My,
so that the following holds. For any T € [0,T] and any solution w of the linear equation

we +a(t,x)w, = 0 (4.7)
with initial datum
w(0) = w € H? (IR \ [-d0T, do7]),
one has

3 -
lelzmon = 5 190 g (g —gyr,50m) (4.8)

Proof. 1. The equation (4.7) can be solved by the method of characteristics, separately on
the regions where x < 0 and x > 0. We observe that characteristics move toward the origin
from both sides. In this first step we prove that all characteristics starting at time ¢ = 0 inside
the interval [—dp7, dp7] hit the origin before time 7 (see Fig. 2). Hence the profile w(r, -) does
not depend on the values of w on this interval.

13



We claim that there exists §; > 0 such that

a(t,r) < —d for all z €10, 1],
(4.9)
a(t,z) > do for all z € [—01, 0.
Indeed, (4.1) and (4.2) imply
() —uy, (t
alt,04) = “"()2“"() < —25. (4.10)
Moreover, for > 0 we have
2 xr
la(t, ) — a(t,0+)] < %Lﬁvlnx’ —|—/ lwn.o(t,y)| dy < Colz|Y?, (4.11)
0

for some constant Cy depending only on the norm ||wy,(¢,-)| 2, hence only on My in (4.2).
Choosing d; > 0 small enough so that Cgéiﬂ < dp, from (4.10)-(4.11) we obtain the first
inequality in (4.9). The second inequality is proved in the same way. In addition, by choosing
the time interval [0, 7] small enough, we can also assume

ST < 6y (4.12)
2. Multiplying (4.7) by 2w one finds
(w?) + (aw?), = azw?. (4.13)
Integrating (4.13) over the domain
Q = {(ta); |zl >d(r—t), tel0,7]} (4.14)

shown in Fig. 2, we obtain

/ w? (7, x) da S/ deer// azw? dz dt . (4.15)
—o0 || >00T 0 J|z|>do(T—t)

Indeed, by (4.9) and (4.12), for every 7 €]0,T[ the flow points outward along the boundary
of the domain . By (4.3) the derivative a, satisfies a bound of the form

lag(t,z)| < Co(1+|Inlz|]), (4.16)
where C, is a constant depending only on the norm ||wy,| g2 in (4.2). Taking the supremum

of |ax(t,z)| over the set
Q= {x; |z| > do(r —1)}, (4.17)

from (4.15) we thus obtain

lom e < @13y + /0 Ca(1+ 1o = )] (@) Baydt - (418)

By Gronwall’s lemma, this yields a bound on [|w(7)]3..
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Figure 2: The norm ||w(7)||g2(m\{0}) is estimated by using the balance laws for w?, w2, w2, on the

shaded domain 2. By (4.9), along the boundary where |z| = do(7 —t) all characteristics move outward.
Hence no inward flux is present.

3. Next, differentiating (4.7) w.r.t. x and multiplying by 2w, we obtain

Wyt + QWry = — AWy, wy(0,+) = W, . (4.19)
(W) + (aw)y = —agw}. (4.20)

Integrating (4.20) over the domain €2 in (4.14) and using the bound (4.16), by similar compu-
tations as before we now obtain

lwz(T)IF2my < IsllE2(qy) +/0 Ca(1+ “n(50(7—t))’> [ (1)1 20, ) gt - (4.21)

By Gronwall’s lemma, this yields a bound on [jwg(7)]3..

4. Differentiating (4.19) once again and multiplying all terms by 2w,, we find

Wrat + 0Weze = — 205Wep — pgWy , wxx(07 ) = Wgy, (422)

(w:%a:)t + (CL w:%a:)x = -3 azwix — 2032 W Wy - (423)

Integrating (4.23) over the domain € in (4.14), we obtain

/ w?m(T, x)dr < / wfm(y) dy + / / ( — 3axw§l, — anwwxwm) dx dt .
|z|>0T 0 Jz|>do(T—1)

—0o0
(4.24)
To estimate the right hand side of (4.24) we observe that, for |z| small,
1
|az| = |patwna| = O(U(‘ In |xH+HwnHH2> ) |aze| = [Pratwnza| = 0(1)'m+’wn,m’ :
(4.25)
Recalling that ¢(x) = 0 for |z| > 2, we have the bounds
E = |3a,w?, + 200w, we|
(4.26)

1
< O(1)- (14 |Infell)w?, + O(1)- <m| ; |wn,m|) ol g2 s
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2 1 1/2 1 1/2

/ 1) wmlegn < (v ) lumelie

So(t—s) T2 T =\ Go(t — s) T LA
(4.27)

/2 |wm(t’$)| dr <
So(T—t) x N

/ / E(t,x)dxdt < O(1>~/ (14 [ do(r = 6)]) - [lw(t) 72, dt
0 Jlz|>80(r—t) 0

o | or = OV ()2 dt + O(1) / (@l - [y .
(4.28)

5. Calling Z(t) = |w(t)|[m2(q,), by the estimates (4.18), (4.21), and (4.28) we obtain an
integral inequality of the form

Z3(t) < 22(0)+01-/T (1+\lnéo(T—t)\+[(50(7—75)]_1/2+M0>22(t)dt. (4.29)
0

By Gronwall’s lemma, if 7 > 0 is sufficiently small this yields Z(7) < 2Z(0), proving (4.8).
O

The above estimate can be easily extended to the linear, non-homogeneous problem
wy + a(t,v)w, = F(t,x), w(0,x) = w(x). (4.30)

Indeed, in the same setting as Lemma 2, using (4.8) and Duhamel’s formula, for 7 € [0, 7] we
obtain
< 31 S [ F(t dt
||’LU(T, )HH2(R\{O}) > 5 HwHHQ (R\[_5077507_]) + 5 0 || ( ")”H2(R\[—(So(T—t),(So(T—t)]) :
(4.31)

Relying on Lemma 1 we now prove uniform H? bounds on all approximations w® | on a

suitably small time interval [0, T].

Lemma 3. Let w, = wy,(t,x) be a function that satisfies the bounds (4.2) for all t > 0, and
define a = a(t,z) as in (4.3). Then there exists T > 0 small enough, depending only on &y, My
in (4.1), so that the following holds. For every k > 1 and every T € [0,T], one has

lw™ () g2y < Mo, (4.32)

w® (r,0-) —a~| < &, lw®(r,04) —at| < &. (4.33)

Proof. 1. Recalling the constants Ky, K1 in Lemma 1, choose T' > 0 small enough so that

/T(5 ) s < Mo (4.34)
S S — . .
o 6(Ko + K1 M)
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2. The estimate (4.32) trivially holds for w")(7) = @. Assuming that it holds for w(®)(t),
t €[0,T], by (4.31) for any 7 € [0,T] we have the estimate

3 3 (7
o™ D@ oy < G0l on + 3 /0 14+ B +C + Dl 2 [-s0—1), (1)) 4

3 3 (7 3 (7
< Mo+ [ Kalso(r =07 de+ 5 Rt = 01 0) o
< ZMO + S(Ko + K1 M) / (J0s) 7>/ ds
0
3 3 My
-My+ - (Ko + KiMy) - ——F7F—— = Mpy.
<7 0+2( 0 + K1 Mp) 6(Ko + K1 M) 0

(4.35)
By induction, this proves the bound (4.32).

3. To prove the two estimates in (4.33), we write

[ D (r,04) —at| < Ja(a(0:7,04) — @[+ 7 sup [[(A+ B+C 4+ D)(t)|| - (4:30)
te[0,7]

The a priori bound on |jw®)(t, a2 (m\foy) implies that the L norm in (4.36) is uniformly
bounded. By possibly choosing a smaller 7' > 0, both terms on the right hand side of (4.36)
will be < dp/2. This yields the second inequality in (4.33). The first inequality is proved in
the same way. UJ

The next lemma shows that the sequence of approximations w*) defined at (4.5)(4.6) con-
verges to a solution to (2.21).

Lemma 4. For some T > 0 sufficiently small, the sequence of approzimations w(k)(t,-)
converges in H*(IR\ {0}) to a function w = w(t,-). The convergence is uniform fort € [0, T).
This limit function provides a solution to the initial value problem (2.21) with initial data

(2.15).

Proof. 1. By the previous bounds, the difference between two approximations can be esti-
mated by

[w* D (7) — w®) (7) | g2 o)

3 (4.37)

< 2/0 [6o(m — )] 723K, [|w®(¢) — w(k_l)(t)HHQ(IR\[fao(Tft),50(7,15)] gt

If T > 0 is small enough, so that

3

T
/ (508)_2/3K1d8 < )
2 Jo

N —

then for every 7 € [0, 7] the sequence w® (7, -) is Cauchy in H2(IR \ {0}), hence it converges
to a unique limit function w(r, ).

2. It remains to prove that that w provides a solution to (2.21) with initial data (2.15), in the
sense that the integral identities (2.18) are satisfied for all ¢y € [0,T] and z # 0.
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This is clear, because for every € > 0 as k — oo the source terms on the right hand side of
(2.21) converge uniformly on the set {(¢t,z); t€[0,T], |z|> €}. O

5 Convergence of the approximate solutions

By the analysis in the previous section, the sequence of approximate solutions w,, of (2.21),
(2.15) is well defined, on a suitably small time interval [0,7]. Moreover, the uniform bounds
(4.2) hold.

To complete the proof of Theorem 1, it remains to show that the w, converge to a limit
function w, providing an entropic solution to the Cauchy problem (2.10), (2.15). Toward this
goal we prove that on a suitably small time interval [0,7] the sequence (wp)n>1 (2.21) is
Cauchy w.r.t. the norm of H!(IR \ {0}), hence it converges to a unique limit. This will be
achieved in several steps.

1. For a fixed n, consider the differences

W = W1 — Wy, U™ = u,—u,, Ut = uy —ut,
- - = = - - +
W, = wp,—wp_1, U, = u, —u, q, Uur = uf—u' 4.

From (2.21) we deduce

L U, + U U- Ut
Wt+<g0+wn—u”u"> Wx—k(Wn—m)wn,x = H[W]—(W—+)goz.

2 2 2
(5.1)
Multiplying both sides by 2W we obtain the balance law

2 Up — U 2 2
(w?), + e W = (p+wy), W

’ (5.2)

— + - +
— (Wn — U"";U”) OWwp . + 2H[W] - W — (W - U;LU> 2W ¢, .

Integrating over the domain ©Q in (4.14) and observing that ¢, (z) = O(1)(1 + |In|z|]), we
obtain

1/W2(7,x)d:1: < —/ / {(gp+wn)x-W2
2 0 Jlz[>80(r—1)

U+ U+
_ <Wn - “2”) OW v + 2H[W] - W — <W -

U-+U"

5 ) 2W<pm} dxdt

= o) /OT {}111(7 =) W)L + IWa @l [W (®)llez + W (#)]72

+|In(r — )] - HW(t)HHlHW(t)HLz} dt

IN

Coe [ IO - (W) + i = O W (O ) .
(5.3)
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for some constant Cf.

2. Next, differentiating (5.1) w.r.t.  we obtain

-t U, +Ur
Wt + (90 + wp, — Un2un) Wae + (80:13 + wn,x) Wi + <Wn - nén) W, gz + Wn,:p Wn,
U-+U*
= H[W,] - <W — ;) Oz — PaWe .
(5.4)
Multiplying both sides by 2W, we obtain the balance law
=t U, +Urf
(W2) + [(g& + wy, — “”2“”> Wg] = — (po+Wna) W7 — <Wn — ”"5”) 2Wown, 4
U +UT 9
—2wWp oW oWy + 2H[W | W, — | W — — 2Wopze — 20 W5 .
(5.5)
By the definition (2.4) one has
[ PaallL2(R\[do (r—t) 50(r—ty) = O) - (r —t)71/2. (5.6)
Integrating (5.5) over the domain € in (4.14) we obtain
/0 Wi (t,x)de = O(1)- /0 {lln(f =) W@l + W)l [Wa(t)]|2
(5.7)

HIW O [Wa D)2 - (7 — t)l/z} it

3. Calling Z(t) = W ()| m1(r\f0}), from (5.3) and (5.7) we obtain an integral inequality of
the form

2(r) < Ci [ 20 (IWalOlln +20)) - (=72, (5.5)
0
for some constant Cjy.
We now set

eo = sup [|[Wa()llm(m o)) -
t€[0,7]

Since Z(0) = 0, calling 7* the first time where Z > (/2 one has

€0 T* €0 €0 * _ 3 «
5 S 04/0 5(60"‘5) (T —t) 1/2dt = 5046%7' .

Hence 7* > (3C4)~!. Choosing 0 < T < (3Cy4)~! , we thus obtain
Z(t) < %0 for all ¢ € [0,7].

This establishes the desired contraction property:

1
sup lwnr1(t) = wn (@) mmygoy < 5 sup fwn(t) = w1 ()l (o) - (5.9)
t€[0,T] t€[0,7]
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4. By (5.9), for every ¢ € [0, T] the sequence of approximations wy,(t, ) is Cauchy in the space
H(IR\ {0}), hence it converges to a unique limit w(t, -).

It remains to check that this limit function w is an entropic solution, i.e. it satisfies the integral
equation (2.18). But this is clear, because for every € > 0 the sequence of functions

B = Hlyl — oo+ (Hlu] = (10— 15 ), (5.10)

converges to the corresponding function F' in (2.19), uniformly for ¢ € [0,7] and |z| > €.

5. Finally, to prove uniqueness, assume that w,w are two entropic solutions. Consider the

differences
. - U™ = u —a,
W = w—w, {U+ .

and call Z(t) = [|[W(t)||g1(m\{oy)- Since Z(0) = 0, the same arguments used to prove (5.8)
now yield

Z3(t) < Cy /T Z(t) - [Z(t)+Z(t)] - (r—t)~2dt.
0

For 7 € [0,T] sufficiently small, we thus obtain Z(7) = 0. This completes the proof of
Theorem 1. U
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