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Abstract

We study the Cauchy problem for the Aw-Rascle-Zhang model for
traffic flow with a flux constraint at x = 0. More precisely we consider
the Riemann solver, conserving the number of cars at x = 0 but not
the generalized momentum, introduced in [9] for the problem with
flux constrained. For such a Riemann solver, we prove existence of a
solution for the Cauchy problem. The proof is based on the wave-front
tracking method. For the other Riemann solver in [9], existence of
solution to the Cauchy problem was proved in [1].
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1 Introduction

The paper studies the Aw-Rascle-Zhang vehicular traffic model [2, 19]{
∂tρ+ ∂x(ρv) = 0,
∂ty + ∂x (yv) = 0,

(1.1)

with the following constraint on the first component of the flux at x = 0:

ρ(t, 0)v(t, 0) ≤ q, (1.2)

where q > 0 is a given constant. Here ρ, v and y denote respectively the
density, the average speed and a generalized momentum of cars in a road.
The generalized momentum y is related to the density ρ and the speed v
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through the relation y = ρ (v + p(ρ)), where p ∈ C2([0,+∞[; [0,+∞[) is a
pressure function satisfying

p(0) = 0,
p′(ρ) > 0 for every ρ > 0,
p′′(ρ) ≥ 0 for every ρ > 0.

(1.3)

The Aw-Rascle-Zhang system (1.1) is a second-order fluido dynamic model
for describing car traffic in a road. Fluido dynamic models treat traffic from
a macroscopic point of view: just the evolution of macroscopic variables,
such as density and average velocity of cars, is considered. The prototype of
such models is the Lighthill-Whitham-Richards one [14, 16], which is based
on the conservation of the number of cars and consists of a single partial
differential equation in conservation form. From 1975 several second order
models were considered, see for example [2] [15] [18] [19], while a third order
model was presented in [11]. Various extensions can be found in [3, 5, 7, 10].

System (1.1) can also be written in the form{
∂tρ+ ∂x(ρv) = 0,
∂t(ρ(v + p(ρ))) + ∂x(ρv(v + p(ρ))) = 0.

(1.4)

The first equation in (1.4) states the conservation of the number of vehicles,
moving with flow rate ρv. The second equation is derived from the former
one and from the evolution equation of the quantity w = v + p(ρ) (often
referred to as “Lagrangian marker”), which moves with velocity v:

∂t(v + p(ρ)) + v∂x(v + p(ρ)) = 0.

The system in conservative form (1.4) belongs to the Temple class [17],
i.e. systems for which shock and rarefaction curves in the unknowns’ space
coincide. In particular, for such systems the interaction of two waves of the
same family can only give rise to a wave of the same family.

Problem (1.1), (1.2) models the presence of a constraint on traffic flow
at the point x = 0, such as a toll gate, a traffic light, a construction site, etc.
All these situations limit the flow at a specific location along the road. Con-
servation laws with unilateral constraints as (1.2) have been first introduced
in [6], where the scalar Lighthill-Whitham [14] and Richards [16] traffic
model is coupled with a (possibly time-dependent) constraint on the flow,
as in (1.2). As regards the Aw-Rascle-Zhang model, problem (1.1)-(1.2) was
first considered in [9].

The aim of the present paper is to study the Cauchy problem for (1.1),
(1.2). We remark that in [9] two different solutions with flux constraints
have been introduced: one which conserves both the number of cars and the
generalized momentum, and one which conserves only the number of cars.
The existence of a solution to the Cauchy problem using the Riemann solver
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which conserves both conserved quantities has been proved by Andreianov,
Donadello, and Rosini in [1]. Here we prove the existence of a solution for
the other Riemann solver. The proof is based on the wave-front tracking
method; see for example [4, 8, 13]. This method consists in approximating
the solution by a sequence of piecewise constant functions, in tracking the
waves, and in monitoring the interactions between waves. As usual, the
approach relies on three estimates: the number of waves, the number of wave
interactions and the total variation of the solution. By Helly Theorem, the
previous estimates permit to extract a converging subsequence. The limit
function is indeed a solution to the Cauchy problem.

The paper is organized as follows. In Section 2 we introduce the basic
quantities for the Aw-Rascle-Zhang model. Moreover we recall the definition
of Riemann solver with flux constraints, introduced in [9], the shape of
invariant domains for such Riemann solver, and, finally, the definition of
solution to the Cauchy problem with a flux constraint at x = 0. Section 3
contains the proof of the existence of a solution to the Cauchy problem.
More precisely, in Subsection 3.1, we introduce the definition of a wave-
front tracking approximate solution and several functionals dealing with the
total variation. Subsections 3.2 and 3.3 contain respectively the interaction
estimates, and the proof of existence of an approximate wave-front tracking
solution. Finally Subsection 3.4 concludes the proof of the existence of a
solution to the Cauchy problem.

2 Basic definitions

In this section we briefly recall the basic definitions and the construction of
a Riemann solver introduced in [9].

The Cauchy problem for the Aw-Rascle-Zhang model (1.1) with flux
constraint (1.2) consists in the following system

∂tρ+ ∂x(ρv) = 0,
∂t(ρ(v + p(ρ))) + ∂x(ρv(v + p(ρ))) = 0,
ρ(t, 0)v(t, 0) ≤ q
(ρ, v)(0, x) = (ρo, vo) (x)

(2.1)

where q > 0, and (ρo, vo) ∈ BV
(
R; (R+)2

)
. It is convenient to denote by

f(ρ, v) the flux for system (1.4), and with f1(ρ, v), f2(ρ, v) its components,
i.e.

f(ρ, v) =

(
f1(ρ, v)
f2(ρ, v)

)
=

(
ρv

ρv(v + p(ρ))

)
. (2.2)
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Figure 1: Left, the representation of the Lax curves of the first and second
family in the (ρ, ρv) plane, passing through two points. Right, the geometric
interpretation of the Rankine-Hugoniot speed of a shock wave of the first
family. The speed corresponds to the tangent of the angle.

We recall here the relevant quantities concerning the system (2.1):

λ1 = v − ρp′(ρ) λ2 = v

r1 =

(
−1
p′(ρ)

)
r2 =

(
1
0

)
∇λ1 · r1 = 2p′(ρ) + ρp′′(ρ) > 0 ∇λ2 · r2 = 0
L1(ρ; ρ0, v0) = v0 + p(ρ0)− p(ρ) L2(ρ; ρ0, v0) = v0

z = v w = v + p(ρ)

where λ1 and λ2 are the eigenvalues of the Jacobian matrix Df , r1 and r2

the corresponding right eigenvectors, L1 and L2 the first and the second Lax
curve, z and w the 1- and 2-Riemann invariant respectively.

Note that the system is strictly hyperbolic away from ρ = 0 (i.e. λ1 <
λ2). Moreover, since ∇λ1 · r1 > 0, the first characteristic speed is genuinely
nonlinear, with characteristic speed λ1 that can change sign, and, since
∇λ2·r2 = 0, the second characteristic field is linearly degenerate with strictly
positive characteristic speed λ2.

In the (ρ, ρv) plane, the Lax curves of the first and the second family are

L1(ρ; ρ0, v0) = (v0 + p(ρ0)− p(ρ)) ρ, L2(ρ; ρ0, v0) = v0ρ; (2.3)

see Figure 1, left. By hypothesis (1.3) on the pressure p, the function L1 is
concave. Note moreover that the Rankine-Hugoniot speed of a shock wave
of the first family is given by the slope of the segment in the (ρ, ρv) plane,
connecting the left and right states; see Figure 1, right.

In the following, by RS we denote the classical Riemann solver for
the Aw-Rascle-Zhang model, i.e. the Riemann solver without the con-
straint (1.2); see for example [2, 19]. Moreover by RSq we denote the
Riemann solver, introduced in [9, Section 2.2].
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2.1 The constrained Riemann solver RSq

Here we recall the definition of RSq and its corresponding invariant domain.
For (ρl, vl) ∈ (R+)2, (ρr, vr) ∈ (R+)2, and q > 0, let us consider the set

Iq =
{
ρ ∈ [0,+∞[ : ρL1(ρ; ρl, vl) = q

}
(2.4)

=
{
ρ ∈ [0,+∞[ : ρ(vl + p(ρl)− p(ρ)) = q

}
,

which contains the densities of all the points (ρ, v) belonging to the Lax
curve of the first family passing through (ρl, vl) and such that f1(ρ, v) = q.
If Iq 6= ∅, then we denote by ρ̂, v̂, respectively

ρ̂ = max Iq, v̂ =
q

ρ̂
. (2.5)

Moreover, define ρ̌ and v̌ by

ρ̌L2(ρ̌; ρr, vr) = q, v̌ =
q

ρ̌
; (2.6)

i.e. (ρ̌, v̌) belongs to the Lax curve of the second family passing through
(ρr, vr) and satisfies f1(ρ̌, v̌) = q. In particular, note that v̌ = vr and
ρ̌ = q/vr. Clearly, ρ̂ and v̂ depend on q, on ρl, and on vl; ρ̌ and v̌ depend
on q, on ρr, and on vr.

The Riemann solver RSq is defined as follows.

1. If f1(RS
(
(ρl, vl), (ρr, vr)

)
(0)) ≤ q, then we put

RSq
(

(ρl, vl), (ρr, vr)
)

(x) = RS
(

(ρl, vl), (ρr, vr)
)

(x) (2.7)

for every x ∈ R.

2. If f1(RS
(
(ρl, vl), (ρr, vr)

)
(0)) > q, then

RSq
(

(ρl, vl), (ρr, vr)
)

(x) =

{
RS

(
(ρl, vl), (ρ̂, v̂)

)
(x), if x < 0,

RS ((ρ̌, v̌), (ρr, vr)) (x), if x > 0.
(2.8)

2.2 Invariant domains

Fix v1, v2, w1 and w2 in R such that 0 < v1 < v2, 0 < w1 < w2 and v2 < w2.
The set

Dv1,v2,w1,w2 = {(ρ, v) ∈ R+ × R+ : w1 ≤ v + p(ρ) ≤ w2, v1 ≤ v ≤ v2}

is an invariant domain of the classical Riemann solver for the Aw-Rascle-
Zhang model; see [12].
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Before considering invariant domains for RSq, we introduce, for q > 0,
the following function:

hq : (0,+∞) −→ R
v 7−→ v + p

(q
v

)
,

(2.9)

which gives the value of the Riemann invariant w of the point (ρ̃, v) such
that ρ̃ v = q. The shape of invariant domains for the Riemann solver RSq
is given by the next proposition. We complete the proof given in [9].

Proposition 2.1 Assume (1.3). Fix v1, v2, w1 and w2 in R such that
0 < v1 < v2, 0 < w1 < w2 and v2 < w2 and q > 0.

(i) If hq(v) ≥ w2 for every v ∈ [v1, v2], then the domain Dv1,v2,w1,w2 is
invariant for the Riemann solver RSq.

(ii) Assume that there exists v̄ ∈ [v1, v2] for which hq(v̄) < w2. The set
Dv1,v2,w1,w2 is invariant for the Riemann solver RSq if and only if

hq(v1) ≥ w2, hq(v2) ≤ w2 and hq(v) ≥ w1 ∀v ∈ [v1, v2]. (2.10)

Proof. The proof of (i) is contained in [9, Proposition 3.1]. Thus we
consider only the case (ii). The proof is divided into two parts.

Part 1. Assume that Dv1,v2,w1,w2 is invariant for RSq. Hence hq(v1) ≥ w2

and hq(v) ≥ w1 for every v ∈ [v1, v2], by Lemmas 3.2 and 3.3 of [9].
Suppose, by contradiction, that hq(v2) > w2. Let (ρl, vl) and (ρr, vr)
be the points of Dv1,v2,w1,w2 defined respectively by{

v + p(ρ) = w2,

v = v1,
and

{
v + p(ρ) = w2,

v = v2.

The classical solution connects (ρl, vl) to (ρr, vr) with a rarefaction
wave, because vl < vr. Let (ρ̌1, v̌1) be the point defined by

ρ̌1 = min Iq = min
{
ρ ∈ [0,+∞[ : ρ(vl + p(ρl)− p(ρ)) = q

}
v̌1 =

q

ρ̌1
.

We have ρl > ρ̂ and ρr < ρ̌1; see Figure 2. Since the function
ρ 7→ L1(ρ; ρl, vl) is strictly concave, then the classical solution in
x = 0 does not satisfy the flux constraint. Therefore the right trace
of RSq((ρl, vl), (ρr, vr)) at x = 0 is given by (ρ̌, v̌). Since v̌ = vr = v2,
we deduce that

hq(v̌) = hq(v2) > w2.

Therefore (ρ̌, v̌) does not belong to Dv1,v2,w1,w2 , which is a contradic-
tion; see Figure 2.
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Part 2. Assume that conditions in (2.10) hold. We show that Dv1,v2,w1,w2

is invariant for RSq. Let (ρl, vl) and (ρr, vr) be two arbitrary points in
Dv1,v2,w1,w2 . It is sufficient to prove that the solution connecting (ρl, vl)
to (ρr, vr) is contained in Dv1,v2,w1,w2 . Let (ρm, vm) ∈ Dv1,v2,w1,w2 be
the intermediate state produced by the classical Riemann solver RS.

If the Riemann solver RSq produces the classical solution (i.e. a wave
connecting (ρl, vl) to (ρm, vm) and/or a wave connecting (ρm, vm) to
(ρr, vr)), then the solution is clearly contained in Dv1,v2,w1,w2 . Suppose
therefore that RSq does not produce the classical solution. Denote by
(ρ̂, v̂) and by (ρ̌, v̌) the states defined in (2.5) and in (2.6). Proposi-
tion 3.3 in [9] implies that (ρ̂, v̂) belongs to Dv1,v2,w1,w2 . So, it remains
to prove that (ρ̌, v̌) ∈ Dv1,v2,w1,w2 .

Suppose, by contradiction, that (ρ̌, v̌) 6∈ Dv1,v2,w1,w2 . Since v̌ = vr

and hq(v) ≥ w1 for every v ∈ [v1, v2], we deduce that hq(v̌) > w2.
Moreover, since hq(v̌) > w2, then every point (ρ∗, v∗) belonging to
Dv1,v2,w1,w2 and to the Lax curve of the second family through (ρr, vr)
satisfies ρ∗v∗ < q. In particular ρmvm < q. The following cases
happen.

1. vl > vr. Since the classical Riemann problem connecting (ρl, vl)
to (ρm, vm) is solved by a shock wave of the first family and since
the solution produced is the non classical one, then we deduce
that ρlvl > q and the shock wave has positive speed. Since ρl <
ρm, the Rankine-Hugoniot condition implies that

ρlvl < ρmvm < q

which is a contradiction.

2. vl = vr. In this situation,
(
ρl, vl

)
= (ρm, vm) and so the Riemann

solver RSq produces the classical solution. This is a contradic-
tion.

3. vl < vr. The classical Riemann problem connecting (ρl, vl) to
(ρm, vm) is solved by a rarefaction wave of the first family, and all
the states (ρ∗, v∗) of this rarefaction wave satisfy v∗ < vm = vr.
By [9, Lemma 3.1], we deduce that all the states (ρ∗, v∗) satisfy
hq(v

∗) > w2 and hence ρ∗v∗ < q. Therefore the Riemann solver
RSq produces the classical solution. This is a contradiction.

Thus (ρ̌, v̌) ∈ Dv1,v2,w1,w2 .

The proof is so completed. �
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Figure 2: The situation described in the proof of Proposition 2.1: if hq(v2) >
w2 the point (ρ̌, v̌) does not belong to Dv1,v2,w1,w2 (the shaded area).

2.3 Definition of solution to (2.1)

Here we give the definition of solution to the constrained Cauchy prob-
lem (2.1).

Definition 2.1 A couple (ρ, v) ∈ C0
(
[0,+∞);BV

(
R; (R+)2

))
provides a

solution to the Cauchy problem (2.1) if

1. (ρ, v) is a weak entropy solution to (1.4) in (0,+∞)× (−∞, 0) and in
(0,+∞)× (0,+∞);

2. (ρ, v) (0, x) = (ρo, vo) (x) for a.e. x ∈ R;

3. RSq ((ρ, v) (t, 0−), (ρ, v) (t, 0+)) (0−) = (ρ, v) (t, 0−) for a.e. t ∈ [0, T ];

4. RSq ((ρ, v) (t, 0−), (ρ, v) (t, 0+)) (0+) = (ρ, v) (t, 0+) for a.e. t ∈ [0, T ].

3 The Cauchy problem

In this section we prove that, under suitable assumptions, the Cauchy prob-
lem (2.1) admits a solution, in the sense of Definition 2.1. Fix q > 0,
0 < v1 < v2, 0 < w1 < w2 and v2 < w2 such that Dv1,v2,w1,w2 is an invariant
domain for the Riemann solver RSq such that

λ1 (ρ, v) < 0 ∀ (ρ, v) ∈ Dv1,v2,w1,w2 . (3.1)

We have the following result.

Theorem 3.1 Assume that (ρo, vo) ∈ BV (R;Dv1,v2,w1,w2). Then there ex-
ists

(ρ, v) ∈ C0 ([0,+∞);BV (R;Dv1,v2,w1,w2))

a solution to the Cauchy problem (2.1) in the sense of Definition 2.1.
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The proof is contained in the next subsections. For a later use, we define
the densities

ρmin = min {ρ > 0 : (ρ, v) ∈ Dv1,v2,w1,w2 for some v ∈ [v1, v2]} (3.2)

ρmax = max {ρ > 0 : (ρ, v) ∈ Dv1,v2,w1,w2 for some v ∈ [v1, v2]} . (3.3)

Clearly ρmin and ρmax exist and 0 < ρmin < ρmax.

3.1 Wave-front tracking

Definition 3.1 Given ε > 0, we say that the map ūε = (ρ̄ε, v̄ε) is an ε-
approximate wave-front tracking solution to (2.1) if the following conditions
hold.

1. ūε ∈ C((0,+∞);L1(R;Dv1,v2,w1,w2)).

2. (ρ̄ε, v̄ε) is piecewise constant, with discontinuities occurring along finitely
many straight lines in (0,+∞) × R. Moreover the jumps can be at
x = 0, or of the first family, or of the second family. They are in-
dexed, respectively, by J (t) = J0(t) ∪ J1(t) ∪ J2(t).

3. It holds that{
‖(ρ̄ε(0, ·), v̄ε(0, ·))− (ρo(·), vo(·))‖L1(R) < ε

TV (ρ̄ε(0, ·), v̄ε(0, ·)) ≤ TV (ρo(·), vo(·)) .

4. For a.e. t > 0,

RSq (ūε (t, 0−) , ūε (t, 0+)) (0−) = ūε (t, 0−) .

5. For a.e. t > 0,

RSq (ūε (t, 0−) , ūε (t, 0+)) (0+) = ūε (t, 0+) .

We construct a sequence of wave-front tracking approximate solutions in
the following way. First consider a sequence (ρo,ν , vo,ν), of piecewise constant
functions with a finite number of discontinuities such that

1. (ρo,ν , vo,ν) : R→ Dv1,v2,w1,w2 ;

2. the following limit holds

lim
ν→+∞

(ρo,ν , vo,ν) = (ρo, vo) in L1(R;Dv1,v2,w1,w2);

3. the following inequality holds

TV(ρo,ν , vo,ν) ≤ TV(ρo, vo).

9



For every ν ∈ N \ {0}, we apply the following procedure. At time t = 0, we
solve all the Riemann problems for x ∈ R with x 6= 0, by using the classical
Riemann solver, while at x = 0 we solve the corresponding Riemann prob-
lem by using the Riemann solver RSq. We approximate every rarefaction
wave of the first family with a rarefaction fan, formed by rarefaction shocks
of strength less than 1

ν traveling with the Rankine-Hugoniot speed. Here
we mean that a rarefaction shock connects two states whose 2-Riemann in-
variant w differs at most by 1

ν . At every interaction between two waves, we
solve the corresponding Riemann problem. Finally, when a wave interacts
with the interface x = 0, we solve the corresponding Riemann problem by
using the Riemann solver RSq.

Remark 1 As usual, by slightly modifying the speed of waves, we may as-
sume that, at every positive time t, at most one of the following possibilities
happens:

1. two waves interact together at a point x ∈ R \ {0};

2. a wave interacts with the interface x = 0.

Remark 2 For interactions at a point x ∈ R \ {0}, we split rarefaction
waves into rarefaction fans just at time t = 0. At the interface x = 0,
instead, we allow the formation of rarefaction fans only when the interacting
wave is of the second family.

Given an ε-approximate wave-front tracking solution ūε = (ρ̄ε, v̄ε) define,
for a.e. t > 0, the following functionals

W0(t) =
∣∣w̄ε(t, 0+)− w̄ε(t, 0−)

∣∣+
∣∣v̄ε(t, 0+)− v̄ε(t, 0−)

∣∣ , (3.4)

W1(t) =
∑

x∈J1(t)

∣∣v̄ε(t, x+)− v̄ε(t, x−)
∣∣ , (3.5)

W2(t) =
∑

x∈J2(t)

∣∣w̄ε(t, x+)− w̄ε(t, x−)
∣∣ , (3.6)

W (t) = W0(t) +W1(t) +W2(t), (3.7)

TVρ(t) =
∣∣ρ̄ε(t, 0+)− ρ̄ε(t, 0−)

∣∣+
∑

x∈J1(t)∪J2(t)

∣∣ρ̄ε(t, x+)− ρ̄ε(t, x−)
∣∣ (3.8)

where the function w stands for the 2-Riemann invariant, J1(t) and J2(t)
contains the point of discontinuity for ūε respectively for the waves of the
first and second family. Note that the previous functionals may vary only
at times t̃ when two waves interact or a wave reaches x = 0. Moreover we
introduce the functional

N (t) = # (J0(t) ∪ J1(t) ∪ J2(t)) , (3.9)
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where # denotes the cardinality of a set, while

J0(t) =

{
0, if ūε(t, 0

−) = ūε(t, 0
+)

1, if ūε(t, 0
−) 6= ūε(t, 0

+).

3.2 Interaction estimates

In this subsection we collect various results concerning the interactions be-
tween waves of a ε-approximate wave-front tracking solution. Define the
constant

Kε = max

{⌊
w2 − w1

ε

⌋
+ 1, 2

}
, (3.10)

where b·c denote the integer value, and w1 and w2 define the invariant
domain Dv1,v2,w1,w2 . Note that Kε provides an upper bound for the number
of rarefaction shocks in a rarefaction fan. First consider the case of the
interaction between waves of the first family.

Proposition 3.1 Assume that a wave of the first family joining (ρl, vl) to
(ρm, vm) interacts with a wave of the first family connecting (ρm, vm) to
(ρr, vr) at time t̃ and at position x̃ 6= 0. Then, at time t̃, a single shock wave
of the first family is generated and

∆W0(t̃) = 0 ∆W1(t̃) ≤ 0 ∆W2(t̃) = 0 ∆N (t̃) = −1.

Therefore ∆W (t̃) ≤ 0.

Proof. Since x̃ 6= 0, we have ∆W0(t̃) = 0.
The fact that the interacting waves are of the first family implies that

vl + p(ρl) = vm + p(ρm) = vr + p(ρr)

and so the Riemann problem with initial data (ρl, vl) and (ρr, vr) is solved
by a wave of the first family; hence ∆N (t̃) = −1 and ∆W2(t̃) = 0. Moreover

∆W1(t̃) = |vl − vr| − |vl − vm| − |vm − vr| ≤ 0

by the triangular inequality.
Finally we prove that the wave, generated at time t̃, is a shock wave.

Assume, by contradiction, that the wave connecting (ρl, vl) to (ρr, vr) is a
rarefaction wave, so that ρl > ρr. We have the following three possibilities.

1. ρm < ρr. In this case the velocity of the wave, connecting
(
ρl, vl

)
with (ρm, vm) is strictly less than the velocity of the wave, connecting
(ρm, vm) with (ρr, vr); see Figure 3, left. Therefore the two waves can
not interact together.

2. ρr < ρm < ρl. In this case both the interacting waves are rarefaction
waves. This is not possible, since rarefaction waves can not interact
together.
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Figure 3: The cases 1 and 3 in the proof of Proposition 3.1. The slopes of
the segments are related to the velocity of the waves.

3. ρm > ρl. In this case the velocity of the wave, connecting
(
ρl, vl

)
with (ρm, vm), is strictly less than the velocity of the wave, connecting
(ρm, vm) with (ρr, vr); see Figure 3, right. Thus the two waves can not
interact together.

The proof is so concluded. �

Proposition 3.2 Assume that a wave of the second family joining (ρl, vl)
to (ρm, vm) interacts with a wave of the first family connecting (ρm, vm) to
(ρr, vr) at time t̃ and at position x̃ 6= 0. Then, at time t̃, a wave of the first
family and a wave of the second family are generated. Moreover

∆W0(t̃) = 0 ∆W1(t̃) = 0 ∆W2(t̃) = 0 ∆N (t̃) = 0.

Therefore ∆W (t̃) = 0.

Proof. Since x̃ 6= 0, we have ∆W0(t̃) = 0.
In this case, at time t̃, two waves are produced. More precisely, a wave

of the first family connecting (ρl, vl) to (ρi, vi), followed by a wave of the
second family connecting (ρi, vi) to (ρr, vr), where the previous states satisfy

vl = vm, vi = vr, vl + p(ρl) = vi + p(ρi), vm + p(ρm) = vr + p(ρr).

Thus we deduce that ∆N (t̃) = 0 and

∆W1(t̃) =
∣∣∣vl − vi∣∣∣− |vr − vm| = 0

∆W2(t̃) =
∣∣p(ρr)− p(ρi)∣∣− ∣∣∣p(ρl)− p(ρm)

∣∣∣ = 0,

concluding the proof. �

We pass now to consider the case when the interaction happens at x̃ = 0.
First we need the following technical lemma.
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Lemma 3.1 There exist constants 0 < L1 < L2 such that

L1 |vm − vr| ≤
∣∣∣wl − wm∣∣∣ ≤ L2 |vm − vr| (3.11)

for every
(
ρl, vl

)
∈ Dv1,v2,w1,w2, (ρm, vm) ∈ Dv1,v2,w1,w2, (ρr, vr) ∈ Dv1,v2,w1,w2

satisfying vl = vm, wm = wr, and ρlvl = ρrvr < ρmvm.

Proof. Fix
(
ρl, vl

)
∈ Dv1,v2,w1,w2 , (ρm, vm) ∈ Dv1,v2,w1,w2 , (ρr, vr) ∈

Dv1,v2,w1,w2 satisfying vl = vm, wm = wr, and ρlvl = ρrvr < ρmvm. By
assumption (1.3), there exist 0 < K1 < K2 such that

K1 |ρ1 − ρ2| ≤ |p (ρ1)− p (ρ2)| ≤ K2 |ρ1 − ρ2| (3.12)

for every ρ1, ρ2 ∈ [ρmin, ρmax], where ρmin and ρmax are defined in (3.2) and
in (3.3) respectively. Note that ρmvm − ρlvl = vl

(
ρm − ρl

)
and so

v1

(
ρm − ρl

)
≤ ρmvm − ρlvl ≤ v2

(
ρm − ρl

)
. (3.13)

Moreover

ρmvm − ρlvl = ρmvm − ρrvr = L1 (ρm; ρr, vr)− L1 (ρr; ρr, vr)

=
∂

∂ρ
L1 (ρ; ρr, vr)|ρ=ρ1

(ρm − ρr)

for some ρ1 ∈ (ρm, ρr). By (3.1), we deduce that there exist K3 < K4 < 0,
which depend only on v1, v2, w1, and w2, such that

K3 (ρr − ρm) ≤ ρmvm − ρlvl ≤ K4 (ρr − ρm) . (3.14)

By (3.12), (3.13), and (3.14), and since wm = wr, we have that∣∣∣wl − wm∣∣∣ = wm − wl = vm − vl + p(ρm)− p(ρl) = p(ρm)− p(ρl)

≤ K2

∣∣∣ρm − ρl∣∣∣ ≤ K2

v1

(
ρmvm − ρlvl

)
≤ K2K4

v1
(ρr − ρm) ≤ K2K4

K1v1
(p(ρr)− p(ρm))

=
K2K4

K1v1
(vm − vr)

proving the second inequality in (3.11).
By wm = wr, by (3.12), (3.13), and (3.14), we deduce that

|vr − vm| = vm − vr = p(ρr)− p(ρm) ≤ K2 (ρr − ρm) ≤ K2

K3

(
ρmvm − ρlvl

)
≤ K2v2

K3

(
ρm − ρl

)
≤ K2v2

K1K3

(
p(ρm)− p(ρl)

)
=

K2v2

K1K3

(
wm − wl

)
proving the first inequality in (3.11). This concludes the proof. �
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Proposition 3.3 Assume that a wave of the second family, connecting (ρl, vl)
with (ρk, vk), interacts at time t̃ with x̃ = 0.

Then vk = vl and wl 6= wk. Moreover the following statements hold.

1. If wl < wk, then

∆N (t̃) ≤ Kε − 1, ∆W (t̃) ≤ 0,

where Kε is defined in (3.10).

2. If wl > wk, then

∆N (t̃) ≤ 0, ∆W (t̃) ≤ 2

L1

(
wl − wk

)
,

where L1 is the constant defined in Lemma 3.1.

Proof. The interacting wave is of the second family, then vl = vk and
wl 6= wk. Denote with (ρr, vr) the state at x = 0+ before the interaction.
Assume first wl < wk, so that ρlvl < ρkvk. If

(
ρk, vk

)
= (ρr, vr), then after

the interaction time t̃, only the wave of the second family, connecting
(
ρl, vl

)
to
(
ρk, vk

)
, emerges from x̃ = 0. Hence

∆N (t̃) = 0, ∆W (t̃) = 0.

Assume therefore that
(
ρk, vk

)
6= (ρr, vr). In this case, at x̃ = 0, the solution

to the Riemann problem is given by the case (2.8), and so we necessarily
have

ρkvk = ρrvr = q, ρk > ρr, vk < vr.

At time t̃ we have to consider RSq
((
ρl, vl

)
, (ρr, vr)

)
. We have the following

possibilities.

1. wl < wr. Define the state (ρm, vm) satisfying wl = wm and vm =
vr. The solution to the Riemann problem consists of a (fan) wave of
the first family, connecting

(
ρl, vl

)
to (ρm, vm), and by a wave of the

second family connecting (ρm, vm) to (ρr, vr); see Figure 4, left. Hence
∆N (t̃) ≤ Kε − 1 and

∆W0(t̃) = −
∣∣∣wk − wr∣∣∣− ∣∣∣vk − vr∣∣∣ = wr − wk − vr + vk

∆W1(t̃) =
∣∣∣vl − vm∣∣∣ = vm − vl = vr − vk

∆W2(t̃) = |wm − wr| −
∣∣∣wl − wk∣∣∣ = wr − wk

∆W (t̃) = 2
(
wr − wk

)
< 0.
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2. wl = wr. In this case ρlvl < ρrvr = q and so the solution to the
Riemann problem consists of a (fan) wave of the first family, connecting(
ρl, vl

)
to (ρr, vr). Hence ∆N (t̃) ≤ Kε − 2 and

∆W0(t̃) = −
∣∣∣wk − wr∣∣∣− ∣∣∣vk − vr∣∣∣ = wr − wk + vk − vr

∆W1(t̃) =
∣∣∣vl − vr∣∣∣ = vr − vl

∆W2(t̃) = −
∣∣∣wl − wk∣∣∣ = wl − wk

∆W (t̃) = 2
(
wl − wk

)
< 0.

3. wl > wr. Define the states (ρm, vm) and (ρm1 , vm1) satisfying wl =
wm = wm1 , vm = vr > vm1 , and ρm1vm1 = q. In this case ρmvm > q
and so the solution to the Riemann problem consists of a (fan) wave of
the first family, connecting

(
ρl, vl

)
to (ρm1 , vm1), and by a stationary

wave connecting (ρm1 , vm1) to (ρr, vr); see Figure 4, right. Hence
∆N (t̃) ≤ Kε − 1 and

∆W0(t̃) = |wm1 − wr|+ |vm1 − vr| −
∣∣∣wk − wr∣∣∣− ∣∣∣vk − vr∣∣∣

= wl − wk − vm1 + vk

∆W1(t̃) =
∣∣∣vl − vm1

∣∣∣ = vm1 − vl

∆W2(t̃) = −
∣∣∣wl − wk∣∣∣ = wl − wk

∆W (t̃) = 2
(
wl − wk

)
< 0.

Assume now wl > wk, so that ρlvl > ρkvk. If
(
ρk, vk

)
6= (ρr, vr), then

at x̃ = 0, the solution to the Riemann problem is given by the case (2.8),
and so we necessarily have ρkvk = ρrvr = q, ρk > ρr, and vk < vr. Define
the state (ρm, vm) satisfying wl = wm, vm < vl, and ρmvm = q. In this case
the solution to the Riemann problem consists of a shock wave of the first
family, connecting

(
ρl, vl

)
to (ρm, vm), and by a stationary wave connecting

(ρm, vm) to (ρr, vr); see Figure 5, right. Hence ∆N (t̃) = 0 and

∆W0(t̃) = |wm − wr|+ |vm − vr| −
∣∣∣wk − wr∣∣∣− ∣∣∣vk − vr∣∣∣

= wl − wk − vm + vk

∆W1(t̃) =
∣∣∣vl − vm∣∣∣ = vl − vm

∆W2(t̃) = −
∣∣∣wl − wk∣∣∣ = wk − wl

∆W (t̃) = 2
(
vl − vm

)
≤ 2

L1

(
wl − wk

)
,
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(ρr, vr)
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ρ
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Figure 4: The interaction, described in Proposition 3.3, of a wave of the
second family with x = 0 in the case wl < wk. At left the case wl < wr, at
right the case wl > wr.

where L1 > 0 is defined in (3.11).
Consider now the case

(
ρk, vk

)
= (ρr, vr). We have the following possi-

bilities.

1. ρlvl ≤ q. In this case, the solution at x̃ = 0 and at time t̃ consists
on a single wave of the second family connecting

(
ρl, vl

)
with (ρr, vr).

Hence

∆N (t̃) = ∆W0(t̃) = ∆W1(t̃) = ∆W2(t̃) = ∆W (t̃) = 0.

2. ρlvl > q. Define the states (ρm, vm) and (ρs, vs) satisfying wl = wm,
vm < vl = vs, and ρmvm = ρsvs = q. The solution to the Riemann
problem consists of a shock wave of the first family, connecting

(
ρl, vl

)
to (ρm, vm), by a stationary wave, connecting (ρm, vm) to (ρs, vs),
and by a wave of the second family connecting (ρs, vs) to (ρr, vr); see
Figure 5, left. Hence ∆N (t̃) = 2 and

∆W0(t̃) = |wm − ws|+ |vm − vs| = wl − ws − vm + vs

∆W1(t̃) =
∣∣∣vl − vm∣∣∣ = vl − vm

∆W2(t̃) = |ws − wr| −
∣∣∣wl − wr∣∣∣ = ws − wl

∆W (t̃) = 2
(
vl − vm

)
≤ 2

L1

(
wl − wr

)
,

where L1 > 0 is defined in (3.11).

The proof is so finished. �

Proposition 3.4 Assume that a wave of the first family, connecting (ρk, vk)
with (ρr, vr), interacts at time t̃ with x̃ = 0.

Then wk = wr and vk 6= vr. Moreover the following statements hold.
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Figure 5: The interaction, described in Proposition 3.3, of a wave of the
second family with x = 0 in the case wl > wk. At left the case

(
ρk, vk

)
=

(ρr, vr) and ρlvl > q, at right the case
(
ρk, vk

)
6= (ρr, vr) and ρlvl > q.

1. If vk > vr, then
∆N (t̃) ≤ 0, ∆W (t̃) ≤ 0.

2. If vk < vr, then

∆N (t̃) ≤ 2, ∆W (t̃) ≤ 2L2

(
vr − vk

)
,

where L2 is the constant defined in Lemma 3.1.

Proof. Since the interacting wave is of the first family, then wk = wr and
vk 6= vr. Denote with

(
ρl, vl

)
the state at x = 0− before the interaction.

Assume first vk < vr. If
(
ρl, vl

)
6=
(
ρk, vk

)
, then ρlvl = ρkvk = q and

ρk < ρl. Define the state (ρm, vm) satisfying vm = vr and ρmvm = q.
At time t̃, the solution to the Riemann problem is given by a stationary
wave, connecting

(
ρl, vl

)
to (ρm, vm), and by a wave of the second family,

connecting (ρm, vm) to (ρr, vr); see Figure 6, left. Hence ∆N (t̃) = 0 and

∆W0(t̃) =
∣∣∣wl − wm∣∣∣+

∣∣∣vl − vm∣∣∣− ∣∣∣wk − wl∣∣∣− ∣∣∣vk − vl∣∣∣
= wk − wm − vk + vm

∆W1(t̃) = −
∣∣∣vk − vr∣∣∣ = vk − vr

∆W2(t̃) = |wm − wr| = wr − wm

∆W (t̃) = 2 (wr − wm) ≤ 2L2

(
vr − vk

)
,

where L2 is defined in Lemma 3.1.
If
(
ρl, vl

)
=
(
ρk, vk

)
, then we have the following possibilities.

1. ρrvr ≤ q. In this case the solution to the Riemann problem consists
of the wave of the first family, connecting

(
ρl, vl

)
to (ρr, vr). Hence

∆N (t̃) = 0 and ∆W (t̃) = 0.
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2. ρrvr > q. Define (ρm, vm) and (ρs, vs) the states satisfying wm = wl,
vs = vr, ρs < ρm, and ρsvs = ρmvm = q. The solution to the Riemann
problem consists of a wave of the first family, connecting

(
ρl, vl

)
to

(ρm, vm), of a stationary wave, connecting (ρm, vm) to (ρs, vs), and of
a wave of the second family, connecting (ρs, vs) to (ρr, vr); see Figure 6,
right. Hence ∆N (t̃) = 3− 1 = 2 and

∆W0(t̃) = |wm − ws|+ |vm − vs| = wr − ws + vr − vm

∆W1(t̃) =
∣∣∣vl − vm∣∣∣− ∣∣∣vl − vr∣∣∣ = vm − vr

∆W2(t̃) = |ws − wr| = wr − ws

∆W (t̃) = 2 (wr − ws) < 2L2

(
vr − vl

)
,

where L2 > 0 is defined in Lemma 3.1.

Assume now vk > vr. If
(
ρl, vl

)
=
(
ρk, vk

)
, then at time t̃, the solution

to the Riemann problem is given by a wave of the first family, connecting(
ρl, vl

)
to (ρr, vr). Hence ∆N (t̃) = 0 and ∆W (t̃) = 0. If

(
ρl, vl

)
6=
(
ρk, vk

)
,

then we deduce that ρlvl = ρkvk = q and ρk < ρl. Moreover we have the
following possibilities.

1. vr > vl. Define (ρm, vm) the state satisfying vm = vr and ρmvm =
q. In this case the solution to the Riemann problem consists of a
stationary wave, connecting

(
ρl, vl

)
to (ρm, vm), and of a wave of the

second family, connecting (ρm, vm) to (ρr, vr); see Figure 7, left. Hence
∆N (t̃) = 0 and

∆W0(t̃) =
∣∣∣wm − wl∣∣∣+

∣∣∣vm − vl∣∣∣− ∣∣∣wk − wl∣∣∣− ∣∣∣vk − vl∣∣∣
= wr − wm + vm − vk

∆W1(t̃) = −
∣∣∣vk − vr∣∣∣ = vr − vk

∆W2(t̃) = |wm − wr| = wm − wr

∆W (t̃) = 2
(
vr − vk

)
< 0.

2. vr = vl. The solution to the Riemann problem consists of a wave of
the second family, connecting

(
ρl, vl

)
to (ρr, vr). Hence ∆N (t̃) = −1

and

∆W0(t̃) = −
∣∣∣wl − wk∣∣∣− ∣∣∣vl − vk∣∣∣ = wk − wl + vl − vk

∆W1(t̃) = −
∣∣∣vk − vr∣∣∣ = vr − vk

∆W2(t̃) =
∣∣∣wl − wr∣∣∣ = wl − wr

∆W (t̃) = 2
(
vl − vk

)
< 0.
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Figure 6: The interaction, described in Proposition 3.4, of a wave of the first
family with x = 0 in the case vk < vr. At left the case

(
ρl, vl

)
6=
(
ρk, vk

)
,

at right the case
(
ρl, vl

)
=
(
ρk, vk

)
and ρrvr > q.

ρ
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q
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(ρl, vl)(ρr, vr)

(ρm, vm) (ρl, vl)
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Figure 7: The interaction, described in Proposition 3.4, of a wave of the first
family with x = 0 in the case vk > vr and

(
ρl, vl

)
6=
(
ρk, vk

)
. At left the

case vr > vl, at right the case vr < vl.

3. vr < vl. Define (ρm, vm) the state satisfying wm = wl and vm = vr.
The solution to the Riemann problem consists of a shock wave of the
first family, connecting

(
ρl, vl

)
to (ρm, vm), and of a wave of the second

family, connecting (ρm, vm) to (ρr, vr); see Figure 7, right. Hence
∆N (t̃) = 0 and

∆W0(t̃) = −
∣∣∣wl − wk∣∣∣− ∣∣∣vl − vk∣∣∣ = wk − wl + vl − vk

∆W1(t̃) =
∣∣∣vl − vm∣∣∣− ∣∣∣vk − vr∣∣∣ = vl − vk

∆W2(t̃) = |wm − wr| = wl − wr

∆W (t̃) = 2
(
vl − vk

)
< 0.

The proof is so finished. �
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3.3 Existence of a wave-front tracking solution

We now want to bound the number of waves and of interactions. The fol-
lowing proposition holds.

Proposition 3.5 For every ν ∈ N \ {0}, the construction in Subsection 3.1
can be done for every positive time, producing a 1

ν -approximate wave-front
tracking solution to (2.1).

Proof. For ν ∈ N \ {0}, call uν = (ρν , vν) the function built with the
procedure of Subsection 3.1. It is sufficient to prove that the number of
waves and interactions, generated by the construction, is finite. As in (3.10),
consider the constant Kν = bν (w2 − w1)c+ 1. The functional N (t), which
is defined in (3.9) and counts the number of discontinuities of uν , is locally
constant in time and can vary at interaction times in the following way.

1. If at time t̃ > 0 two waves interact at x̃ 6= 0, then ∆N (t̃) = 0.

2. If at time t̃ > 0 a wave interacts with x = 0 from the left, then
∆N (t̃) ≤ Kν − 1; see Proposition 3.3.

3. If at time t̃ > 0 a wave interacts with x = 0 from the right, then
∆N (t̃) ≤ 2; see Proposition 3.4.

Note that the point 2. happens when a wave of the second family interact
with x = 0; hence the number of times point 2. happens depends on the
number of waves of the second family in x < 0. Analogous consideration
holds for point 3.. Since point 1., and since the wave of the first and second
family have respectively negative and positive speed, points 2. and 3. can
happen at most N (0+) times. This implies that

N (t) ≤ N (0+) + 2N (0+) + (Kν − 1)N (0+) = (2 +Kν)N (0+)

for a.e. t > 0.
Since a wave of the first family and a wave of the second family can

interact together at most once, the previous analysis implies that also the
number of interactions is finite. The proof is so concluded. �

3.4 Existence of a solution

Proposition 3.6 There exists M > 0 such that

W (t) ≤M and TVρ(t) ≤M (3.15)

for a.e. t > 0.
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Proof. Clearly the functionals W0, W1, W2, and W vary when two waves
interact together or when a wave interacts with x = 0. Moreover, by Propo-
sitions 3.1 and 3.2, all the previous functionals at most decrease when two
waves interact at a point x 6= 0. Since waves of first family have nega-
tive speed and waves of the second family have positive speed, then each
wave can interact with x = 0 at most once. Therefore, by Propositions 3.3
and 3.4, for a.e. t > 0,

W (t) ≤W (0+) +
2

L1
W (0+) + 2L2W (0+)

=

[
1 +

2

L1
+ 2L2

]
W (0+),

where L1 and L2 are the constants defined in Lemma 3.1. This implies the
first inequality of (3.15).

Fix now
(
ρl, vl

)
∈ Dv1,v2,w1,w2 , and (ρr, vr) ∈ Dv1,v2,w1,w2 . Define the

point (ρm, vm) ∈ Dv1,v2,w1,w2 such that wl = wm and vm = vr. By (1.3),
there exists K1 > 0 such that

K1 |ρ1 − ρ2| ≤ |p(ρ1)− p(ρ2)|

for every ρ1, ρ2 ∈ [ρmin, ρmax]; see also equation (3.12). Therefore we have∣∣∣ρl − ρm∣∣∣ ≤ 1

K1

∣∣∣p(ρl)− p(ρm)
∣∣∣ =

1

K1

∣∣∣p(ρl)− wl − p(ρm) + wm
∣∣∣

=
1

K1

∣∣∣vl − vm∣∣∣ =
1

K1

∣∣∣vl − vr∣∣∣ . (3.16)

Moreover

|ρm − ρr| ≤ 1

K1
|p(ρm)− p(ρr)| = 1

K1
|p(ρm) + vm − p(ρr)− vr|

=
1

K1
|wm − wr| = 1

K1

∣∣∣wl − wr∣∣∣ . (3.17)

Thus, by (3.16) and (3.17), we have that∣∣∣ρl − ρr∣∣∣ ≤ ∣∣∣ρl − ρm∣∣∣+ |ρm − ρr| ≤ 1

K1

(∣∣∣vl − vr∣∣∣+
∣∣∣wl − wr∣∣∣)

proving also the second inequality in (3.15). �

Proof of Theorem 3.1. Fix an ε-approximate wave-front tracking solu-
tion ūε to (2.1), in the sense of Definition 3.1. By Proposition 3.6, we deduce
that there exists a constant M > 0, depending on the total variation of the
initial datum, such that

W (t) ≤M and TVρ(t) ≤M
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for a.e. t > 0. Hence, by Helly Theorem (see [4, Theorem 2.4]), there is a
function (ρ̄, v̄), which is a solution to (2.1), in the sense of Definition 2.1.
This permits to conclude. �
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