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Abstract

We extend the Phase Transition model for traffic proposed in [7], by
Colombo, Marcellini, and Rascle to the network case. More precisely,
we consider the Riemann problem for such a system at a general junc-
tion with n incoming and m outgoing roads. We propose a Riemann
solver at the junction which conserves both the number of cars and
the maximal speed of each vehicle, which is a key feature of the Phase
Transition model. For special junctions, we prove that the Riemann
solver is well defined.
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1 Introduction

The paper deals with Riemann problems at junctions for a macroscopic
phase transition traffic model. More precisely, we consider the 2-Phase Traf-
fic Model, proposed by Colombo, Marcellini and Rascle in [7], given by the
system in conservation form ∂tρ+ ∂x

(
ρ v(ρ, η)

)
= 0

∂tη + ∂x
(
η v(ρ, η)

)
= 0

with v(ρ, η) = min

{
Vmax,

η

ρ
ψ(ρ)

}
, (1.1)

where ρ denotes the car traffic density, η is a generalized momentum, v ∈
[0, Vmax] is the speed of cars, and ψ is a decreasing function. This model
has been derived as an extension of the famous Lighthill-Whitham-Richards
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Cozzi 55, 20125 Milano, Italy. E-mail: francesca.marcellini@unimib.it

1



(LWR) model (see [15, 17]), by assuming that different typologies of drivers
have different maximal speed w, where η = ρw. A key feature of this
model is that there are two different traffic regimes: the free one and the
congested one. Consequently, the fundamental diagram is composed by the
Free phase F and the Congested phase C. In the free phase the model is
the classical LWR one, while in the congested phase it consists on a system
of two differential equations.

The phase transitions traffic models belong to the class of macroscopic
second order models, started by the Aw-Rascle-Zhang (ARZ) model, see [1]
and [18]. The first phase transition model for traffic has been introduced by
Colombo in 2002, see [4, 5]. For other phase transition models, see [2, 11,
14, 16] and the references therein.

More recently, a growing attention was devoted to the extension of these
models to road networks, see [3, 6, 8, 10, 13]. A complex network consists
in a finite set of arcs and nodes connected by vertices or junctions. In this
paper we deal with a network composed by a single junction; due to the
finite speed of waves, this simple case is indeed general, see [10, Theorem
4.3.9].

In the present paper, we consider a Riemann problem at a junction and
we propose a Riemann solver, which conserves both the number of cars and
the maximal speed w of each driver, a key feature of (1.1). This is in the same
spirit as the Riemann solver, proposed by Herty and Rascle in [12] for the
ARZ model, even if the procedure in [12] can not be directly applied in our
case. We prove that the Riemann solver is well defined in the cases of 1×m
and 2×1 junctions (i.e. with one incoming and m outgoing roads or with two
incoming and one outgoing roads). The case of the 2× 1 junction presents
some technical problems. These are due to the fact that the conservation
of the maximal speed w produces some nonlinear constraints in the set of
admissible fluxes.

The paper is organized as follow. In the next section we describe the 2-
Phases Traffic Model introduced in [7]. In Section 3 we propose the junction
conditions and we describe in details the admissible states at the junction
for a solution to the Riemann problem. In Section 4, we treat the case of
a junction 1 × m. More precisely we introduce a Riemann solver and we
prove that it is well defined. In Subsection 4.1, we point out with an explicit
example that the procedure introduced by Herty and Rascle in [12] can not
be directly used in our case. Finally, in Section 5 we deal with the 2 × 1
junction.

2 The Phase Transition Model

We recall at first the Phase Transition model, introduced in [7] as an exten-
sion of the LWR model, since it allows different speeds for different typology
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of drivers. The LWR model is given by the following scalar conservation law

∂tρ+ ∂x (ρ V ) = 0 , (2.1)

where ρ is the traffic density and V = V (t, x, ρ) is the speed. Assume now
that V = wψ(ρ), where ψ = ψ(ρ) is a C2 function and w = w(t, x) is the
maximal speed of a driver, located at position x at time t. Introducing a
uniform bound Vmax > 0 on the speed of vehicles, we obtain the model ∂tρ+ ∂x(ρv) = 0

∂tw + v ∂xw = 0
with v = min

{
Vmax, w ψ(ρ)

}
. (2.2)

With the change of variables η = ρw, the former system can be written in
conservation form (1.1), where the conserved quantities are ρ and η.

As in [7], we introduce the following assumptions.

(H-1) R, w̌, ŵ, Vmax are positive constants, with w̌ < ŵ.

(H-2) ψ ∈ C2
(
[0, R]; [0, 1]

)
is such that

ψ(0) = 1, ψ(R) = 0,

ψ′(ρ) ≤ 0,
d2

dρ2

(
ρψ(ρ)

)
≤ 0 for all ρ ∈ [0, R] .

(H-3) w̌ > Vmax.

Here, R is the maximal possible density, while w̌, respectively, ŵ, is the
minimum, respectively, maximum, of the maximal speeds of each vehicle.

The two phases, free and congested, are described by the sets

F =
{

(ρ, w) ∈ [0, R]× [w̌, ŵ] : v(ρ, ρw) = Vmax

}
, (2.3)

C =
{

(ρ, w) ∈ [0, R]× [w̌, ŵ] : v(ρ, ρw) = wψ(ρ)
}
. (2.4)

see Figure 1. Both F and C are closed sets and F ∩ C 6= ∅. Note also that
F is one-dimensional in the (ρ, ρv) plane, while it is two-dimensional in the
(ρ, η) coordinates. Figure 1, left, also contains the curves η = w̌ρ, η = ŵρ,
and the curve η = Vmax

ψ(ρ) ρ that separates the two phases. Note that, in the

free phase F , the system (1.1) reduces to{
∂tρ+ ∂x (ρ Vmax) = 0
∂tη + ∂x (ηVmax) = 0 ,

(2.5)

while, in the congested phase C, it is given by ∂tρ+ ∂x
(
η ψ(ρ)

)
= 0

∂tη + ∂x

(
η2

ρ ψ(ρ)
)

= 0 .
(2.6)
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η

F

0 ρR

C

η = ŵρ

η = w̌ρ

η =
Vmax
ψ(ρ)

ρ

σ− σ+ ρ

F

C

0 R

ρv

σ− σ+

ρv = w̌ψ(ρ)ρ

ρv = ŵψ(ρ)ρ

Figure 1: The free phase F and the congested phase C resulting from (1.1)
in the coordinates, from left to right, (ρ, η) and (ρ, ρv). In the (ρ, η) plane,
the curves η = w̌ρ, η = ŵρ and the curve η = Vmax

ψ(ρ) ρ that divides the
two phases are represented. The densities σ− and σ+ are given by the
interesections between the previous curves. Similarly in the (ρ, ρv) plane,
the curves ρv = w̌ψ(ρ)ρ, ρv = ŵψ(ρ)ρ and the densities σ− and σ+ are
represented.

By (H-1), (H-2), and (H-3), system (2.6) is strictly hyperbolic in C,
see [7], and

λ1(ρ, η) = η ψ′(ρ) + v(ρ, η), λ2(ρ, η) = v(ρ, η),

r1(ρ, η) =

[
−ρ
−η

]
, r2(ρ, η) =

 1

η
(

1
ρ −

ψ′(ρ)
ψ(ρ)

)  ,
∇λ1 · r1 = − d

2

dρ2

[
ρψ(ρ)

]
, ∇λ2 · r2 = 0,

L1(ρ; ρo, ηo) = ηo
ρ

ρo
, L2(ρ; ρo, ηo) =

ρ v(ρo, ηo)

ψ(ρ)
, ρo < R,

where λi and ri are respectively the eigenvalues and right eigenvectors of the
Jacobian matrix of the flux, and Li are the Lax curves. When ρo = R, the
2-Lax curve through (ρo, ηo) is given by the segment ρ = R, η ∈ [Rw̌,Rŵ].

Introduce also the following technical assumption:

(H-4) the waves of the first family in C have negative speed.

Remark 2.1 It is possible to choose the parameters such that (H-4) is
satisfied. Indeed λ1 = ηψ′ + ηψρ < 0 in C if and only if ρψ′(ρ) + ψ(ρ) < 0

for every (ρ, η) ∈ C. The assumption d2

dρ2

(
ρψ(ρ)

)
implies that the function

ρ 7→ ρψ′(ρ) +ψ(ρ) is decreasing, so that ρψ′(ρ) +ψ(ρ) < 0 holds if and only
if ρ̄∗ψ′(ρ̄∗) + ψ(ρ̄∗) < 0 where ρ̄∗ solves the following system η = w̌ρ

η = ρVmax
ψ(ρ) .
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In particular, if ψ(ρ) = 1− ρ, then λ1 < 0 in C if and only if w̌ > 2Vmax.

For simplicity, we use the following notation.

• Linear wave: a wave connecting two states in the free phase.

• Phase transition wave: a wave connecting a left state (ρl, ηl) ∈ F with
a right state (ρr, ηr) ∈ C satisfying ηl

ρl
= ηr

ρr
.

• First family wave: a wave connecting a left state (ρl, ηl) ∈ C with a
right state (ρr, ηr) ∈ C such that ηl

ρl
= ηr

ρr
.

• Second family wave: a wave connecting a left state (ρl, ηl) ∈ C with a
right state (ρr, ηr) ∈ C such that v (ρl, ηl) = v (ρr, ηr).

3 The Riemann Problem at a Generic Node

Consider a node J with n incoming arcs I1, ..., In and m outgoing arcs
In+1, ..., In+m, where each incoming arc is modeled by Ii = ]−∞, 0] and
each outgoing arc by Ij = [0,+∞[. On each arc we consider the phase
transition model in (1.1).

A Riemann problem at J is the following Cauchy problem

{
∂tρ+ ∂x

(
ρ v(ρ, η)

)
= 0

∂tη + ∂x
(
η v(ρ, η)

)
= 0

(ρ, η) ∈ Ii{
∂tρ+ ∂x

(
ρ v(ρ, η)

)
= 0

∂tη + ∂x
(
η v(ρ, η)

)
= 0

(ρ, η) ∈ Ij

(ρi, ηi)(0, x) = (ρ̄i, η̄i)
(ρj , ηj)(0, x) = (ρ̄j , η̄j) ,

(3.1)

where (ρ̄i, η̄i) ∈ F ∪ C are the initial data in each incoming arc Ii, i =
1, . . . , n, and (ρ̄j , η̄j) ∈ F ∪ C are the initial data in each outgoing arc Ij ,
j = n + 1, . . . , n + m. Next, we analyze all the possible traces, and the
corresponding flows, at x = 0 for self-similar solutions, separately in the
incoming arcs and in the outgoing arcs.

Incoming Arc. We define Tinc (ρ̄, η̄) as the set of all the possible traces at
x = 0 of a solution in the incoming arc when the initial condition is (ρ̄, η̄).
More precisely, the set Tinc (ρ̄, η̄) is composed by all the points (ρ∗, η∗) ∈
F ∪ C such that the classical Riemann problem

{
∂tρ+ ∂x

(
ρ v(ρ, η)

)
= 0

∂tη + ∂x
(
η v(ρ, η)

)
= 0

t > 0, x ∈ R

(ρ, η) (0, x) = (ρ̄, η̄) x < 0
(ρ, η) (0, x) = (ρ∗, η∗) x > 0

(3.2)
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Figure 2: The case (ρ̄, η̄) ∈ C. The set Tinc (ρ̄, η̄) it is represented in red in

the coordinates, from left to right, (ρ, η) and (ρ, ρv). The set T finc (ρ̄, η̄) is
represented on the ρv axis in the (ρ, ρv) plane.

is solved with waves with negative speed, i.e., by (H-4) with waves of the
first family or with phase transition waves with negative speed. Moreover
we define the corresponding set of flows

T finc (ρ̄, η̄) =
{
ρv(ρ, η) : (ρ, η) ∈ Ti (ρ̄, η̄)

}
.

The following result holds.

Proposition 3.1 Assume (H-1), (H-2), (H-3), and (H-4). Fix (ρ̄, η̄) ∈
F ∪ C. All the points (ρ∗, η∗) ∈ Tinc (ρ̄, η̄) have maximal speed w∗ equal to
w̄. The following cases hold.

1. Case (ρ̄, η̄) ∈ C. The set Tinc (ρ̄, η̄) consists of all the points in the
congested phase C belonging to the Lax curve of the first family passing
through (ρ̄, η̄). Moreover T finc (ρ̄, η̄) = [0, ρ̃1Vmax], see Figure 2, where
ρ̃1 ∈ [0, R] is uniquely defined by w̄ = Vmax

ψ(ρ̃1) .

2. Case (ρ̄, η̄) ∈ F . There exists a unique point (ρ̂1, η̂1) ∈ C such that
the set Tinc (ρ̄, η̄) consists of the point (ρ̄, η̄) itself and of all the points
in the congested phase C belonging to the Lax curve of the first family
passing through (ρ̂1, η̂1), with density strictly bigger than ρ̂1. Moreover

T finc (ρ̄, η̄) = [0, ρ̄Vmax], see Figure 3.

Proof. The waves with negative speed could be wave of the first family
(see assumption (H-4)) and phase-transition waves. Thus, since η̄

ρ̄ = w̄, we
deduce that w∗ = w̄.

Case 1. Since (ρ̄, η̄) ∈ C, phase transitions waves do not appear. There-
fore the set Tinc (ρ̄, η̄) consists of all the points in the congested phase C of
the Lax curve of the first family passing through (ρ̄, η̄), that is

Tinc (ρ̄, η̄) =

{(
ρ, η̄

ρ

ρ̄

)
: ρ ∈ [0, R] and

(
ρ, η̄

ρ

ρ̄

)
∈ C

}
;
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Figure 3: The case (ρ̄, η̄) ∈ F . The set Tinc (ρ̄, η̄) it is represented in red in

the coordinates, from left to right, (ρ, η) and (ρ, ρv). The set T finc (ρ̄, η̄) is
represented on the ρv axis in the (ρ, ρv) plane.

see Figure 2, left. Next, in the (ρ, ρv) plane, the Lax curve passing through
(ρ̄, η̄) is the graph of the function ρ 7→ η̄

ρ̄ρψ(ρ). By imposing ρVmax =
η̄
ρ̄ρψ(ρ), we obtain the point of maximum flow (ρ̃1, ρ̃1Vmax), where ρ̃1 =

ψ−1
(
Vmax

ρ̄
η̄

)
, see Figure 2, right. Thus, T finc (ρ̄, η̄) = [0, ρ̃1Vmax].

Case 2. Since (ρ̄, η̄) ∈ F , one can use only phase transition waves with
negative speed. By the Rankine-Hugoniot condition, a phase transition wave
connecting (ρl, ηl) ∈ F and (ρr, ηr) ∈ C has strictly negative speed if and
only if ρlVmax > ηrψ(ρr) and has zero speed if and only if ρlVmax = ηrψ(ρr).
Define (ρ̂1, η̂1) ∈ C by the unique solution to{

η̂1 = Vmaxρ̄
ψ(ρ̂1)

η̂1

ρ̂1
= η̄

ρ̄ .
(3.3)

In particular the first equation, by the Rankine-Hugoniot conditions, means
that the wave between (ρ̄, η̄) and (ρ̂1, η̂1) has zero speed. The set Tinc (ρ̄, η̄)
consists of (ρ̄, η̄) and of all the points in the congested phase C of the Lax
curve of the first family passing through (ρ̄, η̄), with ρ > ρ̂1; that is

Tinc (ρ̄, η̄) =

{(
ρ, η̄

ρ

ρ̄

)
: ρ ∈ [ρ̂1, R] and

(
ρ, η̄

ρ

ρ̄

)
∈ C

}
∪
{

(ρ̄, η̄)
}

;

see Figure 3, left. Clearly, the set of flows in the (ρ, ρv) plane is T finc (ρ̄, η̄) =
[0, ρ̄Vmax], see Figure 3, right. �

Outgoing Arc. We define Tout (w, ρ̄, η̄) as the set of all the possible traces
at x = 0 of a solution, having w as maximal speed, in the outgoing arc
when the initial condition is (ρ̄, η̄). More precisely, the set Tout (w, ρ̄, η̄) is
composed by all the points (ρ∗, η∗) ∈ F ∪ C such that η∗ = wρ∗ and the
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F

C

0 R

ρv

(ρ̃2, ρ̃2Vmax)
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Figure 4: The case (ρ̄, η̄) ∈ F . The set Tout (w, ρ̄, η̄) it is represented in red

in the coordinates, from left to right, (ρ, η) and (ρ, ρv). The set T fout (w, ρ̄, η̄)
is represented on the ρv axis in the (ρ, ρv) plane.

classical Riemann problem

{
∂tρ+ ∂x

(
ρ v(ρ, η)

)
= 0

∂tη + ∂x
(
η v(ρ, η)

)
= 0

t > 0, x ∈ R

(ρ, η) (0, x) = (ρ∗, η∗) x < 0
(ρ, η) (0, x) = (ρ̄, η̄) x > 0

(3.4)

is solved with waves with positive speed, i.e., with waves of the second
family, with phase transition waves with positive speed or with linear waves
connecting two states in F . Moreover we define the corresponding set of
flows

T fout (w, ρ̄, η̄) =
{
ρv(ρ, η) : (ρ, η) ∈ Tout (w, ρ̄, η̄)

}
.

The following result holds.

Proposition 3.2 Assume (H-1), (H-2), (H-3), and (H-4). Fix (ρ̄, η̄) ∈
F ∪ C and the maximal speed w ∈ [w̌, ŵ]. The following cases hold.

1. Case (ρ̄, η̄) ∈ F . The set Tout (w, ρ̄, η̄) consists of all the points (ρ∗, η∗)

of the free phase F such that η∗/ρ∗ = w. Moreover T fout (w, ρ̄, η̄) =
[0, ρ̃2Vmax] for a suitable ρ̃2 ∈ [σ−, σ+], see Figure 4.

2. Case (ρ̄, η̄) ∈ C. There exists a unique point (ρ̂2, η̂2) ∈ F such that
the set Tout (w, ρ̄, η̄) consists of all the points (ρ∗, η∗) of the free phase
F such that η∗/ρ∗ = w, with ρ < ρ̂2, and of the point (ρ+, η+) of the
congested phase C, where

(
ρ+, η+

)
∈ C is uniquely defined by v (ρ̄, η̄) =

v
(
ρ+, η+

)
and η+ = wρ+. Moreover T fout (w, ρ̄, η̄) =

[
0, ρ+v

(
ρ+, η+

)]
;

see Figure 5.

Proof.Case 1. Since (ρ̄, η̄) ∈ F , phase transitions waves do not appear and
we use only linear waves. Once fixed the maximal speed w, since w = η∗/ρ∗,
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Figure 5: The case (ρ̄, η̄) ∈ C. The set Tout (w, ρ̄, η̄) it is represented in red

in the coordinates, from left to right, (ρ, η) and (ρ, ρv). The set T fout (w, ρ̄, η̄)
is represented on the ρv axis in the (ρ, ρv) plane.

we have

Tout (w, ρ̄, η̄) =

{(
ρ∗, η∗

)
∈ F :

η∗

ρ∗
= w

}
;

see Figure 4, left.

Next, by imposing ρw = Vmax
ψ(ρ) ρ we obtain the density ρ̃2 = ψ−1

(
Vmax
w

)
in the (ρ, η) plane. Thus, in the (ρ, ρv) plane, T fout (w, ρ̄, η̄) = [0, ρ̃2Vmax],
see Figure 4, right.

Case 2. Since waves of the second family have positive speed, then all
the points in C of the Lax curve of the second family through (ρ̄, η̄) should
belong to Tout (w, ρ̄, η̄). Since we fixed w, we consider only the point (ρ+, η+),
which is the point of intersection between w = η∗/ρ∗ and the Lax curve of

the second family through (ρ̄, η̄); that is ρ+ = ψ−1
(
v(ρ̄,η̄)
w

)
.

Moreover Tout (w, ρ̄, η̄) contains also points in F which belong to the
curve w = η∗/ρ∗ and which can be connected by a phase transition wave with
positive speed to the point (ρ+, η+). By the Rankine-Hugoniot condition, a
phase transition wave connecting (ρl, ηl) ∈ F and (ρr, ηr) ∈ C has strictly
positive speed if and only if ρlVmax < ηrψ(ρr) and has zero speed if and
only if ρlVmax = ηrψ(ρr). In particular, define (ρ̂2, η̂2) ∈ F by the unique
solution to 

η̂2 = Vmaxρ+

ψ(ρ̂2)

η̂2

ρ̂2
= η+

ρ+ .
(3.5)

The first equation above, by the Rankine-Hugoniot conditions, means that
the wave between (ρ+, η+) and (ρ̂2, η̂2) has zero speed.

Therefore

Tout (w, ρ̄, η̄) =

{(
ρ∗, η∗

)
∈ F :

η∗

ρ∗
= w , ρ < ρ̂2

}
∪
{(

ρ+, η+
)}

,

see Figure 5, left.
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Finally, we obtain that the maximum flow is attained at the point(
ρ+, ρ+v

(
ρ+, η+

))
, thus T fout (w, ρ̄, η̄) =

[
0, ρ+v

(
ρ+, η+

)]
, see Figure 5,

right. �

Admissible Solutions at J . Define Γi = max T finc (ρ̄i, η̄i), for i = 1, . . . , n

in the incoming arcs and, for every w ∈ [w̌, ŵ], Γwj = max T fout
(
w, ρ̄j , η̄j

)
for

j = n+ 1, . . . , n+m in the outgoing arcs. Fix a matrix A ∈ A, where

A :=

A =
{
αi,j
}
i=1,...,n, j=n+1,...,n+m

: 0 < αi,j < 1 ∀i, j,
n+m∑
j=n+1

αi,j = 1 ∀i

 ,

where
{
αi,j
}
i=1,...,n, j=n+1,...,n+m

indicates the percentage of traffic that passes
from Ii to Ij .

Consider the set

Ω =

(γ1, . . . , γn) ∈
n∏
i=1

[0,Γi] : A (γ1, . . . , γn)T ∈
n+m∏
j=n+1

[0,Γ
wj
j ]

 , (3.6)

where the maximal speeds wj are defined by

wn+1 =
1∑n

i=1 αi,n+1γi

[
α1,n+1γ1w1 + . . .+ αn,n+1γnwn

]
,

... (3.7)

wn+m =
1∑n

i=1 αi,n+mγi

[
α1,n+mγ1w1 + . . .+ αn,n+mγnwn

]
.

Note that every point in the set Ω is a tuple of admissible fluxes at the
junction.

We define the concept of Riemann solver at a generic node.

Definition 3.3 A Riemann solver at the node is a function

RSJ :
∏n+m
i=1 (F ∪ C) −→

∏n+m
i=1 (F ∪ C)(

(ρ1, η1), · · · , (ρn+m, ηn+m)
)
7−→

(
(ρ∗1, η

∗
1), · · · , (ρ∗n+m, η

∗
n+m)

)
satisfying the following properties.

1. The consistency condition

RSJ
(
(ρ∗1, η

∗
1), · · · , (ρ∗n+m, η

∗
n+m)

)
=
(
(ρ∗1, η

∗
1), · · · , (ρ∗n+m, η

∗
n+m)

)
holds.
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2. For every i ∈ {1, . . . , n}, the classical Riemann problem

{
∂tρ+ ∂x

(
ρ v(ρ, η)

)
= 0,

∂tη + ∂x
(
η v(ρ, η)

)
= 0,

t > 0, x ∈ R

(ρ, η)(0, x) = (ρi, ηi), x < 0
(ρ, η)(0, x) = (ρ∗i , η

∗
i ), x > 0

is solved with waves with negative speed.

3. For every i ∈ {n+ 1, . . . , n+m}, the classical Riemann problem

{
∂tρ+ ∂x

(
ρ v(ρ, η)

)
= 0,

∂tη + ∂x
(
η v(ρ, η)

)
= 0,

t > 0, x ∈ R

(ρ, η)(0, x) = (ρ∗i , η
∗
i ), x < 0

(ρ, η)(0, x) = (ρi, ηi), x > 0

is solved with waves with positive speed.

4. The constraint

A
(
γ∗1 , . . . γ

∗
n

)T
=
(
γ∗n+1, . . . γ

∗
n+m

)T
holds, where γ∗i = ρ∗i v

(
ρ∗i , η

∗
i

)
for every i ∈ {1, . . . , n+m}.

5. The mass conservation

n∑
i=1

ρ∗i v
(
ρ∗i , η

∗
i

)
=

n+m∑
i=n+1

ρ∗i v
(
ρ∗i , η

∗
i

)
holds.

6. The conservation of the maximal speed holds, i.e.:

w∗n+1 =
1∑n

i=1 αi,n+1γ∗i

[
α1,n+1γ

∗
1w
∗
1 + . . .+ αn,n+1γ

∗
nw
∗
n

]
,

...

w∗n+m =
1∑n

i=1 αi,n+mγ∗i

[
α1,n+mγ

∗
1w
∗
1 + . . .+ αn,n+mγ

∗
nw
∗
n

]
,

where w∗i =
η∗i
ρ∗i

and γ∗i = ρ∗i v
(
ρ∗i , η

∗
i

)
for every i ∈ {1, . . . , n+m}.
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4 The Riemann Problem for the 1×m Junction

Here we consider a junction with n = 1 incoming arc and m outgoing arcs
(m ≥ 2) and the corresponding Riemann problem (3.1). Fix a matrix A ∈ A,
which assumes the form

A =
(
α1,2 · · · α1,m+1

)T
whose coefficients are positive and satisfy

α1,2 + · · ·+ α1,m+1 = 1.

We construct a particular Riemann solverRSJ with the following procedure.

1. Define the maximal speed w̄1 = η̄1

ρ̄1
in the incoming road.

2. Define Γ1 = max T finc (ρ̄1, η̄1), according to Proposition 3.1.

3. Define Γw̄1
j = max T fout

(
w̄1, ρ̄j , η̄j

)
, for every j = 1, . . . , 1 +m, accord-

ing to Proposition 3.2.

4. Consider the set in (3.6), which, in this situation, becomes

Ω =

γ1 ∈ [0,Γ1] : Aγ1 ∈
1+m∏
j=2

[0,Γw̄1
j ]


=
{
γ1 ∈ [0,Γ1] : α1,2γ1 ≤ Γw̄1

2 , · · · , α1,1+mγ1 ≤ Γw̄1
1+m

}
.

(4.1)

Note that Ω is a closed, non empty real interval.

5. Define γ∗1 = max Ω.

6. Define
(
γ∗2 , . . . , γ

∗
1+m

)T
= Aγ∗1 =

(
α1,2γ

∗
1 · · · α1,1+mγ

∗
1

)T
7. Define

(
ρ∗1, η

∗
1

)
∈ Tinc (ρ̄1, η̄1) in such a way ρ∗1v

(
ρ∗1, η

∗
1

)
= γ∗1 .

8. Define
(
ρ∗j , η

∗
j

)
∈ Tout

(
w̄1, ρ̄j , η̄j

)
in such a way ρ∗jv

(
ρ∗j , η

∗
j

)
= γ∗j , for

every j = 2, . . . , 1 +m.

Remark 4.1 Note that the choice of
(
ρ∗1, η

∗
1

)
is unique. In fact, once se-

lected a unique point γ∗1 ∈ T
f
inc (ρ̄1, η̄1), there exists a unique

(
ρ∗1, η

∗
1

)
∈

Tinc (ρ̄1, η̄1) with that given flow ρ∗1v(ρ∗1, η
∗
1) = γ∗1 , as we can see in Figure 2

and Figure 3. Analogously the choice of
(
ρ∗j , η

∗
j

)
, for every j = 2, . . . , 1+m,

is unique, see Figure 4 and Figure 5.

Remark 4.2 With this setting, the maximal speed w̄1 of the incoming arc
is conserved through the junction and we have

w̄1 = w∗2 = . . . = w∗1+m .
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Now we can state and prove the following result.

Theorem 4.3 Under assumptions (H-1), (H-2), (H-3), (H-4), the Rie-
mann solver RSJ constructed in this section satisfies all the conditions of
Definition 3.3 and produces a solution to the Riemann problem (3.1).

Proof. We only have to verify the consistency condition for RSJ , the other
conditions being obvious by construction. To this aim, we fix (ρ̄i, η̄i) ∈ F ∪C
for every i ∈ {1, . . . , 1 +m} and define(

(ρ∗1, η
∗
1), · · · , (ρ∗1+m, η

∗
1+m)

)
= RSJ

(
(ρ̄1, η̄1), · · · , (ρ̄1+m, η̄1+m)

)
.

We need to prove that

RSJ
(
(ρ∗1, η

∗
1), · · · , (ρ∗1+m, η

∗
1+m)

)
=
(
(ρ∗1, η

∗
1), · · · , (ρ∗1+m, η

∗
1+m)

)
.

By points 2 and 3 of the construction of RSJ , Γ1 = max T finc (ρ̄1, η̄1), and

Γw̄1
j = max T fout

(
w̄1, ρ̄j , η̄j

)
. Hence by Proposition 3.1 and Proposition 3.2,

Γ1 =

{
ρ̃1Vmax if (ρ̄1, η̄1) ∈ C
ρ̄1Vmax if (ρ̄1, η̄1) ∈ F

and

Γw̄1
j =

{
ρ+v(ρ̄j , η̄j) if (ρ̄j , η̄j) ∈ C
ρ̃2Vmax if (ρ̄j , η̄j) ∈ F.

where ρ̃1, ρ+, ρ̃2 are defined as in propositions 3.1 and 3.2. In a similar
way, we define Γ∗1 = max T finc

(
ρ∗1, η

∗
1

)
, and, for every j ∈ {2, . . . , 1 +m},

Γ∗,w̄1
j = max T fout

(
w̄1, ρ

∗
j , η
∗
j

)
. Moreover the sets Ω and Ω∗ are defined

in (4.1) respectively for the states (ρ̄i, η̄i) and for
(
ρ∗i , η

+
i

)
.

For simplicity, we consider the following two cases.

1. sup Ω = Γ1. If (ρ̄1, η̄1) is in the free phase F , then also (ρ∗1, η
∗
1) is in the

free phase F . Thus Γ1 = ρ̄1Vmax = ρ∗1Vmax = Γ∗1, by Proposition 3.1.

If (ρ̄1, η̄1) is in the congested phase C, then (ρ∗1, η
∗
1) is in the intersection

between the free phase F and the congested phase C and Γ1 = Γ∗1, by
Proposition 3.1.

For the outgoing arcs (j = 2, ..., 1+m), if (ρ̄j , η̄j) is in the free phase F ,
then also (ρ∗j , η

∗
j ) is in the free phase F . Thus Γw̄1

j = ρ̃2Vmax = Γ∗,w̄1
j ,

by Proposition 3.2.

If (ρ̄j , η̄j) is in the congested phase C, then if also (ρ∗j , η
∗
j ) is in the con-

gested phase C, then Γw̄1
j = ρ+v(ρ̄j , η̄j) = Γ∗,w̄1

j , by Proposition 3.2.
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Otherwise, if (ρ∗j , η
∗
j ) is in the free phase F , then Γw̄1

j = ρ̃2Vmax <

Γ∗,w̄1
j , by Proposition 3.2.

In every case Γ1 = Γ∗1 and Γ∗,w̄1
j ≥ Γw̄1

j , for j = 2, ..., 1 + m; thus
Ω = Ω∗.

2. sup Ω =
Γ
w̄1
2
α1,2

. If (ρ̄2, η̄2) is in the free phase F , then also (ρ∗2, η
∗
2)

is in the free phase F . Thus Γw̄1
2 = ρ̃2Vmax = ρ∗2Vmax = Γ∗,w̄1

2 , by
Proposition 3.2.

If (ρ̄2, η̄2) is in the congested phase C, then also (ρ∗2, η
∗
2) is in the

congested phase C. Thus Γw̄1
2 = ρ+v(ρ+, η+) = ρ∗2v(ρ+, η+) = Γ∗,w̄1

2 ,
by Proposition 3.2.

The case of Γw̄1
j and Γ∗,w̄1

j , for j = 3, ..., 1+m, can be treated, as in the

previous case sup Ω = Γ1, and we have Γ∗,w̄1
j ≥ Γw̄1

j , for j = 3, ..., 1+m.

Finally, for the incoming arc, if (ρ̄1, η̄1) is in the free phase F , then
if also (ρ∗1, η

∗
1) is in the free phase F , then Γ1 = ρ̄1Vmax = Γ∗1, by

Proposition 3.1. Otherwise, if (ρ∗1, η
∗
1) is in the congested phase C,

then Γ1 = ρ̄1Vmax < Γ∗1, by Proposition 3.1.

If (ρ̄1, η̄1) is in the congested phase C then (ρ∗1, η
∗
1) is in the congested

phase C, and so Γ1 = ρ̃1Vmax = Γ∗1, by Proposition 3.1.

In all cases we have that Γw̄1
2 = Γ∗,w̄1

2 , Γ∗1 ≥ Γ1 and Γ∗,w̄1
j ≥ Γw̄1

j , for
j = 3, ..., 1 +m, thus Ω = Ω∗.

The other cases, that is sup Ω =
Γj
α1,j

, for j = 3, ..., 1 +m, can be treated

as in the previous case 2. �

4.1 A not-working approach

In this subsection, we outline the fact that it is fundamental to impose the
constraint wj = w̄1 (j ∈ {2, . . . , 1 +m}) before calculating the admissible
fluxes in the outgoing roads. Indeed in the point 3. of the construction of the
Riemann solver, the number Γw̄1

j depends explicitly on that constraint. The
approach, similar to that of Garavello and Piccoli [9] or Herty and Rascle [12]
in the case of the Aw-Rascle-Zhang traffic model (see [1, 18]), consisting of
first calculating all the possible admissible fluxes at the junction and then
imposing the constraint on the maximum speed is not working for the phase
transition model, considered in this paper.

We propose the following example. Choose the constants R = 1, Vmax =
1, w̌ = 2, ŵ = 3, and the function ψ(ρ) = 1− ρ. In this way the hypothesis
(H-1), (H-2), (H-3), and (H-4) are all satisfied. Moreover, consider a
junction J with one incoming I1 and two outgoing arcs I2, I3, and fix the
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η

0 ρR

C

F(ρ̄, η̄)

ρ

F

C

0 R

ρv
(σ+, σ+Vmax)

(ρ̄, η̄)

Figure 6: The case (ρ̄, η̄) ∈ F in an outgoing road for the approach in
Subsection 4.1. The set of all the possible traces it is represented in red in
the coordinates, from left to right, (ρ, η) and (ρ, ρv). The corresponding set
of flows is represented on the ρv axis in the (ρ, ρv) plane.

distribution matrix A = (3/10, 7/10)T . Consider the Riemann problem at
J with initial data

(ρ̄1, η̄1) =

(
745

1000
,
18625

10000

)
(ρ̄2, η̄2) =

(
255

1000
,

51

100

)
(ρ̄3, η̄3) =

(
745

1000
,
149

100

)
.

We can easily check that (ρ̄1, η̄1) ∈ C, (ρ̄2, η̄2) ∈ F , and (ρ̄3, η̄3) ∈ C.
For the incoming arc I1, we find that the maximum flow that can pass

through the junction is equal to 3/5 according to the case 1. of Proposi-

tion 3.1, that is Γ1 = max T finc (ρ̄1, η̄1) = 3/5, see Figure 2.
For the case of the outgoing arcs I2 and I3, without imposing a con-

straint on w, the set of all possible fluxes at J is different from those of
Proposition 3.2. More precisely, if (ρ̄, η̄) denotes the initial datum in an
outgoing arc, then the following cases hold.

1. Case (ρ̄, η̄) ∈ F . The set of all the possible traces consists of all the
points of the free phase F . Moreover the corresponding set of flows is
[0, σ+Vmax], see Figure 6.

2. Case (ρ̄, η̄) ∈ C. There exists a unique curve γ(ρ), with support in
F , such that the set of all the possible traces consists of all the points
{(ρ, η) ∈ F : η > γ(ρ)} in the free phase F and of all the points
in the congested phase C belonging to the Lax curve of the second
family passing through (ρ̄, η̄). Moreover the corresponding set of flows
is
[
0, ρ̃2v (ρ̄, η̄)

]
; see Figure 7.
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η

F

0 ρR

C

(ρ̄, η̄) (ρ̄, η̄)

ρ

F

C

0 R

ρv

(
ρ̃2, ρ̃2v (ρ̄, η̄)

)

Figure 7: The case (ρ̄, η̄) ∈ C in an outgoing road for the approach in
Subsection 4.1. The set of all the possible traces it is represented in red in
the coordinates, from left to right, (ρ, η) and (ρ, ρv). The corresponding set
of flows is represented on the ρv axis in the (ρ, ρv) plane.

Thus, following these cases, we find that the maximum flows that can enter
in I2, I3 are equal respectively to 2/3 and to 4233/10000. Therefore the set
Ω should be equal to

[
0, 3/5

]
and, consequently, the fluxes of the solution

are

γ∗1 = 3/5, γ∗2 = 3/5× 3/10 = 9/50, γ∗3 = 3/5× 7/10 = 21/50.

Imposing now the constraints w2 = w3 = w̄1 we obtain the solution

(ρ∗1, η
∗
1) =

(
3

5
,
3

2

)
, (ρ∗2, η

∗
2) =

(
9

50
,

9

20

)
, (ρ∗3, η

∗
3) =

(
21

50
,
21

20

)
,

where (ρ∗1, η
∗
1) ∈ C, (ρ∗2, η

∗
2) ∈ F , and (ρ∗3, η

∗
3) ∈ F .

In the case of the outgoing arc I3, for connecting the left state (ρ∗3, η
∗
3) ∈

F with the right state (ρ̄3, η̄3) ∈ C, we need a phase transition wave joining
(ρ∗3, η

∗
3) with (ρm, ηm), and a wave of the second family joining (ρm, ηm) with

(ρ̄3, η̄3). With simple computations, we find that (ρm, ηm) =
(

199
250 ,

199
100

)
∈ C.

By the Rankine-Hugoniot condition, we deduce that the phase transition
wave, connecting (ρ3, η3) to (ρm, ηm), has strictly negative speed equal to
−351/9400; this can not happen in an outgoing arc.

5 The Riemann Problem for the 2× 1 Junction

Here we consider a junction J with n = 2 incoming arcs and m = 1 outgoing
arc and the corresponding Riemann problem (3.1). Fix P = (p1, p2) ∈ R2,
with p1, p2 > 0.

We construct a Riemann solver RSJ with the following procedure.

1. Define the maximal speeds w̄1 = η̄1

ρ̄1
, w̄2 = η̄2

ρ̄2
.
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2. Define Γi = max T finc (ρ̄i, η̄i), for every i = 1, 2, according to Proposi-
tion 3.1.

3. For every maximal speed w, define Γw3 = max T fout (w, ρ̄3, η̄3), according
to Proposition 3.2.

4. Consider the set in (3.6). In this situation, given w̄1, w̄2, it becomes

Ω =

(γ1, γ2) ∈
2∏
i=1

[0,Γi] :
γ1 + γ2 ∈ [0,Γw3

3 ]

w3 = γ1

γ1+γ2
w̄1 + γ2

γ1+γ2
w̄2

 . (5.1)

This is a subset of R2, convex and not empty. See Lemma 5.3 for the
proof.

5. Define (γ∗1 , γ
∗
2) ∈ Ω in such a way ΠΩ(P ) = (γ∗1 , γ

∗
2), where ΠΩ is the

orthogonal projection on the convex set Ω.

6. Define γ∗3 = γ∗1 + γ∗2 .

7. Define
(
ρ∗i , η

∗
i

)
∈ Tinc (ρ̄i, η̄i) such that ρ∗i v

(
ρ∗i , η

∗
i

)
= γ∗i , for i = 1, 2.

8. Define
(
ρ∗3, η

∗
3

)
∈ Tout (w3, ρ̄3, η̄3) in such a way ρ∗3v

(
ρ∗3, η

∗
3

)
= γ∗3 .

Remark 5.1 The function ΠΩ : R2 → Ω is unique since Ω is a closed
convex and not empty set, see Lemma 5.3.

Remark 5.2 Note that the choice of
(
ρ∗i , η

∗
i

)
, for every i = 1, 2, is unique.

In fact, once selected a unique point γ∗i ∈ T
f
inc (ρ̄i, η̄i), there exists a unique(

ρ∗i , η
∗
i

)
∈ Tinc (ρ̄i, η̄i) with that given flow ρ∗i v(ρ∗i , η

∗
i ) = γ∗i , for every i =

1, 2, as we can see in Figure 2 and Figure 3. Analogously the choice of(
ρ∗3, η

∗
3

)
is unique, see Figure 4 and Figure 5.

Lemma 5.3 The set Ω in (5.1) is convex and not empty.

Proof. Clearly Ω 6= ∅, since (0, 0) ∈ Ω.
Fix now γ̄, ¯̄γ ∈ Ω, with γ̄ 6= ¯̄γ. We aim to prove that λγ̄+(1−λ)¯̄γ ∈ Ω for

every λ ∈ [0, 1]. Denote γ̄ = (γ̄1, γ̄2), ¯̄γ = (¯̄γ1, ¯̄γ2), and assume by simplicity
that

w̄1 ≤ w̄2 and ¯̄γ1γ̄2 − γ̄1 ¯̄γ2 ≥ 0, (5.2)

the other cases can be treated in a similar way. For every λ ∈ [0, 1], define

wλ3 =
γλ1

γλ1 + γλ2
w̄1 +

γλ2
γλ1 + γλ2

w̄2,

where γλ = λγ̄ + (1− λ)¯̄γ. Thus

γλ =
(
γλ1 , γ

λ
2

)
=
(
λγ̄1 + (1− λ) ¯̄γ1, λγ̄2 + (1− λ) ¯̄γ2

)
.
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By Proposition 3.2, we have

Γ
wλ3
3 =


v (ρ̄3, η̄3)

(
1− v(ρ̄3,η̄3)

wλ3

)
if (ρ̄3, η̄3) ∈ C

Vmax

(
1− Vmax

wλ3

)
if (ρ̄3, η̄3) ∈ F.

Note that

Γ
wλ3
3 = K

(
1− K

wλ3

)
for a suitable constant K > 0. Therefore we need to prove that

γλ1 + γλ2 ≤ K

(
1− K

wλ3

)
(5.3)

for every λ ∈ [0, 1]. The assumptions γ̄, ¯̄γ ∈ Ω imply that (5.3) is satisfied
for λ = 0 and λ = 1. Without loss of generalities we therefore assume that

γ0
1 + γ0

2 = K

(
1− K

w0
3

)
and γ1

1 + γ1
2 = K

(
1− K

w1
3

)
. (5.4)

We have that

∂λw
λ
3 =

(¯̄γ1γ̄2 − γ̄1 ¯̄γ2) (w̄2 − w̄1)[
λ (γ̄1 + γ̄2) + (1− λ) (¯̄γ1 + ¯̄γ2)

]2 .
By (5.2), we deduce that ∂λw

λ
3 ≥ 0. In particular, if w̄1 = w̄2 or ¯̄γ1γ̄2−γ̄1 ¯̄γ2 =

0, then ∂λw
λ
3 = 0 and so (5.3) holds trivially for every λ ∈ [0, 1]. Therefore

we assume
w̄1 < w̄2 and ¯̄γ1γ̄2 − γ̄1 ¯̄γ2 > 0. (5.5)

Define the function g : [0, 1]→ R in the following way

g(λ) = K

(
1− K

wλ3

)
− γλ1 − γλ2 .

By (5.4), we have that g(0) = g(1) = 0. We prove that g is a concave
function, which permits to deduce (5.3) and, consequently, to complete the
proof. We get

g′(λ) =
K2(w̄2 − w̄1)(¯̄γ1γ̄2 − γ̄1 ¯̄γ2)

(¯̄γ1w̄1 + ¯̄γ2w̄2 + γ̄2λw̄2 − ¯̄γ2λw̄2 + γ̄1λw̄1 − ¯̄γ1λw̄1)2 +¯̄γ1+¯̄γ2−γ̄1−γ̄2

and

g′′(λ) = −2K2(w̄2 − w̄1)(¯̄γ1γ̄2 − γ̄1 ¯̄γ2)(γ̄2w̄2 − ¯̄γ2w̄2 + γ̄1w̄1 − ¯̄γ1w̄1)

(¯̄γ1w̄1 + ¯̄γ2w̄2 + γ̄2λw̄2 − ¯̄γ2λw̄2 + γ̄1λw̄1 − ¯̄γ1λw̄1)3 .
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Note that the denominator of g′′ is strictly positive. In fact, if we define

D(λ) = ¯̄γ1w̄1 + ¯̄γ2w̄2 + λ (γ̄2w̄2 − ¯̄γ2w̄2 + γ̄1w̄1 − ¯̄γ1w̄1) ,

we have that D is affine with respect to λ, D(0) = ¯̄γ1w̄1 + ¯̄γ2w̄2 > 0 and
D(1) = γ̄1w̄1 + γ̄2w̄2 > 0; thus D(λ) > 0 for every λ ∈ [0, 1]. By (5.5),
g′′(λ) ≤ 0 for every λ ∈ [0, 1] if and only if

γ̄2w̄2 − ¯̄γ2w̄2 + γ̄1w̄1 − ¯̄γ1w̄1 ≥ 0.

Assume by contradiction that

γ̄2w̄2 − ¯̄γ2w̄2 + γ̄1w̄1 − ¯̄γ1w̄1 < 0 .

which is equivalent to

(γ̄2 − ¯̄γ2) w̄2 < (¯̄γ1 − γ̄1) w̄1. (5.6)

We claim that
γ̄1 + γ̄2 < ¯̄γ1 + ¯̄γ2 . (5.7)

We have three cases.

1. γ̄2 − ¯̄γ2 < 0. We deduce that ¯̄γ1 − γ̄1 > 0. Indeed, if by contra-
diction ¯̄γ1 − γ̄1 ≤ 0, then ¯̄γ1γ̄2 ≤ γ̄1γ̄2 < γ̄1 ¯̄γ2 contradicting (5.5).
Therefore (5.6) implies that

(γ̄2 − ¯̄γ2) w̄2 < (¯̄γ1 − γ̄1) w̄1 < (¯̄γ1 − γ̄1) w̄2

and so (γ̄2 − ¯̄γ2) < (¯̄γ1 − γ̄1) proving (5.7).

2. γ̄2 − ¯̄γ2 = 0. In this case (5.6) becomes

0 < (¯̄γ1 − γ̄1) w̄1

which implies 0 < (¯̄γ1 − γ̄1) and so (5.7).

3. γ̄2 − ¯̄γ2 > 0. In this case (5.6) implies

(γ̄2 − ¯̄γ2) w̄1 < (γ̄2 − ¯̄γ2) w̄2 < (¯̄γ1 − γ̄1) w̄1.

and so (γ̄2 − ¯̄γ2) < (¯̄γ1 − γ̄1) proving (5.7).

By (5.5) and (5.7) we deduce that g′(λ) > 0 for every λ ∈ (0, 1). This
yields a contradiction with g(0) = g(1) = 0 and the proof is complete. �
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Now we can state the following

Theorem 5.4 Under assumptions (H-1), (H-2), (H-3), (H-4), the Rie-
mann solver RSJ constructed in this section satisfies all the conditions of
Definition 3.3 and produces a solution to the Riemann problem (3.1).

Proof. We only have to verify the consistency condition for RSJ . To this
aim, we fix (ρ̄i, η̄i) ∈ F ∪ C for every i ∈ {1, 2, 3} and define(

(ρ∗1, η
∗
1), (ρ∗2, η

∗
2), (ρ∗3, η

∗
3)
)

= RSJ
(
(ρ̄1, η̄1), (ρ̄2, η̄2), (ρ̄3, η̄3)

)
.

We need to prove that

RSJ
(
(ρ∗1, η

∗
1), (ρ∗2, η

∗
2), (ρ∗3, η

∗
3)
)

=
(
(ρ∗1, η

∗
1), (ρ∗2, η

∗
2), (ρ∗3, η

∗
3)
)
.

By points 2 and 3 of the construction of RSJ , Γi = max T finc (ρ̄i, η̄i), for i =

1, 2, and Γw3 = max T fout (w, ρ̄3, η̄3) for every w. In a similar way, we define

Γ∗i = max T finc
(
ρ∗i , η

∗
i

)
, for every i = 1, 2, and Γ∗,w3 = max T fout

(
w, ρ∗3, η

∗
3

)
for

every w.
We consider the following two cases. The details similar to those in proof

of Theorem 5.4 are omitted.

1. γ∗1 + γ∗2 = Γw3
3 . In this case (ρ∗3, η

∗
3) is in the congested phase C and

w∗3 =
γ∗1

γ∗1 +γ∗2
w̄1 +

γ∗2
γ∗1 +γ∗2

w̄2. We have that Γ1 ≤ Γ∗1, Γ2 ≤ Γ∗2 and

Γw3 = Γ∗,w3 for every maximal speed w.

By Lemma 5.3 the curve γ1 + γ2 = Γ
γ1

γ1+γ2
w̄1+

γ2
γ1+γ2

w̄2

3 is concave in
[0,+∞[× [0,+∞[. For the properties of the projection on the convex
set Ω we conclude, see Figure 8.

2. γ∗1 + γ∗2 < Γw3
3 . In this case (ρ∗3, η

∗
3) is in the free phase F and w∗3 =

γ∗1
γ∗1 +γ∗2

w̄1 +
γ∗2

γ∗1 +γ∗2
w̄2. We can suppose that γ∗1 = Γ1 and we have that

Γ1 = Γ∗1, Γ2 ≤ Γ∗2 and Γw3 ≤ Γ∗,w3 for every maximal speed w.

By Lemma 5.3 the curves γ1 + γ2 = Γ
γ1

γ1+γ2
w̄1+

γ2
γ1+γ2

w̄2

3 and γ1 + γ2 =

Γ
∗, γ1
γ1+γ2

w̄1+
γ2

γ1+γ2
w̄2

3 are concave in [0,+∞[× [0,+∞[ and for the prop-
erties of the projection on the convex set Ω we conclude, see Figure 9.

The proof is so concluded. �
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