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Abstract. We consider the Godunov scheme as applied to a scalar conservation law whose flux

has discontinuities in both space and time. The time and space dependence of the flux occurs

through a positive multiplicative coefficient. That coefficient has a spatial discontinuity along a
fixed interface at x = 0. Time discontinuities occur in the coefficient independently on either side

of the interface. This setup applies to the LWR traffic model in the case where different time-

varying speed limits are imposed on different segments of a road. We prove that approximate
solutions produced by the Godunov scheme converge to the unique entropy solution, as defined

in G.M. Coclite and N.H. Risebro, Conservation Laws with time dependent discontinuous
coefficients, SIAM J. Math. Anal., 36 (2005), pp. 1293–1309. Convergence of the Godunov

scheme in the presence of spatial flux discontinuities alone is a well established fact. The novel

aspect of this paper is convergence in the presence of additional temporal flux discontinuities.

1. Introduction

We consider the Godunov scheme as applied to the Cauchy problem for a scalar conservation
law whose flux function depends on a coefficient k(x, t) that is discontinuous in both space and
time: {

ut + (k(x, t)f(u))x = 0 for (x, t) ∈ ΠT := R× (0, T ),

u(x, 0) = u0(x) for x ∈ R.
(1.1)

Regarding the data of the problem we make the following assumptions:

(A.1) The function u 7→ f(u) is Lipschitz continuous, satisfies

f(0) = f(umax) = 0, (1.2)

and is unimodal, meaning that there is a number u∗ ∈ (0, umax) such that f(u∗) > 0, f is
strictly increasing on (0, u∗), strictly decreasing on (u∗, umax).

(A.2) The coefficient k ∈ L∞(ΠT ) has the form

k(x, t) =

{
k1(t), x < 0,

k2(t), x > 0.

For k1 and k2, each ki ∈ BV(R+), and there is a number kmin > 0 such that ki(t) ≥ kmin

for all t ∈ [0, T ].
(A.3) The initial data satisfies

u0(x) ∈ [0, umax] for all x ∈ R, u0 ∈ L1(R) ∩ BV(R). (1.3)

An example where our setup applies is the Lighthill-Witham-Richards (LWR) model of traffic
flow on a unidirectional road, where u models vehicle density, and kv(u) models the vehicle velocity
[17]. Here u 7→ v(u) is strictly decreasing. The simplest example is v(u) = umax − u, in which
case kf(u) = ku(umax − u). The parameter k controls the maximum vehicle velocity. The case
of spatially varying, discontinuous k = k(x) has been studied extensively. It models an abrupt
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change in road conditions, for example speed limit. Our setup k = k(x, t) allows for additional
temporal changes, which occur in problems where time varying speed limit controls are applied
[18, 29, 30, 31].

Another application where the flux has both spatial and temporal discontinuities is the clarifier-
thickener model, with time varying controls [8, 15]. For this application the time dependence is
not the simple multiplicative one that we are assuming, and so our analysis does not apply.

For the case of smooth or constant k, the existence and uniqueness theory is classical, culminat-
ing in 1970 with the work of Kružkov. For constant k, the theory of monotone difference schemes
such as the Godunov scheme has also been essentially complete for a long time. Starting in the
1990’s, the case where k = k(x) is discontinuous but with no time dependence has attracted much
interest. A partial list of the many papers on this subject can be found in the bibliographies of
[4, 5, 12, 16]. In particular, the Godunov scheme described in Section 2 is known to converge
when the flux has only spatial discontinuities [1, 5, 11]. The main result of this paper is a proof of
convergence of the Godunov scheme when k = k(x, t) also has temporal discontinuities. We know
of no previous convergence result for the Godunov scheme in this case.

Coclite and Risebro [13] proved well-posedness for a problem similar to (1.1). They used a
front tracking algorithm to construct approximate solutions, which converge to the unique entropy
solution as the refinement parameter approaches zero. In [13], the flux has the form f(u, x, t) =
f(u, a(x), g(t)), where f(u, a, g) is smooth and a(x) ∈ BV(R), g(t) ∈ BV(R+). Also the mapping
u 7→ f(u, a, g) has the unimodal shape that we are assuming. Compared to that setup, our
problem is somewhat different since we are assuming the multiplicative form k(x, t)f(u), and we
are assuming only one spatial discontinuity. It will become clear that our results can be extended
to any finite number of spatial discontinuities, but our analysis depends in a critical way on the
multiplicative structure kf(u).

In [25] the compensated compactness method was used to prove that the Lax-Friedrichs scheme
converges (along a subsequence) to a weak solution of a problem like (1.1), under more general
assumptions about the shape of the flux and its time and space dependence.

The Godunov scheme is only first order accurate, but it is widely used for approximating
solutions of the LWR model of traffic flow [7, 17, 18, 21, 27]. In the transportation science
literature it is often referred to as the Cell Transmission Model (CTM) [14, 29, 31]. It is easily
implemented, it has an intuitive interpretation in terms of upstream/downstream demand/supply
of capacity, and the numerical flux comes directly from the solution of the relevant Riemann
problem. As a result of the supply/demand interpretation, and its derivation from the Riemann
problem, it is readily adapted to deal with junctions. Our problem (1.1) has the simplest type of
junction; one incoming and one outgoing road. But the Godunov scheme can also be extended to
junctions where there are multiple incoming and outgoing roads.

When proving compactness of approximate solutions u∆ for k = constant, a key ingredient
is a spatial variation bound. Such a bound is not available when k is discontinuous. One well-
known way around this difficulty, and the one we will employ, is the singular mapping technique
[1, 9, 13, 19, 26, 32, 33]. The so-called singular mapping Ψ(u, k) is

Ψ(u, k) =
k

f(u∗)
sign(u− u∗) (f(u∗)− f(u)) =

k

f(u∗)

∫ u

u∗
|f ′(w)| dw.

For each fixed k, the mapping u 7→ Ψ(u, k) is strictly increasing and Lipschitz continuous, but
Ψu(u∗, k) = 0, whence the term “singular” . The singular mapping technique consists of proving a
spatial variation bound for Ψ(u∆, k∆). That bound, along with some more standard ones, yields
compactness for Ψ(u∆, k∆). After that, compactness of the conserved quantity u∆ follows with
the observation that u 7→ Ψ(u, k) has a continuous inverse. Other methods that have been used
to deal with a spatially discontinuous flux are compensated compactness [22, 25] and the BVloc

method [4, 10, 11, 12].
As applied to difference schemes, the singular mapping method (and also the BVloc method)

requires a discrete time continuity estimate, or equivalently a bound on the spatial variation of the
numerical flux. When k = k(x), and the scheme is monotone, such an estimate is straightforward,
but not when k = k(x, t). In fact, assuming the presence of a spatial discontinuity in k, the
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analytical difficulty is already present if there is a single time discontinuity in k, or even if k
varies smoothly in time. The novel aspect of our analysis is Lemma 3.2, which provides a spatial
variation bound on the numerical flux, making it possible to carry out the rest of the analysis
using known results, with small modifications where necessary.

Even when k(x, t) = constant and the initial data is smooth, solutions of (1.1) develop discon-
tinuities, and so a weak definition of solution is required. The presence of discontinuities causes
another difficulty, namely lack of uniqueness, and so an additional condition, a so-called entropy
condition, is required in order to single out the unique physically relevant solution. We will use
the following notion of solution, which is essentially the definition of entropy solution proposed in
[13].

Definition 1.1 (Entropy solution). A measurable function u : ΠT → [0, umax] is an entropy
solution of the initial value problem (1.1) if it satisfies the following conditions:

(D.1) u ∈ L1(ΠT ), and the map (0, T ) 3 t 7→ u(·, t) ∈ L1(R) is Lipschitz continuous.
(D.2) For any test function φ ∈ D(ΠT ),∫∫

ΠT

(
uφt + k(x, t)f(u)φx

)
dx dt = 0.

(D.3) For any test function 0 ≤ φ ∈ D(ΠT ), and any c ∈ [0, umax],∫∫
ΠT

(
|u− c|φt + F (u, x, t, c)φx

)
dx dt+

∫ T

0

|k2(t)f(c)− k1(t)f(c)|φ(0, t) dt ≥ 0,

where F (u, x, t, c) = sign(u− c) (k(x, t)f(u)− k(x, t)f(c)).
(D.4) The initial condition is satisfied in the L1 sense:

u(·, t)→ u0 in L1(R) as t ↓ 0.

(D.5) Ψ(u(·, t), k(·, t)) ∈ BV(R) for a.e. t ∈ (0, T ).

Remark 1.1. Condition (D.2) is actually implied by condition (D.3). Taking c = 0 and c = umax

in (D.3), one gets (D.2) for φ ≥ 0, and hence for all φ. We include condition (D.2) in the
definition because it is the weak formulation of the conservation law. By itself, (D.2) is not
sufficient to guarantee uniqueness. Condition (D.3) is the so-called entropy condition, which
ensures uniqueness. It generalizes the classical Kružkov entropy condition to accommodate the
spatial flux discontinuity.

Remark 1.2. Since u 7→ Ψ(u, k) has a continuous inverse, condition (D.5) guarantees the exis-
tence of the limits

lim
x→0±

u(x, t) for a.e. t ∈ (0, T ).

Remark 1.3. Even when k = k(x), with a single spatial discontinuity and no time-dependence,
(1.1) admits infinitely many L1-contractive semigroups of solutions [2], one for each so-called
connection (A,B) . The definition above singles out the entropy solution that is understood to
be the correct one for traffic modeling. It also corresponds to the optimal entropy solution [2],
the entropy solution of [24], and the vanishing viscosity solution [6]. Moreover, it satisfies the
Γ-condition [16] and the minimal jump condition [19]. All of these different notions of entropy
solution agree for this particular problem. In more complicated situations, some of them may
yield different solutions [5].

Remark 1.4. When k = k(x), an alternative to (D.3) is the so-called adapted entropy formulation
[5, 6, 12], which simplifies certain aspects of the subsequent analysis. For the present setup where
k = k(x, t), the adapted entropies would become time dependent. This seems feasible, but for our
present purposes the most direct approach is to use condition (D.3).

Although our problem is slightly different from that of [13], the uniqueness portion of their
well-posedness theorem applies directly to our setup.
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Theorem 1.1 (Uniqueness of entropy solutions [13]). If u and v are two entropy solutions having
initial data u0 and v0 satisfying (1.3), then

‖u(·, t)− v(·, t)‖L1(R) ≤ ‖u0 − v0‖L1(R) .

The remainder of this paper consists of Section 2, where the details of the Godunov scheme are
laid out, and Section 3, which contains our convergence theorem and its proof.

2. The Godunov scheme

For a fixed spatial mesh size ∆x, let xj = (j− 1/2)∆x. Let xj+ 1
2

= xj + ∆x/2. Define the grid
cells Ij = [xj− 1

2
, xj+ 1

2
). Note that with this setup the junction x = 0 is located at x 1

2
.

Similarly, for a fixed temporal mesh size ∆t, define N = N(∆t) ∈ Z+ such that T ∈ [N∆t, (N+
1)∆t). The positive time axis is discretized via tn = n∆t for 0 ≤ n ≤ N , resulting in the time
strips In = [tn, tn+1).

For grid points away from the junction, the numerical flux is kf̄(v, u), where f̄(v, u) is the
classical Godunov flux:

f̄(v, u) =


min
[u,v]

f(w), u ≤ v

max
[v,u]

f(w), u ≥ v

 = min {f (max(v, u∗))) , f (min(u, u∗))} . (2.1)

The first formula above is the standard one [28], while the second one results from our assumptions
about f(u). The Godunov flux f̄ is Lipschitz continuous with respect to both variables, and
consistent with f , meaning that f̄(u, u) = f(u). Also f̄ is monotone, i.e., nonincreasing with
respect to the first variable, nondecreasing with respect to the second variable.

The Godunov flux at the spatial interface is [1, 3, 11, 14, 21, 27, 34]:

g(v, u, k2, k1) = min {k2f (max(v, u∗)) , k1f (min(u, u∗))} . (2.2)

The function g is Lipschitz continuous in all variables, and like f̄ it is monotone, i.e., nonincreasing
with respect to v and nondecreasing with respect to u.

The data u0(x) and ki(t) are discretized via

U0
j =

1

∆x

∫
Ij

u0(x) dx, kni =
1

∆t

∫
In
ki(t) dt.

We use ∆+ and ∆− to denote the difference operators in the x direction, e.g.,

∆+Zj = Zj+1 − Zj , ∆−Zj = Zj − Zj−1.

Let λ = ∆t/∆x. The time marching equation is
Un+1
j = Unj − λ∆−

(
kn1 f̄(Unj+1, U

n
j )
)
, j < 0,

Un+1
0 = Un0 − λ

(
g(Un1 , U

n
0 , k

n
2 , k

n
1 )− kn1 f̄(Un0 , U

n
−1)
)
, j = 0,

Un+1
1 = Un1 − λ

(
kn2 f̄(Un2 , U

n
1 )− g(Un1 , U

n
0 , k

n
2 , k

n
1 )
)
, j = 1,

Un+1
j = Unj − λ∆−

(
kn2 f̄(Unj+1, U

n
j )
)
, j > 1.

(2.3)

With the notation

hmj+ 1
2

(v, u) =


km1 f̄(v, u), j < 0,

g(v, u, km2 , k
m
1 ), j = 0,

km2 f̄(v, u), j > 0,

(2.4)

one can write the scheme more compactly as

Un+1
j = Unj − λ∆−h

n
j+ 1

2
(Unj+1, U

n
j ). (2.5)

From (2.1) and (2.2), it is readily verified that∣∣∣∣ ∂∂uhnj+ 1
2
(v, u)

∣∣∣∣ , ∣∣∣∣ ∂∂vhnj+ 1
2
(v, u)

∣∣∣∣ ≤ Lu, for u, v ∈ [0, umax], (2.6)

where
Lu = ‖k‖∞ ·max{|f ′(u)| : u ∈ [0, umax]}.
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Let ∆ = (∆x,∆t). For our convergence analysis we will assume that ∆ → 0 with λ fixed, and
satisfying the following CFL condition:

λLu ≤ 1/2. (2.7)

Let χj(x) (χn(t)) denote the indicator function for the interval Ij (In). The finite difference
solution

{
Unj
}

is extended to all of ΠT by defining

u∆(x, t) =

N∑
n=0

∑
j∈Z

χj(x)χn(t)Unj , (x, t) ∈ ΠT .

Similarly, with χ−(x) (χ+(x)) denoting the indicator function of (−∞, 0) ([0,∞)), we define

k∆(x, t) =

N∑
n=0

χn(t) (χ−(x)kn1 + χ+(x)kn2 ) , (x, t) ∈ ΠT .

3. convergence

This section contains our convergence result, stated in Theorem 3.1. With the exception of
Lemma 3.2, our analysis requires only straightforward modifications of known results concerning
the case k = k(x). Lemma 3.2 deals with the only significant new difficulty, the time dependence
of k(x, t), and we give a detailed proof of that lemma. In order to keep the presentation mostly
self-contained, we also include all of the other relevant lemmas.

Theorem 3.1. Let ∆ = (∆x,∆t) denote a sequence of grid refinements approaching zero with
λ = ∆t/∆x fixed. The approximations u∆(x, t) produced by the Godunov scheme of Section 2
converge to u(x, t) boundedly a.e., and in L1(ΠT ), where u is the unique entropy solution to (1.1)
in the sense of Definition 1.1.

A finite difference scheme such as the scheme (2.3) is monotone [20, 28] if

Unj ≤Wn
j ∀j ∈ Z =⇒ Un+1

j ≤Wn+1
j ∀j ∈ Z.

Using the monotonicity of the numerical flux function, the CFL condition, and the assumption
(1.2), a standard calculation [11, 12] gives the following lemma.

Lemma 3.1. The Godunov scheme of Section 2 is monotone. The computed solution satisfies

Unj ∈ [0, umax], j ∈ Z, n = 0, . . . , N.

Lemma 3.2. The spatial variation of the numerical flux is bounded, i.e.,∑
j∈Z

∣∣∆+h
n
j+ 1

2
(Unj+1, U

n
j )
∣∣ ≤ C1, n = 0, . . . , N,

where the constant C1 is independent of the mesh size ∆.

Proof. We start by applying hn+1
j+ 1

2
(·, ·) to (2.5):

hn+1
j+ 1

2
(Un+1

j+1 , U
n+1
j )

= hn+1
j+ 1

2
(Unj+1, U

n
j ) +

∫ 1

0

d

dθ
hn+1
j+ 1

2
(Unj+1 + θ(Un+1

j+1 − U
n
j+1), Unj + θ(Un+1

j − Unj )) dθ

= hn+1
j+ 1

2
(Unj+1, U

n
j ) + αnj+ 1

2
∆+h

n
j+ 1

2
(Unj+1, U

n
j )− βnj− 1

2
∆+h

n
j− 1

2
(Unj , U

n
j−1).

(3.1)

where

αnj+ 1
2

= −λ
∫ 1

0

∂

∂v
hn+1
j+ 1

2
(Unj+1 + θ(Un+1

j+1 − U
n
j+1), Unj + θ(Un+1

j − Unj )) dθ,

βnj− 1
2

= λ

∫ 1

0

∂

∂u
hn+1
j+ 1

2
(Unj+1 + θ(Un+1

j+1 − U
n
j+1), Unj + θ(Un+1

j − Unj )) dθ.

Due to the monotonicity of the numerical flux, the CFL condition (2.7), and the bounds (2.6), we
have

0 ≤ αnj+ 1
2
≤ 1/2, 0 ≤ βnj− 1

2
≤ 1/2. (3.2)
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Next, we write (3.1) in the form:

hn+1
j+ 1

2
(Un+1

j+1 , U
n+1
j ) = hnj+ 1

2
(Unj+1, U

n
j ) + αnj+ 1

2
∆+h

n
j+ 1

2
(Unj+1, U

n
j )− βnj− 1

2
∆+h

n
j− 1

2
(Unj , U

n
j−1)︸ ︷︷ ︸

Hj+1
2

+
(
hn+1
j+ 1

2
(Unj+1, U

n
j )− hnj+ 1

2
(Unj+1, U

n
j )
)
.

We now apply ∆+, take absolute values, use the triangle inequality, and then sum over j, yielding∑
j∈Z

∣∣∆+h
n+1
j+ 1

2
(Un+1

j+1 , U
n+1
j )

∣∣ ≤∑
j∈Z
|∆+Hj+ 1

2
|︸ ︷︷ ︸

S1

+
∑
j∈Z

∣∣∆+

(
hn+1
j+ 1

2
(Unj+1, U

n
j )− hnj+ 1

2
(Unj+1, U

n
j )
)∣∣

︸ ︷︷ ︸
S2

.
(3.3)

The formula for Hj+ 1
2

is written in incremental form, and the inequalities (3.2) make it possible
to invoke Theorem 16.3 of [28], which yields

S1 ≤
∑
j∈Z

∣∣∆+h
n
j+ 1

2
(Unj+1, U

n
j )
∣∣ . (3.4)

We turn our attention to S2. First consider contributions that do not involve the interface at
j = 0. For j 6= 0, it follows from (2.4) that

hn+1
j+ 1

2
(Unj+1, U

n
j )− hnj+ 1

2
(Unj+1, U

n
j ) =

(
kn+1
i − kni

)
f̄(Unj+1, U

n
j )

=
1

kni

(
kn+1
i − kni

)
hnj+ 1

2
(Unj+1, U

n
j ).

(3.5)

Here i = 1 for j < 0, and i = 2 for j > 0. So for j 6= −1, 0,∣∣∆+

(
hn+1
j+ 1

2
(Unj+1, U

n
j )− hnj+ 1

2
(Unj+1, U

n
j )
)∣∣

=
1

kni

∣∣kn+1
i − kni

∣∣ ∣∣∆+h
n
j+ 1

2
(Unj+1, U

n
j )
∣∣

≤ 1

kmin

(∣∣kn+1
1 − kn1

∣∣+
∣∣kn+1

2 − kn2
∣∣) ∣∣∆+h

n
j+ 1

2
(Unj+1, U

n
j )
∣∣ .

(3.6)

We now consider the contributions to S2 that involve the interface. Take the case where j = 0.
Referring to (2.4), we get

hn+1
1
2

(Un1 , U
n
0 )− hn1

2
(Un1 , U

n
0 ) = g(Un1 , U

n
0 , k

n+1
2 , kn+1

1 )− g(Un1 , U
n
0 , k

n
2 , k

n
1 ),

and since g is Lipschitz continuous in k1 and k2, we have (with Lk denoting a Lipschitz constant)∣∣∣hn+1
1
2

(Un1 , U
n
0 )− hn1

2
(Un1 , U

n
0 )
∣∣∣ ≤ Lk · (∣∣kn+1

1 − kn1
∣∣+
∣∣kn+1

2 − kn2
∣∣) . (3.7)

Note that 0 ≤ f̄(v, u) ≤ f(u∗) for u, v ∈ [0, umax], and let D = Lk + f(u∗). Then (3.7) yields∣∣∣∆+

(
hn+1

1
2

(Un1 , U
n
0 )− hn1

2
(Un1 , U

n
0 )
)∣∣∣

≤
∣∣∣hn+1

1
2

(Un1 , U
n
0 )− hn1

2
(Un1 , U

n
0 )
∣∣∣+
∣∣∣hn+1

3
2

(Un2 , U
n
1 )− hn3

2
(Un2 , U

n
1 )
∣∣∣

≤ Lk ·
(∣∣kn+1

1 − kn1
∣∣+
∣∣kn+1

2 − kn2
∣∣)+

∣∣kn+1
2 − kn2

∣∣ f̄(Un2 , U
n
1 )

≤ D ·
(∣∣kn+1

1 − kn1
∣∣+
∣∣kn+1

2 − kn2
∣∣) .

(3.8)

Similarly, when j = −1, we find that∣∣∣∆+

(
hn+1
− 1

2

(Un0 , U
n
−1)− hn− 1

2
(Un0 , U

n
−1)
)∣∣∣

≤ Lk ·
(∣∣kn+1

1 − kn1
∣∣+
∣∣kn+1

2 − kn2
∣∣)+

∣∣kn+1
1 − kn1

∣∣ f̄(Un0 , U
n
−1)

≤ D ·
(∣∣kn+1

1 − kn1
∣∣+
∣∣kn+1

2 − kn2
∣∣) .

(3.9)
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Combining (3.6), (3.8), (3.9), we get

S2 ≤
1

kmin

(∣∣kn+1
1 − kn1

∣∣+
∣∣kn+1

2 − kn2
∣∣)∑
j∈Z

∣∣∆+h
n
j+ 1

2
(Unj+1, U

n
j )
∣∣

+ 2D ·
(∣∣kn+1

1 − kn1
∣∣+
∣∣kn+1

2 − kn2
∣∣) . (3.10)

For the remainder of the proof, we will use the abbreviation hnj+ 1
2

= hnj+ 1
2
(Unj+1, U

n
j ). Referring

back to (3.3), and using (3.4), (3.10), we have∑
j∈Z

∣∣∆+h
n+1
j+ 1

2

∣∣ ≤ (1 + pn)
∑
j∈Z

∣∣∆+h
n
j+ 1

2

∣∣+ rn, (3.11)

where

pn =
1

kmin

(∣∣kn+1
1 − kn1

∣∣+
∣∣kn+1

2 − kn2
∣∣) , rn = 2D ·

(∣∣kn+1
1 − kn1

∣∣+
∣∣kn+1

2 − kn2
∣∣) . (3.12)

Our goal now is to show that (3.11) and (3.12) imply the discrete Gronwall inequality (3.16) below.
Due to the total variation bounds on k1 and k2, there are constants G1 and G2, independent of
the mesh size ∆, such that

N−1∑
n=0

pn ≤ G1,

N−1∑
n=0

rn ≤ G2.

Starting from (3.11), a straightforward induction proof results in the following inequality, with the

agreement that
∏n−1
m=n (1 + pm) = 1:∑

j∈Z

∣∣∆+h
n
j+ 1

2

∣∣ ≤ n−1∏
m=0

(1 + pm) ·
∑
j∈Z

∣∣∆+h
0
j+ 1

2

∣∣+

n−1∑
ν=0

rν ·
n−1∏

m=ν+1

(1 + pm) . (3.13)

Using the arithmetic/geometric mean inequality, we get

n−1∏
m=0

(1 + pm) ≤
N−1∏
m=0

(1 + pm) ≤

(
1 +

1

N

N−1∑
m=0

pm

)N
≤
(

1 +
G1

N

)N
≤ eG1T . (3.14)

Similarly,
n−1∑
ν=0

rν ·
n−1∏

m=ν+1

(1 + pm) ≤
N−1∑
ν=0

rν ·
N−1∏
m=0

(1 + pm) ≤ G2e
G1T . (3.15)

Combining (3.13), (3.14), (3.15), we have∑
j∈Z

∣∣∆+h
n
j+ 1

2

∣∣ ≤ eG1T
∑
j∈Z

∣∣∆+h
0
j+ 1

2

∣∣+G2e
G1T . (3.16)

Finally, due to the assumption that u0 ∈ BV(R), and the Lipschitz continuity of the numerical
flux, we have ∑

j∈Z

∣∣∆+h
0
j+ 1

2

∣∣ ≤ B,
where B is independent of the mesh size. Inserting B into (3.16), the proof is complete. �

Remark 3.1. Our assumption that k appears as a multiplicative coefficient (and also that k is
bounded away from zero) was used in (3.5).

Lemma 3.3. There exists a constant C2, independent of ∆, such that

∆x
∑
j∈Z

∣∣Un+1
j − Unj

∣∣ ≤ C2∆t, n = 0, . . . , N, (3.17)

and the approximate solutions are bounded in L1:

∆x
∑
j∈Z

∣∣Unj ∣∣ ≤ ∆x
∑
j∈Z

∣∣U0
j

∣∣+ C2T, n = 0, . . . , N. (3.18)
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Proof. From the marching formula (2.5) we get∑
j∈Z

∣∣Un+1
j − Unj

∣∣ = λ
∑
j∈Z

∣∣∆−hnj+ 1
2
(Unj+1, U

n
j )
∣∣ .

The bound (3.17) follows by invoking Lemma 3.2 and multiplying by ∆x. An application of the
reverse triangle inequality to (3.17) then yields

∆x
∑
j∈Z

∣∣Unj ∣∣ ≤ ∆x
∑
j∈Z

∣∣Un−1
j

∣∣+ C2∆t,

and (3.18) follows by induction. �

The next two lemmas provide the bounds required for compactness of Ψ(u∆, k∆). Lemma 3.5
is basically Theorem 3.4 of [33]. We provide a proof for the convenience of the reader.

Lemma 3.4. Let z∆(x, t) = Ψ(u∆(x, t), k∆(x, t)). We have the bounds∣∣z∆(x, t)
∣∣ ≤ ‖k‖∞ , (x, t) ∈ ΠT , (3.19)∫

R

∣∣z∆(x, tn)− z∆(x, tm)
∣∣ dx ≤ C3 |n−m|∆t, 0 ≤ n,m ≤ N, (3.20)

where C3 is a ∆-independent constant.

Proof. The bound (3.19) results from Lemma 3.1 and the observation that Ψ(u, k) ∈ [−k, k] when
u ∈ [0, umax]. The estimate (3.20) results from Lemma 3.3, along with the fact that Ψ(u, k) is
Lipschitz continuous. �

Lemma 3.5. Let zn = z∆(·, tn). There is a constant C4, independent of the mesh refinement ∆,
such that

TV(zn) ≤ C4, n = 0, . . . , N.

Proof. Define

ψ(u) := sign(u− u∗) (f(u∗)− f(u)) = f(u∗)Ψ(u, k)/k.

Note that

TV(zn) =
∑
j∈Z

∣∣∆+z
n
j

∣∣ , where znj =

{
kn1ψ(Unj )/f(u∗), j ≤ 0,

kn2ψ(Unj )/f(u∗), j ≥ 1.

Let a+ = max(a, 0), a− = min(a, 0), and sign±(a) = (sign(a))±. Lemma 3.3 of [33] provides the
following inequality:(

ψ(Unj )− ψ(Unj+1

)+ ≤ −sign−(f ′(Unj ))
∣∣f̄(Unj+1, U

n
j )− f̄(Unj , U

n
j−1)

∣∣
+ sign+(f ′(Unj+1))

∣∣f̄(Unj+2, U
n
j+1)− f̄(Unj+1, U

n
j )
∣∣ .

For j ≤ −2 (j ≥ 2) we multiply by kn1 (kn2 ), yielding

f(u∗)
(
znj − znj+1

)+ ≤ −sign−(f ′(Unj ))
∣∣hnj+ 1

2
− hnj− 1

2

∣∣+ sign+(f ′(Unj+1))
∣∣∣hnj+ 3

2
− hnj+ 1

2

∣∣∣︸ ︷︷ ︸
=:Qn

j+1
2
≥0

, |j| ≥ 2.

Here we are using the abbreviation hnj+ 1
2

= hnj+ 1
2
(Unj+1, U

n
j ). Summing over j ∈ Z, we get

f(u∗)
∑
j∈Z

(
znj − znj+1

)+
= f(u∗)

∑
|j|≥2

(
znj − znj+1

)+
+ f(u∗)

∑
|j|<2

(
znj − znj+1

)+
≤
∑
|j|≥2

Qnj+ 1
2

+ E ≤
∑
j∈Z

Qnj+ 1
2

+ E

=
∑
j∈Z

∣∣∆+h
n
j+ 1

2

∣∣+ E.

(3.21)

Here E is a ∆-independent constant, whose existence follows from the fact that
∣∣znj ∣∣ ≤ ‖k‖∞

(Lemma 3.4). Recalling Lemma 3.2, we have in (3.21) a ∆-independent bound on the negative
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variation of {zn}. Since {zn} is bounded, this implies that the total variation is also bounded,
and the proof is complete. �

Remark 3.2. In the proof above we referred to Lemma 3.3 of [33]. That paper assumes that f is
strictly concave, but the cited lemma only requires the assumptions about f stated in Section 1.

For each c ∈ [0, umax], define the numerical entropy flux:

Hn
j+ 1

2
(v, u) = hnj+ 1

2
(v ∨ c, u ∨ c)− hnj+ 1

2
(v ∧ c, u ∧ c) ,

where a ∨ b = max(a, b), a ∧ b = min(a, b). Applied to (2.4), this definition yields

Hn
j+ 1

2
(v, u) =


kn1 f̄(v ∨ c, Unj ∨ c)− kn1 f̄(v ∧ c, u ∧ c), j < 0,

g(Un1 ∨ c, Un0 ∨ c, kn2 , kn1 )− g(Un1 ∧ c, Un0 ∧ c, kn2 , kn1 ), j = 0,

kn2 f̄(v ∨ c, u ∨ c)− kn2 f̄(v ∧ c, u ∧ c), j > 0.

Lemma 3.6. For any c ∈ [0, umax], the approximate solutions satisfy the following discrete entropy
inequality: ∣∣Un+1

j − c
∣∣ ≤ ∣∣Unj − c∣∣− λ∆−H

n
j+ 1

2

(
Unj+1, U

n
j

)
+ λRnj , n = 0, . . . , N, (3.22)

where

Rnj =


0, j 6= 0, 1,

|hn1
2

(c, c)− kn1 f(c)|, j = 0,

|kn2 f(c)− hn1
2

(c, c)|, j = 1,

(3.23)

and for Rn0 , Rn1 we have
Rn0 +Rn1 = |kn2 f(c)− kn1 f(c)| . (3.24)

Proof. Formulas (3.22) and (3.23) result by repeating Lemma 5.1 of [23] or Lemma 4.1 of [24],
with small modifications where necessary. We omit the details.

For the proof of (3.24), we use (2.4) to write

Rn0 +Rn1 = |g(c, c, kn2 , k
n
1 )− kn1 f(c)|+ |kn2 f(c)− g(c, c, kn2 , k

n
1 )| , (3.25)

where
g(c, c, kn2 , k

n
1 ) = min {kn2 f (max(c, u∗))) , kn1 f (min(c, u∗))} . (3.26)

Take the case where c ≤ u∗. The proof when c ≥ u∗ is similar, and we omit it. With c ≤ u∗,
(3.26) becomes

g(c, c, kn2 , k
n
1 ) = min {kn2 f(u∗), kn1 f(c)} .

If g(c, c, kn2 , k
n
1 ) = kn1 f(c), then substituting this into (3.25) we get (3.24). The remaining possi-

bility is that g(c, c, kn2 , k
n
1 ) = kn2 f(u∗). In this case we have

kn2 f(c) ≤ kn2 f(u∗) ≤ kn1 f(c).

Substituting kn2 f(u∗) into (3.25), and then using the inequalities above, we get (3.24) again. �

At this point we have assembled all of the ingredients required for Theorem 3.1, whose proof
we sketch below.

Proof. With the bounds stated in Lemmas 3.4 and 3.5, a standard compactness argument gives a
subsequence z∆i such that z∆i → z in L1(ΠT ) and boundedly a.e. We define

u(x, t) := Ψ−1(z(x, t), k(x, t)) = ψ−1(f(u∗)z(x, t)/k(x, t)).

Then, ∫∫
ΠT

∣∣u∆i − u
∣∣ dx dt =

∫∫
ΠT

∣∣ψ−1(f(u∗)z∆i/k∆i)− ψ−1(f(u∗)z/k)
∣∣ dx dt.

The integrand on the right side is bounded, and since ψ−1 is continuous an application of
Lebesgue’s dominated convergence theorem gives u∆i → u in L1(ΠT ). By extracting a further
subsequence if necessary, we also have u∆i → u a.e. in ΠT .

It is straightforward to conclude that the limit u satisfies (D.1), (D.4) and (D.5) of Defini-
tion 1.1. (See eg., the proof Theorem 3.1 of [9].) Starting from the discrete entropy inequality
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of Lemma 3.6, and proceeding as in the proof of Lemma 4.2 of [24], we find that the entropy
condition (D.3) of Definition 1.1 also holds for the limit function u. As mentioned in Section 1,
condition (D.2) is implied by condition (D.3).

Thus the limit solution u is an entropy solution. Uniqueness of the entropy solution, guaranteed
by Theorem 1.1, implies that the entire computed sequence u∆, not just a subsequence, converges
to u. �

Remark 3.3. We have used the singular mapping technique to prove compactness, but one could
also use a local spatial variation bound on u∆(x, t), i.e., the BVloc method mentioned in Section 1.
The following is basically Lemma 4.3 of [10] (see also Lemma 5.3 of [12]), which provides such a
bound. We omit the proof, but mention that it relies on Lemma 3.3 and the fact that away from
the interface at x = 0, the scheme can be written in incremental form:

Un+1
j = Unj + Cnj+ 1

2
∆+U

n
j −Dn

j− 1
2
∆−U

n
j ,

where

Cnj+ 1
2
, Dn

j+ 1
2
∈ [0, 1], Cnj+ 1

2
+Dn

j+ 1
2
≤ 1.

Proposition 3.1. Let V ba (q) denote the total variation of the function x 7→ q(x) over the interval
[a, b]. For each a > 0, there is a constant C5(a) such that

V −a−∞(u∆(·, t)) ≤ C5(a), V∞a (u∆(·, t)) ≤ C5(a),

where C5(a) is independent of ∆.
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