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Abstract

The paper is concerned with the Burgers-Hilbert equation ut + (u2/2)x = H[u], where
the right hand side is a Hilbert transform. Unique entropy admissible solutions are con-
structed, locally in time, having a single shock. In a neighborhood of the shock curve, a
detailed description of the solution is provided.

1 Introduction

Consider the balance law obtained from Burgers’ equation by adding the Hilbert transform
as a source term:

ut +

(
u2

2

)
x

= H[u] . (1.1)

Here

H[f ](x)
.
= lim

ε→0+

1

π

∫
|y|>ε

f(x− y)

y
dy (1.2)

denotes the Hilbert transform of a function f ∈ L2(IR). The above equation was derived in
[1] as a model for nonlinear waves with constant frequency. For initial data

u(0, x) = ū(x) , (1.3)

in H2(IR), the local existence and uniqueness of the solution to (1.1) was proved in [7], together
with a sharp estimate on the time interval where this solution remains regular. See also [8]
for a shorter proof. For general initial data ū ∈ L2(IR), the global existence of entropy weak
solutions was recently proved in [4] together with a partial uniqueness result. We remark
that, in this general setting, the well-posedness of the Cauchy problem remains a largely open
question.

In the present paper we consider an intermediate situation. Namely, we construct solutions of
(1.1) which are piecewise continuous, with a single shock. Our solutions have the form

u(t, x) = ϕ
(
x− y(t)

)
+ w

(
t, x− y(t)

)
,
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where t 7→ y(t) denotes the location of the shock. Here w ∈ H2
(
] −∞, 0[∪ ]0,+∞[

)
, while

ϕ(x) = 2
π |x| ln |x|, for x near the origin.

In Section 2 we write (1.1) in an equivalent form, and state an existence-uniqueness theorem,
locally in time. The key a priori estimates on approximate solutions, and a proof of the main
theorem, are then worked out in Sections 3 to 5.

The present results can be easily extended to the case of solutions with finitely many, non-
interacting shocks. An interesting open problem is to describe the local behavior of a solution
in a neighborhood of a point (t0, x0) where either (i) a new shock is formed, or (ii) two shocks
merge into a single one. Motivated by the analysis in [12] we conjecture that, for generic initial
data

ū ∈ H2(IR) ∩ C3(IR) ,

the corresponding solution of (1.1) remains piecewise smooth with finitely many shock curves
on any domain of the form [0, T ]×IR. We thus regard the present results as a first step toward
a description of all generic singularities. For other examples of hyperbolic equations where
generic singularities have been studied we refer to [2, 3, 5, 6, 9]. The possible emergence of
singularities, for more general dispersive perturbations of Burgers’ equation, has been recently
studied in [10].

2 Statement of the main result

Consider a piecewise smooth solution of (1.1) with one single shock. Calling y(t) the location
of the shock at time t, by the Rankine-Hugoniot conditions we have

ẏ(t) =
u−(t) + u+(t)

2
. (2.1)

where u−, u+ denote the left and right limits of u(t, x) as x → y(t). Here and in the sequel,
the upper dot denotes a derivative w.r.t. time. It is convenient to shift the space coordinate,
replacing x with x− y(t), so that in the new coordinate system the shock is always located at
the origin. In these new coordinates, the equation (1.1) takes the equivalent form

ut +

(
u2

2

)
x

− ẏ ux = H[u] . (2.2)

We shall construct solutions to (2.2) in a special form, providing a cancellation between leading
order terms in the transport equation and the Hilbert transform.

Consider a smooth function with compact support η ∈ C∞c (IR), with η(x) = η(−x), and such
that 

η(x) = 1 if |x| ≤ 1 ,

η(x) = 0 if |x| ≥ 2 ,

η′(x) ≤ 0 if x ∈ [1, 2] .

(2.3)

Moreover, define

ϕ(x)
.
=

2|x| ln |x|
π

· η(x) . (2.4)
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Notice that ϕ has support contained in the interval [−2, 2] and is smooth separately on the
domains {x < 0} and {x > 0}.

In addition, we consider the space of functions

H .
= H2

(
]−∞, 0[∪ ]0,+∞[

)
. (2.5)

Every function w ∈ H is continuously differentiable outside the origin. The distributional
derivative of wx is an L2 function restricted to the half lines ]−∞, 0[ and ]0,+∞[ . However,
both w and wx can have a jump at the origin. It is clear that the traces{

u−
.
= w(0−) ,

u+ .
= w(0+) ,

{
b−

.
= wx(0−) ,

b+
.
= wx(0+) ,

(2.6)

are continuous linear functionals on H.

1
0

−2 2

ϕ
u =    + wϕ

w

x x
0

u
_

+
u

Figure 1: Decomposing a piecewise regular function u = ϕ+ w as a sum of the function ϕ defined at
(2.4) and a function w ∈ H2(IR \ {0}), continuously differentiable outside the origin.

Solutions of (2.2) will be constructed in the form

u(t, x) = ϕ(x) + w(t, x). (2.7)

In order that the shock be entropy admissible, the function w should range in the open domain

D .
=
{
w ∈ H2

(
IR \ {0}

)
; w(0−) > w(0+)

}
. (2.8)

By (2.6)-(2.8), for x ≈ 0 this solution has the asymptotic behavior

u(t, x) =


u−(t) + b−(t)x+ 2|x| ln |x|

π +O(1) · |x|3/2 if x < 0 ,

u+(t) + b+(t)x+ 2|x| ln |x|
π +O(1) · |x|3/2 if x > 0 ,

(2.9)

for suitable functions u±, b±. Here and throughout the sequel, the Landau symbol O(1)
denotes a uniformly bounded quantity.

Inserting (2.7) in the equation (2.2) and recalling (2.6), one obtains

wt +

(
ϕ+ w − u− + u+

2

)
(ϕx + wx) = H[ϕ] + H[w] . (2.10)

To derive estimates on the Hilbert transform, the following observation is useful. Consider a
function f with compact support, continuously differentiable for x < 0 and for x > 0, with a
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jump at the origin. Then, for any x 6= 0, an integration by parts yields1

H[f ](x) =
1

π

∫ ∞
−∞

f ′(y) ln |x− y| dy +
1

π

[
f(0+)− f(0−)

]
ln |x| . (2.11)

A similar computation shows that, to leading order, the Hilbert transform of w near the origin
is given by

H[w](x) =
u+ − u−

π
ln |x|+O(1) , (2.12)

with u−, u+ as in (2.6). On the other hand, for x ≈ 0 one has(
ϕ(x) + w(x)− w(0−) + w(0+)

2

)
ϕx(x)

=

(
sign (x) · u

+ − u−

2
+O(1) · |x| ln |x|

)
·

2 sign (x) ·
(
1 + ln |x|

)
π

=
u+ − u−

π
ln |x|+O(1) .

(2.13)

The identity between the leading terms in (2.12) and (2.13) achieves a crucial cancellation
between the two sides of (2.10). It is thus convenient to write this equation in the equivalent
form

wt +

(
ϕ+ w − u− + u+

2

)
wx = H[ϕ]− ϕϕx +

(
H[w]−

(
w − u− + u+

2

)
ϕx

)
. (2.14)

Definition. By an entropic solution to the Cauchy problem (2.10) with initial data

w(0, ·) = w̄ ∈ D , (2.15)

we mean a function w : [0, T ]× IR 7→ IR such that

(i) For every t ∈ [0, T ], the norm ‖w(t, ·)‖H2(IR\{0}) remains uniformly bounded. As x→ 0,
the limits satisfy

u−(t)
.
= u(t, 0−) > u(t, 0+)

.
= u+(t). (2.16)

1Indeed, if f ∈ C∞c (IR), then for a suitably large constant M we have

π ·H[f ](x) = lim
ε→0+

∫
|y−x|>ε

f(x− y)
y

dy = − lim
ε→0+

∫
|y−x|>ε

f(x+ y)

y
dy

= − lim
ε→0+

(∫ −ε

−M

+

∫ M

ε

)
f(x+ y)− f(x)

y
dy

= lim
ε→0+

(∫ −ε

−M

+

∫ M

ε

)
f ′(x+ y) ln |y| dy − lim

ε→0+
[f(x− ε)− f(x)] ln ε

+ limε→0+[f(x+ ε)− f(x)] ln ε+ [f(x−M)− f(x)] lnM − [f(x+M)− f(x)] lnM

=

∫ ∞
−∞

f ′(x+ y) ln |y| dy =

∫ ∞
−∞

f ′(y) ln |x− y| dy .

By approximating f with a sequence of smooth functions with compact support we obtain (2.11).
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(ii) The equation (2.14) is satisfied in integral sense. Namely, for every t0 ≥ 0 and x0 6= 0,
calling t 7→ x(t; t0, x0) the solution to the Cauchy problem

ẋ
.
= ϕ(x) + w(t, x)− u−(t) + u+(t)

2
, x(t0) = x0 , (2.17)

one has

w(t0, x0) = w̄(x(0; t0, x0)) +

∫ t0

0
F (t, x(t; t0, x0)) dt , (2.18)

with

F
.
= H[ϕ]− ϕϕx +

(
H[w]−

(
w − u− + u+

2

)
ϕx

)
. (2.19)

A few remarks are in order:

(i) The bound on the norm ‖w(t, ·)‖H2 implies that the limits in (2.16) are well defined.
By requiring that the inequality in (2.16) holds we make sure that the shock is entropy
admissible.

(ii) Since w(t, ·) ∈ H2(IR \ {0}), the right hand side of the ODE in (2.17) is continuously
differentiable w.r.t. x. Combined with the inequalities in (2.16), this implies that the
backward characteristic t 7→ x(t; t0, x0) is well defined for all t ∈ [0, t0].

(iii) In [11], a function satisfying the integral equations (2.18) was called a broad solution.
The regularity assumption on w(t, ·) and the fact that the source term F in (2.19)
is continuous outside the origin imply that w = w(t, x) is continuously differentiable
w.r.t. both variables t, x, for x 6= 0. Therefore, the identity in (2.14) is satisfied at every
point (t, x), with x 6= 0.

The main result of this paper provides the existence and uniqueness of an entropic solution,
locally in time.

Theorem 1. For every w̄ ∈ D there exists T > 0 such that the Cauchy problem (2.2), (2.15)
admits a unique entropic solution, defined for t ∈ [0, T ].

In turn, Theorem 1 yields the existence of a piecewise regular solution to the Burgers-Hilbert
equation (1.1), locally in time, for initial data of the form

u(0, x) = ϕ(x) + w̄(x),

with w̄ ∈ D.

The solution w = w(t, x) of (2.14) will be obtained as a limit of a sequence of approximations.
More precisely, for n = 1, we define

w1(t, ·) = w̄ for all t ≥ 0 . (2.20)
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Next, let the n-th approximation wn(t, x) be constructed. By induction, we then define
wn+1(t, x) to be the solution of the linear, non-homogeneous Cauchy problem

wt +

(
ϕ+ wn −

u−n + u+
n

2

)
wx = H[ϕ]− ϕϕx +

(
H[w]−

(
w − u− + u+

2

)
ϕx

)
. (2.21)

with initial data (2.15).

The induction argument requires three steps:

(i) Existence and uniqueness of solutions to the linear problem (2.21) with initial data
(2.15).

(ii) A priori bounds on the strong norm ‖wn(t)‖H2(IR\{0}), uniformly valid for t ∈ [0, T ] and
all n ≥ 1.

(iii) Convergence in a weak norm. This will follow from the bound∑
n≥1

‖wn+1(t)− wn(t)‖H1(IR\{0}) < ∞ .

In the following sections we shall provide estimates on each term on the right hand side of
(2.21), and complete the above steps (i)–(iii).

3 Estimates on the source terms

To estimate the right hand side of (2.21), we consider again the cutoff function η in (2.3) and
split an arbitrary function w ∈ H2(IR \ {0}) as a sum:

w = v1 + v2 + v3 , (3.1)

where

v1(x)
.
=

{
w(0−) · η(x) if x < 0,

w(0+) · η(x) if x > 0,
v2(x)

.
=

{
wx(0−) · x η(x) if x < 0,

wx(0+) · x η(x) if x > 0,
(3.2)

v3 = w − v1 − v2 . (3.3)

The right hand side of (2.21) can be expressed as the sum of the following terms:

A
.
= H[ϕ] , B

.
= ϕϕx , C

.
= H[v2+v3] , D

.
= H[v1]−

(
w−u

− + u+

2

)
ϕx . (3.4)

The goal of this section is to provide a priori bounds of the size of these source terms and on
their first and second derivatives.

Lemma 1. There exists constants K0,K1 such that the following holds. For any δ ∈ ]0, 1/2]
and any w ∈ H2(IR \ {0}), the source terms in (3.4) satisfy

‖A‖H2(IR\[−δ,δ]) + ‖B‖H2(IR\[−δ,δ]) ≤ K0 · δ−2/3 , (3.5)
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‖C‖H2(IR\[−δ,δ]) + ‖D‖H2(IR\[−δ,δ]) ≤ K1δ
−2/3 · ‖w‖H2(IR\{0}) . (3.6)

Proof. 1. We begin by observing that the function ϕ is continuous with compact support,
smooth outside the origin. Therefore, the Hilbert transform A = H[ϕ] is smooth outside the
origin. As |x| → ∞ one clearly has

A(x) = O(1) · x−1 , Ax(x) = O(1) · x−2 , Axx(x) = O(1) · x−3. (3.7)

In addition, as x→ 0, we claim that

A(x) = O(1) · x ln2 |x| , Ax(x) = O(1) · ln2 |x| , Axx(x) = O(1) · ln |x|
x

. (3.8)

Indeed, to fix the ideas, let 0 < x < 1/2. By (2.11) we have

π ·H[ϕ](x) =

∫ 2

−2
ϕ′(y) ln |x− y| dy = I1 + I2 + I3, (3.9)

where:

I1
.
=

(∫ −1

−2
+

∫ 2

1

)
ϕ′(y) ln |x− y| dy = O(1) · x , (3.10)

π

2
I2

.
=

∫ 0

−1
− ln |x− y| dy +

∫ 1

0
ln |x− y| dy =

(∫ x

−x
−
∫ 1+x

1−x

)
ln |y| dy = O(1) · x lnx ,

(3.11)
and moreover,

π

2
I3

.
=

∫ 1

0
ln |y| ln |x− y| dy +

∫ 0

−1
− ln |y| ln |x− y|dy

=

(∫ x/2

0
+

∫ x

x/2
+

∫ 0

x−1
−
∫ 0

−1

)
ln |y| ln |x− y| dy

=

(∫ x/2

0
+

∫ x

x/2

)
ln |y| ln |x− y| dy −

∫ x

0
ln |y − 1| ln |x− y + 1| dy

.
= I31 + I32 + I33 .

(3.12)

We now have

|I31| ≤ ln
∣∣∣x
2

∣∣∣ · ∫ x/2

0
ln |y| dy = O(1) · x ln2 |x|,

|I32| ≤ ln
∣∣∣x
2

∣∣∣ · ∫ x

x/2
ln |x− y| dy = O(1) · x ln2 |x|,

|I33| ≤
∫ x

0
ln |1− x| ln |1 + x|| dy = O(1) · x3.

(3.13)

Hence H[ϕ] = O(1) · x ln2 |x|. This yields the first estimate in (3.8).
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Next, we estimate the derivative π∂xH[ϕ] = ∂xI1 +∂xI2 +∂xI3. The term |∂xI1| is uniformly
bounded, while

π

2
∂xI2 =

∫ 2x

0

1

x− y
dy +

∫ 1

2x

1

x− y
dy −

∫ 0

−1

1

x− y
dy = O(1) · ln |x|. (3.14)

Differentiating I3 w.r.t. x we obtain

π

2
∂xI3 =

(∫ −x/2
−1

+

∫ 0

−x/2

)
− ln |y|
x− y

dy +

(∫ x/2

0
+

∫ 1

3x/2

)
ln |y|
x− y

dy

+ lim
ε→0

(∫ x−ε

x/2
+

∫ 3x/2

x+ε

)
ln y

x− y
dy.

(3.15)

Assuming 0 < x < 1/2, we obtain∫ −x/2
−1

− ln |y|
x− y

dy ≤
∫ x/2

−1

− ln |y|
|y|

dy = O(1) · ln2 |x|,

∫ 0

−x/2

− ln |y|
x− y

dy ≤
∫ 0

−x/2

− ln |y|
x

dy = O(1) · ln |x|,

∫ x/2

0

ln |y|
x− y

dy ≤
∫ x/2

0

ln |y|
x/2

dy = O(1) · ln |x|,

∫ 1

3x/2

ln |y|
x− y

dy ≤ ln
∣∣∣3x

2

∣∣∣ ∫ 1

3x/2

1

x− y
dy = O(1) · ln2 |x|.

The remaining term is estimated as(∫ x−ε

x/2
+

∫ 3x/2

x−ε

)
ln y

x− y
dy =

(∫ x−ε

x/2
+

∫ 3x/2

x−ε

)
ln y − lnx

x− y
dy ≤ 2

x
(x− 2ε) ≤ 2.

Combining the previous estimates we obtain ∂xH[ϕ](x) = O(1) · ln2 |x|. This gives the second
estimate in (3.8).

Finally, we estimate the second derivative of the Hilbert transform ∂xxH[ϕ] =
3∑
i=1

∂xx(Ii) .

By (3.10) and (3.14) we obtain
∂xxI1 = O(1),

π

2
∂xxI2 = −

∫ 1

2x

1

(x− y)2
dy +

∫ 0

−1

1

(x− y)2
dy = O(1) · ln |x|

x
. (3.16)

π

2
∂xxI3 =

(∫ −x/2
−1

+

∫ 0

−x/2

)
ln |y|

(x− y)2
dy −

(∫ x/2

0
+

∫ 1

3x/2

)
ln |y|

(x− y)2
dy

+
ln
∣∣x/2∣∣
x

+
3 ln
∣∣3x/2∣∣
x

+ ∂x

(∫ 3x/2

x/2

ln |y|
x− y

dy

)
.

(3.17)
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Assuming 0 < x < 1/2, we obtain∣∣∣∫ −x/2
−1

ln |y|
(x− y)2

dy
∣∣∣ ≤ ln

∣∣∣x
2

∣∣∣ ∫ x/2

−1

1

(x− y)2
dy = O(1) · ln |x|

x
,

∣∣∣∫ 0

−x/2

ln |y|
(x− y)2

dy
∣∣∣ ≤ ∫ 0

−x/2

− ln |y|
x2

dy = O(1) · ln |x|
x

,

∣∣∣∫ x/2

0

ln |y|
(x− y)2

dy
∣∣∣ ≤ ∫ x/2

0

ln |y|
(x/2)2

dy = O(1) · ln |x|
x

,

∣∣∣∫ 1

3x/2

ln |y|
(x− y)2

dy
∣∣∣ ≤ ln

∣∣∣3x
2

∣∣∣ ∫ 1

3x/2

1

(x− y)2
dy = O(1) · ln |x|

x
.

(3.18)

The remaining term is estimated by

∂x

(∫ 3x/2

x/2

ln |y|
x− y

)
dy = ∂x

(∫ x/2

−x/2

ln |x− y|
y

dy

)

=

∫ x/2

−x/2

1

y(x− y)
dy +

ln |x/2|
x

− ln |3x/2|
x

,

(3.19)

where∣∣∣∣∣
∫ x/2

−x/2

1

y(x− y)
dy

∣∣∣∣∣ =

∣∣∣∣∣
∫ x/2

−x/2

1

y

( 1

x− y
− 1

x

)
dy

∣∣∣∣∣ =

∣∣∣∣∣
∫ x/2

−x/2

1

x(x− y)
dy

∣∣∣∣∣ ≤ 2

x
. (3.20)

Therefore, by (3.16) and (3.18)− (3.20), we have ∂xxH[ϕ](x) = O(1) · ln |x|
x

.

2. The function B = ϕϕx is smooth outside the origin and vanishes for |x| ≥ 2. As x → 0,
the following estimates are straightforward:

B(x) = O(1) · |x| ln2 |x| , Bx(x) = O(1) · ln2 |x| , Bxx(x) = O(1) · ln |x|
|x|

. (3.21)

3. Next, we observe that v3 ∈ H2(IR). Moreover, there exists a constant Cη such that

‖v3‖H2(IR) ≤ Cη · ‖w‖H2(IR\{0}) .

Clearly, the Hilbert transform H[v3] satisfies the same bounds. Hence∥∥H[v3]
∥∥
H2(IR)

= O(1) · ‖w‖H2(IR\{0}) . (3.22)

We observe that v2 is Lipschitz continuous, has compact support and is continuously differen-
tiable outside the origin. Since v2 has better regularity properties than ϕ, the same arguments
used to estimate the Hilbert transform of ϕ also apply to H[v2]. More precisely, as in (3.7)
for |x| → ∞ we have

H[v2](x) = O(1) · x−1 , H[v2]x(x) = O(1) · x−2 , H[v2]xx(x) = O(1) · x−3. (3.23)
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As in (3.8), for x→ 0 we have

H[v2](x) = O(1) · x ln2 |x| , H[v2]x(x) = O(1) · ln2 |x| , H[v2]xx(x) = O(1) · ln |x|
x

.

(3.24)
The only difference is that in (3.23)-(3.24) by O(1) we now denote a quantity such that

|O(1)| ≤ C · ‖w‖H2(IR\{0}) , (3.25)

for some constant C independent of w.

4. Finally, observing that the the function v1 in (3.2) has compact support, for |x| → ∞ we
have the bounds

D(x) = H[v1](x) = O(1) ·x−1 Dx(x) = O(1) ·x−2 , Dxx(x) = O(1) ·x−3. (3.26)

On the other hand, for x→ 0 we claim that

D(x) = O(1) , Dx(x) = O(1) · ln |x| , Dxx(x) = O(1) · |x|−1, (3.27)

where O(1) is a quantity satisfying (3.25). Indeed, without loss of generality we can assume
0 < x < 1/2. Recalling the construction of w and ϕ, we have(

w − u− + u+

2

)
ϕx =

(u+ − u−) ln |x|
π

+O(1). (3.28)

The Hilbert transform of v1 is computed by

πH[v1] =

∫ +∞

−∞

v1(y)

x− y
dy

=

(∫ −1

−2
+

∫ 2

1

)
v1(y)

x− y
dy +

∫ 0

−1

u−

x− y
dy +

(∫ x/2

0
+

∫ 1

3x/2

)
u+

x− y
dy +

∫ 3x/2

x/2

u+

x− y
dy

The first term on the right hand side is bounded and the last term vanishes, in the principal
value sense. The second term is computed by∫ 0

−1

u−

x− y
dy = u−(− ln |x|+ ln |x+ 1|) = − u− ln |x|+O(1) · |x| ,

while the remaining integrals are estimated by(∫ x/2

0
+

∫ 1

3x/2

)
u+

x− y
dy = u+(ln |x| − ln |x− 1|) = u+ ln |x|+O(1) · |x| .

Combining the previous estimates we obtain

H[v1] =
(u+ − u−) ln |x|

π
+O(1). (3.29)

Next, we estimate the derivative Dx(x). We have

∂x

(
w − u+ + u−

2

)
·ϕx = O(1)·ln |x|,

(
w − u+ + u−

2

)
ϕxx =

u+ − u−

πx
+O(1). (3.30)
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To estimate the derivative of H[v1] we write

π · ∂xH[v1] =

(∫ −1

−2
+

∫ 2

1

)
−v1(y)

(x− y)2
dy −

∫ 0

−1

u−

(x− y)2
dy

+∂x

(∫ x/2

0
+

∫ 1

3x/2

)
v1(y)

x− y
dy + ∂x

∫ 3x/2

x/2

v1(y)

x− y
dy .

(3.31)

The first term on the right hand side of (3.31) is uniformly bounded. The second term is
estimated by

−
∫ 0

−1

u−

(x− y)2
dy = − u−

x
+O(1).

Furthermore, we have

∂x

(∫ x/2

0
+

∫ 1

3x/2

)
v1(y)

x− y
dy =

(∫ x/2

0
+

∫ 1

3x/2

)
−v1(y)

(x− y)2
dy +

4u+

x

=
−3u+

x
+O(1) +

4u+

x
=

u+

x
+O(1).

(3.32)

Lastly, since v1(x) = u+ for x ∈ ]0, 1] , we have

∂x

∫ 3x/2

x/2

v1(y)

x− y
dy = ∂x

∫ x/2

−x/2

u+

y
dy = 0 . (3.33)

Combining the previous estimates we thus obtain

∂x H[v1](x) =
u+ − u−

πx
+O(1).

Together with (3.30), as x→ 0 this yields the asymptotic estimate

Dx(x) = H[v1]x −
[(
w − u− + u+

2

)
ϕx

]
x

= O(1) · ln |x|. (3.34)

The second derivative Dxx is estimated in a similar way. Indeed, by (3.1)–(3.3) and (3.30),
we have

∂xx

(
w − u− + u+

2
ϕx

)
= ∂xx

(
w − u+ + u−

2

)
ϕx + ∂x

(
w − u+ + u−

2

)
ϕxx

+ ∂x

(
w − u− + u+

2
ϕx

)
ϕxx +

(
w − u− + u+

2
ϕx

)
ϕxxx

= − u+ − u−

πx2
+O(1) · 1

x
.

(3.35)

On the other hand, differentiating (3.31) and recalling (3.32) and (3.33) we have

π · ∂xxH[v1] =

(∫ −1

−2
+

∫ 2

1

)
2v1(y)

(x− y)3
dy +

∫ 0

−1

2u−

(x− y)3
dy

+∂x

(∫ x/2

0
+

∫ 1

3x/2

)
−v1(y)

(x− y)2
dy − 4u+

x2
+ ∂xx

∫ x/2

−x/2

u+

y
dy .

(3.36)
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As before, the first term is uniformly bounded while the last term is zero. The second term is
computed by ∫ 0

−1

2u−

(x− y)3
dy =

u−

x2
+O(1). (3.37)

The third term is estimated by

∂x

(∫ x/2

0
+

∫ 1

3x/2

)
−v1(y)

(x− y)2
dy =

(∫ x/2

0
+

∫ 1

3x/2

)
2v1(y)

(x− y)3
dy − 2u+

x2
+

6u+

x2

=
3u+

x2
+O(1).

(3.38)

Combining above estimates (3.35)–(3.38) we obtain

Dxx = H[v1]xx −
[(
w − u− + u+

2

)
ϕx

]
xx

=
1

π

(
u−

x2
+

3u+

x2
− 4u+

x2

)
+
u+ − u−

πx2
+O(1) · 1

x
= O(1) · 1

x
.

(3.39)

5. By the estimates (3.8), (3.21) it follows

‖A+B‖H2(IR\[−δ,δ]) = O(1) ·
(∫ 1

δ

ln2 |x|
x2

dx

)1/2

= O(1) ·
(∫ 1

δ

dx

x7/3

)1/2

= O(1) · (δ−4/3)1/2 = O(1) · δ−2/3.

(3.40)

Similarly, the estimates (3.6) follow from (3.22), and (3.26)-(3.27).

4 Construction of approximate solutions

In this section, given an initial datum w̄ ∈ D, we prove that all the approximate solutions wn
at (2.20)-(2.21) are well defined, on a suitably small time interval [0, T ].

As in (2.6), we define{
ū−

.
= w̄(0−) ,

ū+ .
= w̄(0+),

{
u−n (t)

.
= wn(t, 0−) ,

u+
n (t)

.
= wn(t, 0+).

To fix the ideas, assume that the initial data w̄ ∈ H2(IR \ {0}) satisfies

ū− − ū+ = 6δ0 , ‖w̄‖H2(IR\{0}) =
M0

2
, (4.1)

for some (possibly large) constants δ0,M0 > 0.

Choosing a time interval [0, T ] sufficiently small, we claim that for each n ≥ 1 the approximate
solution wn satisfies the a priori bounds{

|u−n (t)− ū−| ≤ δ0 ,
|u+
n (t)− ū+| ≤ δ0 ,

‖wn(t)‖H2(IR\{0}) ≤ M0 , for all t ∈ [0, T ]. (4.2)
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This will be proved by induction. For n = 1 these bounds are a trivial consequence of the
definition (2.20). In the following, we assume that the function wn = wn(t, x) satisfies (4.2),
and show that the same bounds are satisfied by wn+1. We recall that wn+1 is defined as the
solution to the linear equation (2.21), with initial data (2.15).

A sequence of approximate solutions w(k) to the linear equation (2.21) will be constructed by
induction on k = 1, 2, . . . For notational convenience we introduce the function

a(t, x)
.
= ϕ(x) + wn(t, x)− u−n (t) + u+

n (t)

2
. (4.3)

As in (2.17), call t 7→ x(t; t0, x0) the solution to the Cauchy problem

ẋ
.
= a(t, x(t)) , x(t0) = x0 . (4.4)

We begin by defining
w(1)(t, x)

.
= w̄(x) . (4.5)

By induction, if w(k) has been constructed, we then set

w(k+1)(t0, x0) = w̄(x(0; t0, x0)) +

∫ t0

0
F (k)(t, x(t; t0, x0)) dt , (4.6)

where F (k) is defined as in (2.19), with w replaced by w(k) and u±(t) = w(t, 0±) replaced by
w(k)(t, 0±), respectively.

Assuming that wn satisfies (4.2), we will show that every approximation w(k) to the linear
Cauchy problem (2.21), (2.15) satisfies the same bounds, on a sufficiently small time interval
[0, T ]. Our first result deals with solution to the linear transport equation (4.7). We show
that, within a sufficiently short time interval, the H2 norm of the solution can be amplified
at most by a factor of 3/2.

Lemma 2. Let wn = wn(t, x) be a function that satisfies the bounds (4.2) for all t > 0, and
define a = a(t, x) as in (4.3). Then there exists T > 0 small enough, depending only on δ0,M0,
so that the following holds. For any τ ∈ [0, T ] and any solution w of the linear equation

wt + a(t, x)wx = 0 (4.7)

with initial datum
w(0) = w̄ ∈ H2

(
IR \ [−δ0τ, δ0τ ]

)
,

one has

‖w(τ)‖H2(IR\{0}) ≤
3

2
‖w̄‖

H2
(
IR\[−δ0τ, δ0τ ]

) . (4.8)

Proof. 1. The equation (4.7) can be solved by the method of characteristics, separately on
the regions where x < 0 and x > 0. We observe that characteristics move toward the origin
from both sides. In this first step we prove that all characteristics starting at time t = 0 inside
the interval [−δ0τ , δ0τ ] hit the origin before time τ (see Fig. 2). Hence the profile w(τ, ·) does
not depend on the values of w̄ on this interval.
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We claim that there exists δ1 > 0 such that{
a(t, x) ≤ − δ0 for all x ∈ ]0, δ1] ,

a(t, x) ≥ δ0 for all x ∈ [−δ1, 0[ .
(4.9)

Indeed, (4.1) and (4.2) imply

a(t, 0+) =
u+
n (t)− u−n (t)

2
≤ − 2δ0 . (4.10)

Moreover, for x > 0 we have∣∣a(t, x)− a(t, 0+)
∣∣ ≤ 2

π

∣∣x lnx
∣∣+

∫ x

0
|wn,x(t, y)| dy ≤ C0 |x|1/2 , (4.11)

for some constant C0 depending only on the norm ‖wn(t, ·)‖H2 , hence only on M0 in (4.2).

Choosing δ1 > 0 small enough so that C0δ
1/2
1 < δ0, from (4.10)-(4.11) we obtain the first

inequality in (4.9). The second inequality is proved in the same way. In addition, by choosing
the time interval [0, T ] small enough, we can also assume

δ0 T ≤ δ1 . (4.12)

2. Multiplying (4.7) by 2w one finds

(w2)t + (aw2)x = axw
2. (4.13)

Integrating (4.13) over the domain

Ω
.
=
{

(t, x) ; |x| > δ0(τ − t) , t ∈ [0, τ ]
}

(4.14)

shown in Fig. 2, we obtain∫ ∞
−∞

w2(τ, x) dx ≤
∫
|x|>δ0τ

w̄2 dx+

∫ τ

0

∫
|x|>δ0(τ−t)

axw
2 dx dt . (4.15)

Indeed, by (4.9) and (4.12), for every τ ∈ ]0, T [ the flow points outward along the boundary
of the domain Ω. By (4.3) the derivative ax satisfies a bound of the form

|ax(t, x)| ≤ Ca
(
1 + | ln |x||

)
, (4.16)

where Ca is a constant depending only on the norm ‖wn‖H2 in (4.2). Taking the supremum
of |ax(t, x)| over the set

Ωt
.
= {x ; |x| > δ0(τ − t)}, (4.17)

from (4.15) we thus obtain

‖w(τ)‖2L2(IR) ≤ ‖w̄‖
2
L2(Ω0) +

∫ τ

0
Ca

(
1 + | ln(δ0(τ − t))|

)
‖w(t)‖2L2(Ωt)

dt . (4.18)

By Gronwall’s lemma, this yields a bound on ‖w(τ)‖2L2 .
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x

1

T

δ
0

δ

Ω

0

τ

τ

Figure 2: The norm ‖w(τ)‖H2(IR\{0}) is estimated by using the balance laws for w2, w2
x, w

2
xx on the

shaded domain Ω. By (4.9), along the boundary where |x| = δ0(τ − t) all characteristics move outward.
Hence no inward flux is present.

3. Next, differentiating (4.7) w.r.t. x and multiplying by 2wx we obtain

wxt + awxx = − axwx , wx(0, ·) = w̄x . (4.19)

(w2
x)t + (aw2

x)x = − axw2
x . (4.20)

Integrating (4.20) over the domain Ω in (4.14) and using the bound (4.16), by similar compu-
tations as before we now obtain

‖wx(τ)‖2L2(IR) ≤ ‖w̄x‖
2
L2(Ω0) +

∫ τ

0
Ca

(
1 + | ln(δ0(τ − t))|

)
‖wx(t)‖2L2(Ωt)

dt . (4.21)

By Gronwall’s lemma, this yields a bound on ‖wx(τ)‖2L2 .

4. Differentiating (4.19) once again and multiplying all terms by 2wxx we find

wxxt + awxxx = − 2axwxx − axxwx , wxx(0, ·) = w̄xx , (4.22)(
w2
xx

)
t
+
(
aw2

xx

)
x

= − 3 axw
2
xx − 2axxwxwxx . (4.23)

Integrating (4.23) over the domain Ω in (4.14), we obtain∫ ∞
−∞

w2
xx(τ, x) dx ≤

∫
|x|>δτ

w̄2
xx(y) dy +

∫ τ

0

∫
|x|>δ0(τ−t)

(
− 3 axw

2
xx − 2axxwxwxx

)
dx dt .

(4.24)
To estimate the right hand side of (4.24) we observe that, for |x| small,

|ax| = |ϕx+wn,x| = O(1)·
(
| ln |x||+‖wn‖H2

)
, |axx| = |ϕxx+wn,xx| = O(1)· 1

|x|
+|wn,xx| .

(4.25)
Recalling that ϕ(x) = 0 for |x| ≥ 2, we have the bounds

E
.
= |3 axw2

xx + 2axxwxwxx|

≤ O(1) ·
(
1 + | ln |x||

)
w2
xx +O(1) ·

(
1

|x|
+ |wn,xx|

)
‖w‖H2 wxx ,

(4.26)
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∫ 2

δ0(τ−t)

|wxx(t, x)|
x

dx ≤

(∫ 2

δ0(t−s)

1

x2

)1/2

‖wxx‖L2(Ωt) ≤
(

1

δ0(t− s)

)1/2

‖wxx‖L2(Ωt) ,

(4.27)∫ τ

0

∫
|x|>δ0(τ−t)

E(t, x) dxdt ≤ O(1) ·
∫ τ

0

(
1 + | ln δ0(τ − t)|

)
· ‖w(t)‖2H2(Ωt)

dt

+O(1) ·
∫ τ

0
[δ0(τ − t)]−1/2 · ‖w(t)‖2H2(Ωt)

dt+O(1) ·
∫ τ

0
‖wn(t)‖H2 · ‖w(t)‖2H2(Ωt)

dt.

(4.28)

5. Calling Z(t)
.
= ‖w(t)‖H2(Ωt), by the estimates (4.18), (4.21), and (4.28) we obtain an

integral inequality of the form

Z2(τ) ≤ Z2(0) + C1 ·
∫ τ

0

(
1 + | ln δ0(τ − t)|+ [δ0(τ − t)]−1/2 +M0

)
Z2(t) dt . (4.29)

By Gronwall’s lemma, if τ > 0 is sufficiently small this yields Z(τ) ≤ 3
2Z(0), proving (4.8).

The above estimate can be easily extended to the linear, non-homogeneous problem

wt + a(t, x)wx = F (t, x), w(0, x) = w̄(x). (4.30)

Indeed, in the same setting as Lemma 2, using (4.8) and Duhamel’s formula, for τ ∈ [0, T ] we
obtain

‖w(τ, ·)‖H2(IR\{0}) ≤
3

2
‖w̄‖

H2
(
IR\[−δ0τ, δ0τ ]

) +
3

2

∫ τ

0
‖F (t, ·)‖

H2
(
IR\[−δ0(τ−t), δ0(τ−t)]

) dt .
(4.31)

Relying on Lemma 1 we now prove uniform H2 bounds on all approximations w(k), on a
suitably small time interval [0, T ].

Lemma 3. Let wn = wn(t, x) be a function that satisfies the bounds (4.2) for all t > 0, and
define a = a(t, x) as in (4.3). Then there exists T > 0 small enough, depending only on δ0,M0

in (4.1), so that the following holds. For every k ≥ 1 and every τ ∈ [0, T ], one has

‖w(k)(τ)‖H2(IR\{0}) ≤ M0 , (4.32)

|w(k)(τ, 0−)− ū−| ≤ δ0 , |w(k)(τ, 0+)− ū+| ≤ δ0 . (4.33)

Proof. 1. Recalling the constants K0,K1 in Lemma 1, choose T > 0 small enough so that∫ T

0
(δ0s)

−2/3 ds <
M0

6(K0 +K1M0)
. (4.34)
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2. The estimate (4.32) trivially holds for w(1)(τ)
.
= w̄. Assuming that it holds for w(k)(t),

t ∈ [0, T ], by (4.31) for any τ ∈ [0, T ] we have the estimate

‖w(k+1)(τ)‖H2(IR\{0}) ≤
3

2
‖w̄‖H2(IR\{0}) +

3

2

∫ τ

0
‖A+B + C +D‖H2(IR\[−δ0(τ−t) , δ0(τ−t)]) ds

≤ 3

4
M0 +

3

2

∫ τ

0
K0[δ0(τ − t)]−2/3 dt+

3

2

∫ τ

0
K1[δ0(τ − t)]−2/3‖w(k)(t)‖H2(IR\{0}) dt

≤ 3

4
M0 +

3

2
(K0 +K1M0)

∫ τ

0
(δ0s)

−2/3 ds

<
3

4
M0 +

3

2
(K0 +K1M0) · M0

6(K0 +K1M0)
= M0 .

(4.35)
By induction, this proves the bound (4.32).

3. To prove the two estimates in (4.33), we write∣∣w(k+1)(τ, 0+)− ū+
∣∣ ≤ |w̄(x(0; τ, 0+))− ū+|+ τ · sup

t∈[0,τ ]

∥∥(A+B + C +D)(t)
∥∥
L∞

. (4.36)

The a priori bound on ‖w(k)(t, ·)‖H2(IR\{0}) implies that the L∞ norm in (4.36) is uniformly
bounded. By possibly choosing a smaller T > 0, both terms on the right hand side of (4.36)
will be < δ0/2. This yields the second inequality in (4.33). The first inequality is proved in
the same way.

The next lemma shows that the sequence of approximations w(k) defined at (4.5)–(4.6) con-
verges to a solution to (2.21).

Lemma 4. For some T > 0 sufficiently small, the sequence of approximations w(k)(t, ·)
converges in H2(IR \ {0}) to a function w = w(t, ·). The convergence is uniform for t ∈ [0, T ].
This limit function provides a solution to the initial value problem (2.21) with initial data
(2.15).

Proof. 1. By the previous bounds, the difference between two approximations can be esti-
mated by

‖w(k+1)(τ)− w(k)(τ)‖H2(IR\{0})

≤ 3

2

∫ τ

0
[δ0(τ − t)]−2/3K1 ‖w(k)(t)− w(k−1)(t)‖H2(IR\[−δ0(τ−t), δ0(τ−t)] dt .

(4.37)

If T > 0 is small enough, so that

3

2

∫ T

0
(δ0s)

−2/3K1 ds ≤
1

2
,

then for every τ ∈ [0, T ] the sequence w(k)(τ, ·) is Cauchy in H2(IR \ {0}), hence it converges
to a unique limit function w(τ, ·).

2. It remains to prove that that w provides a solution to (2.21) with initial data (2.15), in the
sense that the integral identities (2.18) are satisfied for all t0 ∈ [0, T ] and x0 6= 0.
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This is clear, because for every ε > 0 as k → ∞ the source terms on the right hand side of
(2.21) converge uniformly on the set {(t, x) ; t ∈ [0, T ] , |x| ≥ ε}.

5 Convergence of the approximate solutions

By the analysis in the previous section, the sequence of approximate solutions wn of (2.21),
(2.15) is well defined, on a suitably small time interval [0, T ]. Moreover, the uniform bounds
(4.2) hold.

To complete the proof of Theorem 1, it remains to show that the wn converge to a limit
function w, providing an entropic solution to the Cauchy problem (2.10), (2.15). Toward this
goal we prove that on a suitably small time interval [0, T ] the sequence (wn)n≥1 (2.21) is
Cauchy w.r.t. the norm of H1(IR \ {0}), hence it converges to a unique limit. This will be
achieved in several steps.

1. For a fixed n, consider the differences{
W

.
= wn+1 − wn ,

Wn
.
= wn − wn−1 ,

{
U−

.
= u−n+1 − u−n ,

U−n
.
= u−n − u−n−1 ,

{
U+ .

= u−n+1 − u+
n ,

U+
n

.
= u+

n − u+
n−1 .

From (2.21) we deduce

Wt +

(
ϕ+ wn −

u−n − u+
n

2

)
Wx +

(
Wn −

U−n + U+
n

2

)
wn,x = H[W ]−

(
W − U− + U+

2

)
ϕx .

(5.1)
Multiplying both sides by 2W we obtain the balance law(

W 2
)
t
+

[(
ϕ+ wn −

u−n − u+
n

2

)
W 2

]
x

= (ϕ+ wn)x W
2

−
(
Wn −

U−n + U+
n

2

)
2Wwn,x + 2H[W ] ·W −

(
W − U− + U+

2

)
2Wϕx .

(5.2)

Integrating over the domain Ω in (4.14) and observing that ϕx(x) = O(1)
(
1 + | ln |x||

)
, we

obtain

1

2

∫
W 2(τ, x) dx ≤ −

∫ τ

0

∫
|x|>δ0(τ−t)

{
(ϕ+ wn)x ·W

2

−
(
Wn −

U−n + U+
n

2

)
2Wwn,x + 2H[W ] ·W −

(
W − U− + U+

2

)
2Wϕx

}
dxdt

= O(1) ·
∫ τ

0

{∣∣ln(τ − t)
∣∣ · ‖W (s)‖2L2 + ‖Wn(t)‖H1‖W (t)‖L2 + ‖W (t)‖2L2

+
∣∣ln(τ − t)

∣∣ · ‖W (t)‖H1‖W (t)‖L2

}
dt

≤ C3 ·
∫ τ

0
‖W (t)‖L2 ·

(
‖Wn(t)‖H1 +

∣∣ln(τ − t)
∣∣ ‖W (t)‖H1

)
dt ,

(5.3)
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for some constant C3.

2. Next, differentiating (5.1) w.r.t. x we obtain

Wxt +

(
ϕ+ wn −

u−n − u+
n

2

)
Wxx + (ϕx + wn,x)Wx +

(
Wn −

U−n + U+
n

2

)
wn,xx +Wn,xwn,x

= H[Wx]−
(
W − U− + U+

2

)
ϕxx − ϕxWx .

(5.4)
Multiplying both sides by 2Wx we obtain the balance law

(W 2
x )t +

[(
ϕ+ wn −

u−n − u+
n

2

)
W 2
x

]
x

= − (ϕx + wn,x) W 2
x −

(
Wn −

U−n + U+
n

2

)
2Wxwn,xx

−2wn,xWn,xWx + 2H[Wx]Wx −
(
W − U− + U+

2

)
2Wxϕxx − 2ϕxW

2
x .

(5.5)
By the definition (2.4) one has

‖ϕxx‖L2(IR\[−δ0(τ−t),δ0(τ−t)] = O(1) · (τ − t)−1/2. (5.6)

Integrating (5.5) over the domain Ω in (4.14) we obtain∫ ∞
0

W 2
x (t, x) dx = O(1) ·

∫ τ

0

{∣∣ln(τ − t)
∣∣ ‖Wx(t)‖2L2 + ‖Wn(t)‖H1 ‖Wx(t)‖L2

+‖W (t)‖H1‖Wx(t)‖L2 · (τ − t)−1/2

}
dt .

(5.7)

3. Calling Z(t)
.
= ‖W (t)‖H1(IR\{0}), from (5.3) and (5.7) we obtain an integral inequality of

the form

Z2(τ) ≤ C4

∫ τ

0
Z(t) ·

(
‖Wn(t)‖H1 + Z(t)

)
· (τ − t)−1/2 dt, (5.8)

for some constant C4.

We now set
ε0

.
= sup

t∈[0,T ]
‖Wn(t)‖H1(IR\{0}) .

Since Z(0) = 0, calling τ∗ the first time where Z ≥ ε0/2 one has

ε0

2
≤ C4

∫ τ∗

0

ε0

2
·
(
ε0 +

ε0

2

)
(τ∗ − t)−1/2 dt =

3

2
C4ε

2
0τ
∗ .

Hence τ∗ ≥ (3C4)−1. Choosing 0 < T < (3C4)−1 , we thus obtain

Z(t) ≤ ε0
2

for all t ∈ [0, T ] .

This establishes the desired contraction property:

sup
t∈[0,T ]

‖wn+1(t)− wn(t)‖H1(IR\{0}) ≤
1

2
· sup
t∈[0,T ]

‖wn(t)− wn−1(t)‖H1(IR\{0}) . (5.9)
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4. By (5.9), for every t ∈ [0, T ] the sequence of approximations wn(t, ·) is Cauchy in the space
H1(IR \ {0}), hence it converges to a unique limit w(t, ·).

It remains to check that this limit function w is an entropic solution, i.e. it satisfies the integral
equation (2.18). But this is clear, because for every ε > 0 the sequence of functions

Fn
.
= H[ϕ]− ϕϕx +

(
H[wn]−

(
wn −

u−n + u+
n

2

)
ϕx

)
(5.10)

converges to the corresponding function F in (2.19), uniformly for t ∈ [0, T ] and |x| ≥ ε.

5. Finally, to prove uniqueness, assume that w, w̃ are two entropic solutions. Consider the
differences

W
.
= w − w̃ ,

{
U−

.
= u− − ũ− ,

U+ .
= u+ − ũ+ ,

and call Z(t)
.
= ‖W (t)‖H1(IR\{0}). Since Z(0) = 0, the same arguments used to prove (5.8)

now yield

Z2(τ) ≤ C4

∫ τ

0
Z(t) ·

[
Z(t) + Z(t)

]
· (τ − t)−1/2 dt .

For τ ∈ [0, T ] sufficiently small, we thus obtain Z(τ) = 0. This completes the proof of
Theorem 1.
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