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Abstract

We consider the initial boundary value problem for the phase tran-
sition traffic model introduced in [9], which is a macroscopic model
based on a 2 × 2 system of conservation laws. We prove existence of
solutions by means of the wave-front tracking technique, provided the
initial data and the boundary conditions have finite total variation.
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1 Introduction

This paper deals with the initial boundary value problem for the phase
transition model introduced in [9], consisting of the following 2 × 2 system
of conservation laws: {

∂tρ+ ∂x
(
ρ v(ρ, η)

)
= 0

∂tη + ∂x
(
η v(ρ, η)

)
= 0 ,

(1.1)

where ρ is the traffic density, η is a generalized momentum and v = v(ρ, η)

is the speed. This system is non-smooth since v(ρ, η) = min
{
Vmax,

η
ρ ψ(ρ)

}
is not a C1 function; Vmax is a uniform bound on the speed and ψ is a
decreasing function.

The system in (1.1) belongs to the class of macroscopic second order traf-
fic models, see [3, 22], and it is characterized by two different phases: the
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Free one and the Congested one. In the free phase the model reduces to a sin-
gle conservation law, the classical Lighthill–Whitham [19] and Richards [21]
(LWR) model, where the speed is constantly equal to Vmax, while in the
congested phase the model is a strictly hyperbolic system of two conserva-
tion laws. In 2002, Colombo proposed the first second order model with
two phases, see [6, 7]. For other 2−phases and phase transition models
see [4, 8, 16, 18, 20].

In this paper, we consider an initial boundary value problem for the
model in (1.1) and we prove existence of solutions, provided the initial data
and the boundary conditions have finite total variation. More precisely, we
fix a, b ∈ R with a < b and we consider the following problem:

{
∂tρ+ ∂x

(
ρ v(ρ, η)

)
= 0

∂tη + ∂x
(
η v(ρ, η)

)
= 0

if x ∈ (a, b), t > 0,

(ρ, η) (t, a) =
(
ρa(t), ηa(t)

)
if t > 0,

(ρ, η) (t, b) =
(
ρb(t), ηb(t)

)
if t > 0,

(ρ, η) (0, x) =
(
ρ0(x), η0(x)

)
if x ∈ (a, b) .

(1.2)

The initial datum is (ρ0, η0) : (a, b) → F ∪ C and the boundary conditions
are (ρa, qa) : (0,+∞) → F ∪ C and (ρb, qb) : (0,+∞) → F ∪ C, where F is
the free phase and C is the congested phase.

In [12], Garavello considered an IBVP for the phase transition model
introduced in [4]. We remark here that the model in [9], considered in this
paper, and that one in [4], although similar, are different. Indeed Riemann
problems for the two systems are solved, in general, in a different way and
with a different number of waves. Another difference relies in the derivation:
the model in [9] is based on the two phases, the free and the congested, while
in [4] the two phases are a consequence of the model by imposing the speed
limit Vmax.

In this paper, we use the wave front tracking technique, that is we explic-
itly construct a picewise constant approximate solution, we prove that there
exists an uniform bound on a functional measuring the strenght of the waves
and then, we prove the existence of a solution obteined by a compactness
argument. We remark that, as in [12], the boundaries considered in this
paper are characteristic, since there are phase transitions waves with zero
speed; they are a delicate topic as usual in conservation laws, see [1, 2, 11].

The paper is organized as follows: in the next section we briefly recall the
phase transition traffic model introduced in [9]. In Section 3, following the
approach in [12], we state and prove the main result concerning the boundary
value problem; the proof is divided into three different subsections.
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2 Description of the Phase Transition Model

We recall at first the phase transition model introduced in [9]. This model
has been derived as an extension of the LWR model, given by the following
single conservation law:

∂tρ+ ∂x (ρ V ) = 0 , (2.1)

where ρ is the traffic density and V = V (t, x, ρ) is a general speed. We
assume that V = wψ(ρ), where ψ is a decreasing function and w = w(t, x)
is the maximal speed of each driver. Moreover, introducing a uniform bound
Vmax on the speed, we get the following system:{

∂tρ+ ∂x(ρv) = 0
∂tw + v ∂xw = 0 ,

(2.2)

where v = min
{
Vmax, w ψ(ρ)

}
. Note that the maximal speed w is a peculiar

characteristic of (2.2), being a specific feature of every single driver. With
the change of variable η = ρw we get the system in (1.1), where the conserved
variables are ρ and η.

As in [9, 13], we recall the following assumptions:

(H-1) R, w̌, ŵ, Vmax are positive constants, with Vmax < w̌ < ŵ.

(H-2) ψ ∈ C2
(
[0, R]; [0, 1]

)
is such that ψ(0) = 1, ψ(R) = 0, and, for every

ρ ∈ [0, R], ψ′(ρ) ≤ 0, d2

dρ2

(
ρψ(ρ)

)
≤ 0.

(H-3) Waves of the first family in the congested phase C have negative
speed.

Here, R is the maximal possible density, typically R = 1; w̌, respectively,
ŵ, is the minimum, respectively, maximum, of the maximal speeds of each
vehicle.

In (1.1), the two phases, free and congested, are described by the sets

F =
{

(ρ, w) ∈ [0, R]× [w̌, ŵ] : v(ρ, ρw) = Vmax

}
, (2.3)

C =
{

(ρ, w) ∈ [0, R]× [w̌, ŵ] : v(ρ, ρw) = wψ(ρ)
}
, (2.4)

represented in Figure 1. Note that F and C are closed sets and F∩C 6= ∅.
Note also that F is one-dimensional in the (ρ, ρv) plane of the fundamental
diagram, while it is two-dimensional in the (ρ, η) coordinates.
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Figure 1: The free phase F and the congested phase C resulting from (1.1)
in the coordinates, from left to right, (ρ, η) and (ρ, ρv).

We recall also the eigenvalues, right eigenvectors, and Lax curves η =
Li(ρ; ρo, ηo) in C:

λ1(ρ, η) = η ψ′(ρ) + v(ρ, η), λ2(ρ, η) = v(ρ, η),

r1(ρ, η) =

[
−ρ
−η

]
, r2(ρ, η) =

 1

η
(
1
ρ −

ψ′(ρ)
ψ(ρ)

)  ,
∇λ1 · r1 = − d

2

dρ2
[
ρψ(ρ)

]
, ∇λ2 · r2 = 0,

L1(ρ; ρo, ηo) = ηo
ρ

ρo
, L2(ρ; ρo, ηo) =

ρ v(ρo, ηo)

ψ(ρ)
, ρo < R.

When ρo = R, the 2-Lax curve through (ρo, ηo) is the segment ρ = R,
η ∈ [Rw̌,Rŵ].

Finally, we list the waves and the notations that we will use in the present
paper.

• First family wave: a wave connecting a left state (ρl, ηl) ∈ C with a
right state (ρr, ηr) ∈ C such that ηl

ρl
= ηr

ρr
.

• Second family wave: a wave connecting a left state (ρl, ηl) ∈ C with a
right state (ρr, ηr) ∈ C such that v (ρl, ηl) = v (ρr, ηr).

• Linear wave: a wave connecting two states in the free phase.

• Phase transition wave: a wave connecting a left state (ρl, ηl) ∈ F with
a right state (ρr, ηr) ∈ C satisfying ηl

ρl
= ηr

ρr
.

3 Main Result

Before stating the main result, we introduce the definition of solution to the
initial boundary value problem (1.2).
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Definition 3.1 The function

(ρ∗, η∗) ∈ C0
(

[0,+∞[; L1((a, b);F ∪ C)
)

is a solution to (1.2) if

1. the function (ρ∗, η∗) is a weak solution to (1.1), for (t, x) ∈ (0,+∞)×
(a, b);

2. for a.e. t > 0, the function x 7→
(
ρ∗(t, x), η∗(t, x)

)
has bounded total

variation;

3. for a.e. t > 0, the Riemann problem

{
∂tρ+ ∂x

(
ρ v(ρ, η)

)
= 0

∂tη + ∂x
(
η v(ρ, η)

)
= 0

if τ > 0, x ∈ R,

(ρ, η) (0, x) =

{
(ρa, ηa) (t) if x < a
(ρ∗, η∗) (t, a+) if x > a

admits a self similar solution (ρ̃, η̃) such that, for a.e. τ > 0,

(ρ̃, η̃) (τ, a+) =
(
ρ∗, η∗

)
(t, a+).

4. for a.e. t > 0, the Riemann problem

{
∂tρ+ ∂x

(
ρ v(ρ, η)

)
= 0

∂tη + ∂x
(
η v(ρ, η)

)
= 0

if τ > 0, x ∈ R,

(ρ, η) (0, x) =

{
(ρ∗, η∗) (t, b−) if x < b
(ρb, ηb) (t) if x > b

admits a self similar solution (ρ̃, η̃) such that, for a.e. τ > 0,

(ρ̃, η̃) (τ, b−) =
(
ρ∗, η∗

)
(t, b−).

5.
(
ρ∗(0, x), η∗(0, x)

)
=
(
ρ0(x), η0(x)

)
, for a.e. x ∈ (a, b).

Remark 3.2 The boundaries treated in this paper are characteristic, since
there are phase transition waves with zero speed. Conditions 3 and 4 of
Definition 3.1 are exactly the same as the boundary condition in the char-
acteristic case in [1].

We can now state the following main result:

Theorem 3.3 Let assumptions (H-1), (H-2) and (H-3) hold. Fix the
initial condition (ρ0, η0) ∈ BV((a, b);F ∪ C) and fix the boundary data
(ρa, ηa), (ρb, ηb) ∈

(
BV ∩ L1

)
((0,+∞);F ∪ C). Then there exists (ρ∗, η∗),

a solution to (1.2) in the sense of Definition 3.1.

The proof is contained in the following subsections.
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3.1 Wave-Front Tracking Approximate Solution

We construct piecewise constant approximations via the wave-front tracking
technique. See [5, 10, 17] for the general theory. At first, we give the fol-
lowing definition of an ε-approximate wave-front tracking solution to (1.2).

Definition 3.4 Given ε > 0, the map ūε = (ρ̄ε, η̄ε) is an ε-approximate
wave-front tracking solution to (1.2) if there exist ūa,ε =

(
ρ̄a,ε, η̄a,ε

)
and

ūb,ε =
(
ρ̄b,ε, η̄b,ε

)
such that the following conditions hold.

1. ūε ∈ C0
(
(0,+∞); L1((a, b);F ∪ C)

)
and ūa,ε, ūb,ε ∈ L1

(
(0,+∞);F ∪ C

)
.

2. (ρ̄ε, η̄ε) is picewise constant, with discontinuities along finitely many
straight lines in (0,+∞)×(a, b). Moreover the jumps can be of the first
family, of the second family, linear waves or phase transition waves.

3. ūa,ε and ūb,ε are piecewise constant with a finite number of disconti-
nuities.

4. It holds that

∥∥∥(ρ̄ε(0, ·), η̄ε(0, ·))− (ρ0(·), η0(·))∥∥∥
L1(a,b)

< ε∥∥∥(ρ̄a,ε, η̄a,ε)− (ρa, ηa)
∥∥∥
L1(0,+∞)

< ε∥∥∥(ρ̄b,ε, η̄b,ε)− (ρb, ηb)
∥∥∥
L1(0,+∞)

< ε

TV
(
ρ̄ε(0, ·), η̄ε(0, ·)

)
≤ TV

(
ρ0(·), η0(·)

)
TV

(
ρ̄a,ε, η̄a,ε

)
≤ TV (ρa, ηa)

TV
(
ρ̄b,ε, η̄b,ε

)
≤ TV (ρb, ηb) .

5. It holds that, for a.e. t > 0, the Riemann problem with initial condition{ (
ρa,ε, ηa,ε

)
(t) if x < a

(ρ̄ε, η̄ε) (t, a+) if x > a

is solved with waves with negative speed.

6. It holds that, for a.e. t > 0, the Riemann problem with initial condition{
(ρ̄ε, η̄ε) (t, b−) if x < b(
ρb,ε, ηb,ε

)
(t) if x > b

is solved with waves with positive speed.

6



We consider now three sequences (ρ0,ν , η0,ν), (ρa,ν , ηa,ν) and (ρb,ν , ηb,ν)
of piecewise constant functions with a finite number of discontinuities such
that the following conditions hold.

1. (ρ0,ν , η0,ν) : (a, b) → F ∪ C and (ρa,ν , ηa,ν), (ρb,ν , ηb,ν) : (0,+∞) →
F ∪ C;

2. the following limits hold

lim
ν→+∞

(ρ0,ν , η0,ν) = (ρ0, η0) in L1((a, b);F ∪ C)

lim
ν→+∞

(ρa,ν , ηa,ν) = (ρa, ηa) in L1((0,+∞);F ∪ C)

lim
ν→+∞

(ρb,ν , ηb,ν) = (ρb, ηb) in L1((0,+∞);F ∪ C);

3. the following inequalities hold

TV(ρ0,ν , η0,ν) ≤ TV(ρ0, η0)

TV(ρa,ν , ηa,ν) ≤ TV(ρa, ηa)

TV(ρb,ν , ηb,ν) ≤ TV(ρb, ηb).

Next, for every ν ∈ N \ {0}, we proceed with the following method. At
time t = 0, we solve all the Riemann problems for x ∈ (a, b) and the bound-
ary Riemann problems at x = a and at x = b. At every interaction between
two waves, we solve the corresponding Riemann problem and at every dis-
continuity time for (ρa,ν , qa,ν) or for (ρb,ν , qb,ν), we solve the corresponding
Riemann problem at x = a or x = b. Finally, when a wave interacts with the
boundary x = a or x = b, we solve the corresponding boundary Riemann
problem.

Remark 3.5 We may assume that, at every positive time t, at most one of
the following possibilities happens:

1. two waves interact together at a point x ∈ (a, b);

2. a wave interacts with the boundary x = a or with the boundary x = b;

3. t is a point of discontinuity either for (ρa,ν , ηa,ν) or for (ρb,ν , ηb,ν).

Given an ε-approximate wave-front tracking solution ūε = (ρ̄ε, η̄ε) with
boundary data ūa,ε =

(
ρ̄a,ε, η̄a,ε

)
and ūb,ε =

(
ρ̄b,ε, η̄b,ε

)
in the union of the

free phase F and the congested phase C, define, for a.e. t > 0, the following
functionals
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Fw(t) =
∑
x∈Ii

∣∣∣w (ūε(t, x+)
)
− w

(
ūε(t, x−)

)∣∣∣ (3.5)

Fṽ(t) =
∑
x∈Ii

∣∣∣ṽ (ūε(t, x+)
)
− ṽ

(
ūε(t, x−)

)∣∣∣ (3.6)

Fa(t) =
∣∣∣w (ūε(t, a+)

)
− w

(
ūa,ε(t)

)∣∣∣+
∣∣∣ṽ (ūε(t, a+)

)
− ṽ

(
ūa,ε(t)

)∣∣∣ (3.7)

Fb(t) =
∣∣∣w (ūε(t, b−)

)
− w

(
ūb,ε(t)

)∣∣∣+
∣∣∣ṽ (ūε(t, b−)

)
− ṽ

(
ūb,ε(t)

)∣∣∣ (3.8)

F(t) = Fw(t) + Fṽ(t) + Fa(t) + Fb(t) , (3.9)

where, we denote by ṽ the function ṽ(ρ, η) = ηψ(ω)
ρ . Note that the previous

functionals may vary only at times at which the boundary datum changes
or at times t̄ when two waves interact or a wave reaches the boundary.

Remark 3.6 The functional F(t) is composed by 4 terms. The first term
measures the strength of waves of second family. The second term measures
the strength of waves of first family and of phase transition waves. Moreover
both of the first two terms measure the strength of linear waves. Finally, the
last two terms measure the distance of the boundary term from the trace at
the boundary of the approximate solution.

3.2 Interaction Estimates

Next we consider interactions estimates of waves. We describe wave inter-
actions by the nature of the involved waves, see [14, 15]. For example, if a
wave of the second family hits a wave of the first family producing a phase-
transition wave, we write 2-1/ PT . Here the symbol “/” divides the waves
before and after the interaction.

Lemma 3.7 Assume that the wave ((ρl, ηl), (ρm, ηm)) interacts with the
wave ((ρm, ηm), (ρr, ηr)) at the point (t̄, x̄) with t̄ > 0 and x̄ ∈ (a, b). Then
F(t̄+) ≤ F(t̄−). The possible interactions are: 2-1/1-2, LW-PT /PT -2,
1-1/1, PT -1/PT .

Proof. For simplicity, we define

vl = ṽ(ρl, ηl), vm = ṽ(ρm, ηm), vr = ṽ(ρr, ηr), (3.10)

wl = w(ρl, ηl), wm = w(ρm, ηm), wr = w(ρr, ηr).

We have four different cases.

1. The case 2-1/1-2. In this case, a wave ((ρl, ηl), (ρm, ηm)) of the sec-
ond family interacts with a wave ((ρm, ηm), (ρr, ηr)) of the first fam-
ily producing a wave ((ρl, ηl), (ρi, ηi)) of the first family and a wave
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Figure 2: Wave interactions in a road. Above, from left to right, the cases
2-1/1-2 and LW-PT /PT -2. Below, from left to right, the cases 1-1/1 and
PT -1/PT .

((ρi, ηi), (ρr, ηr)) of the second family. The only possible case is that all
the states (ρl, ηl), (ρm, ηm), (ρr, ηr), (ρi, ηi) are in the congested phase
C, see Figure 2, above, left. For the functional (3.5) we have

Fw(t̄+)−Fw(t̄−) =
∣∣∣wl − wi∣∣∣+

∣∣∣wi − wr∣∣∣− ∣∣∣wl − wm∣∣∣− |wm − wr| .
Now wl = wi since (ρl, ηl) and (ρi, ηi) belong to the Lax curve of the
first family. Analogously wm = wr. Thus

Fw(t̄+)−Fw(t̄−) =
∣∣∣wl − wr∣∣∣− ∣∣∣wl − wr∣∣∣ = 0 .

Analogously for the functional (3.6), we have that

Fv(t̄+)−Fv(t̄−) =
∣∣∣vl − vi∣∣∣+

∣∣∣vi − vr∣∣∣− ∣∣∣vl − vm∣∣∣− |vm − vr|
and since vi = vr and vl = vm, because the states (ρi, ηi), (ρr, ηr) and
the states (ρl, ηl), (ρm, ηm) respectively belong to the same Lax curve
of the second family,

Fv(t̄+)−Fv(t̄−) =
∣∣∣vl − vr∣∣∣− ∣∣∣vl − vr∣∣∣ = 0 .

Since ∆Fa(t̄) = ∆Fb(t̄) = 0, we have that ∆F(t̄) = 0.
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2. The case LW-PT /PT -2. In this case, a linear wave ((ρl, ηl), (ρm, ηm))
interacts with a phase transition wave ((ρm, ηm), (ρr, ηr)) producing a
phase transition wave ((ρl, ηl), (ρi, ηi)) and a wave ((ρi, ηi), (ρr, ηr)) of
the second family. The only possible case is that the states (ρl, ηl),
(ρm, ηm) are in the free phase F and the states (ρi, ηi), (ρr, ηr) are
in the congested phase C, see Figure 2, above, right. For the func-
tional (3.5) we have

Fw(t̄+)−Fw(t̄−) =
∣∣∣wl − wi∣∣∣+

∣∣∣wi − wr∣∣∣− ∣∣∣wl − wm∣∣∣− |wm − wr| .
Similarly as before, wl = wi and wm = wr. Thus

Fw(t̄+)−Fw(t̄−) =
∣∣∣wl − wr∣∣∣− ∣∣∣wl − wr∣∣∣ = 0 .

For the functional (3.6), we have that

Fv(t̄+)−Fv(t̄−) =
∣∣∣vl − vi∣∣∣+

∣∣∣vi − vr∣∣∣− ∣∣∣vl − vm∣∣∣− |vm − vr| .
Since vi = vr, and by the triangular inequality:

Fv(t̄+)−Fv(t̄−) =
∣∣∣vl − vr∣∣∣− ∣∣∣vl − vm∣∣∣− |vm − vr|

=
∣∣∣vl + vm − vm − vr

∣∣∣− ∣∣∣vl − vm∣∣∣− |vm − vr|
≤ 0 .

Since ∆Fa(t̄) = ∆Fb(t̄) = 0, we have that ∆F(t̄) ≤ 0.

3. The case 1-1/1. In this case, a wave ((ρl, ηl), (ρm, ηm)) of the first fam-
ily interacts with another wave ((ρm, ηm), (ρr, ηr)) of the first family
producing again a wave ((ρl, ηl), (ρr, ηr)) of the first family. The only
possible case is that all the states (ρl, ηl), (ρm, ηm), (ρr, ηr) are in the
congested phase C, see Figure 2, below, left. For the functional (3.5)
we have

Fw(t̄+)−Fw(t̄−) =
∣∣∣wl − wr∣∣∣− ∣∣∣wl − wm∣∣∣− |wm − wr| = 0 ,

since wl = wm = wr. For the functional (3.6), by the triangular
inequality we have that

Fv(t̄+)−Fv(t̄−) =
∣∣∣vl − vr∣∣∣− ∣∣∣vl − vm∣∣∣− |vm − vr| ≤ 0 .

Since ∆Fa(t̄) = ∆Fb(t̄) = 0, we have that ∆F(t̄) ≤ 0.
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4. The case PT -1/PT . A phase transition wave ((ρl, ηl), (ρm, ηm)) in-
teracts with a wave ((ρm, ηm), (ρr, ηr)) of the first family producing a
phase transition wave ((ρl, ηl), (ρr, ηr)). The only possible case is that
the state (ρl, ηl) is in the free phase F and the states (ρm, ηm), (ρr, ηr)
are in the congested phase C, see Figure 2, below, right. For the
functional (3.5) we have

Fw(t̄+)−Fw(t̄−) =
∣∣∣wl − wr∣∣∣− ∣∣∣wl − wm∣∣∣− |wm − wr| = 0 .

since wl = wm = wr. For the functional (3.6), by the triangular
inequality we have that

Fv(t̄+)−Fv(t̄−) =
∣∣∣vl − vr∣∣∣− ∣∣∣vl − vm∣∣∣− |vm − vr| ≤ 0 .

Since ∆Fa(t̄) = ∆Fb(t̄) = 0, we have that ∆F(t̄) ≤ 0.

The proof is thus completed. �

Lemma 3.8 Assume that the wave ((ρl, ql), (ρr, ηr)) interacts with the bound-
ary at the point (t̄, a), with t̄ > 0. Then F(t̄+) ≤ F(t̄−). The only possible
interaction, producing one wave, is 1/PT .

Proof. First note that ∆Fb(t̄) = 0, since the interaction happens at x = a.
Moreover, since the boundary Riemann problem does not generate waves,
then the states (ρ̄a,ε, η̄a,ε)(t) and (ρl, ηl) are connected through waves with
negative speed. For simplicity, we use the notations in (3.10), moreover we
define

va,ε = ṽ
(
ūa,ε(t)

)
, wa,ε = w

(
ūa,ε(t)

)
. (3.11)

We have the following cases.

1. The case (ρ̄a,ε, η̄a,ε)(t) = (ρl, ηl).

Since the wave ((ρl, ηl), (ρr, ηr)) has negative speed, then, at time t̄,
it is absorbed and no other wave is generated. If ((ρl, ηl), (ρr, ηr)) is a
wave of the first family or a phase transition wave with negative speed,

anyway we have ∆Fw(t̄) = 0, ∆Fṽ(t̄) = −
∣∣∣vl − vr∣∣∣ and ∆Fa(t̄) =∣∣∣vl − vr∣∣∣. Consequentely

∆F(t̄) = ∆Fw(t̄) + ∆Fṽ(t̄) + ∆Fa(t̄) + ∆Fb(t̄) = 0 .

2. The case when the states (ρ̄a,ε, η̄a,ε)(t̄) and (ρl, ηl) are connected by a
wave of the first family.

11



In this situation both the states (ρ̄a,ε, η̄a,ε)(t̄) and (ρl, ηl) are in the
congested phase C and so the interacting wave also is of the first fam-
ily; at time t̄, it is absorbed and no other wave is generated.

Thus we have ∆Fw(t̄) = 0, ∆Fṽ(t̄) = −
∣∣∣vl − vr∣∣∣ and ∆Fa(t̄) =

|va,ε − vr| −
∣∣∣va,ε − vl∣∣∣. Then, by the triangular inequality

∆F(t̄) = |va,ε − vr| −
∣∣∣va,ε − vl∣∣∣

−
∣∣∣vl − vr∣∣∣ ≤ 0 .

3. The case when the states (ρ̄a,ε, η̄a,ε)(t̄) and (ρl, ηl) are connected by a
phase-transition wave with negtive speed.

In this situation the state (ρ̄a,ε, η̄a,ε)(t̄) is in the free phase F and
(ρl, ηl) is in the congested phase C and so the interacting wave is of
the first family. The only possible cases are that no wave is produced
at time t̄ or a phase transition wave is produced at time t̄.

In the case no wave is produced at time t̄, the situation is analogous
to the previous case.

In the case a phase transition wave with positive speed, connecting the
states (ρ̄a,ε, η̄a,ε)(t̄) to (ρr, ηr), is produced at time t̄, then (ρ̄a,ε, η̄a,ε)(t̄)
is in the free phase F and (ρr, ηr) is in the congested phase C. Thus we

have that ∆Fw(t̄) = 0, ∆Fṽ(t̄) = |va,ε − vr| −
∣∣∣vl − vr∣∣∣ and ∆Fa(t̄) =

−
∣∣∣va,ε − vl∣∣∣. Then

∆F(t̄) = |va,ε − vr| −
∣∣∣vl − vr∣∣∣

−
∣∣∣va,ε − vl∣∣∣ ≤ 0 .

The proof is thus completed. �

Lemma 3.9 Assume that the wave ((ρl, ηl), (ρr, ηr)) interacts with the bound-
ary at the point (t̄, b), with t̄ > 0. Then F(t̄+) ≤ F(t̄−). The only possible
interaction, producing one wave, is LW/PT .

Proof. First note that ∆Fa(t̄) = 0, since the interaction happens at x = b.
Moreover, since the boundary Riemann problem does not generate waves,
then the states (ρ̄a,ε, η̄a,ε)(t) and (ρl, ηl) are connected through waves with
positive speed. For simplicity, we use the notations in (3.10), (3.11). We
have the following cases.
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1. The case (ρr, ηr) = (ρ̄b,ε, η̄b,ε)(t).

Since the wave ((ρl, ηl), (ρr, ηr)) has positive speed, then, at time t̄, it
is absorbed and no other wave is generated.

If ((ρl, ηl), (ρr, ηr)) is a wave of the second family, we have ∆Fṽ(t̄) = 0,

∆Fw(t̄) = −
∣∣∣wl − wr∣∣∣ and ∆Fb(t̄) =

∣∣∣wl − wr∣∣∣. Consequentely

∆F(t̄) = ∆Fw(t̄) + ∆Fṽ(t̄) + ∆Fa(t̄) + ∆Fb(t̄) = 0 .

If ((ρl, ηl), (ρr, ηr)) is a phase transition wave with positive speed, we

have ∆Fw(t̄) = 0, ∆Fṽ(t̄) = −
∣∣∣vl − vr∣∣∣ and ∆Fb(t̄) =

∣∣∣vl − vr∣∣∣. Con-

sequentely
∆F(t̄) = 0 .

2. The case when the states (ρr, ηr) and (ρ̄b,ε, η̄b,ε)(t̄) are connected by a
wave of the second family.

In this situation both the states (ρr, ηr) and (ρ̄b,ε, η̄b,ε)(t̄) are in the
congested phase C and the interacting wave could be a wave of the
second family or a phase transition with positive speed.

If the interacting wave is of the second family, then no wave is gener-

ated at time t̄. Thus we have ∆Fṽ(t̄) = 0, ∆Fw(t̄) = −
∣∣∣wl − wr∣∣∣ and

∆Fb(t̄) =
∣∣∣wl − wb,ε∣∣∣− ∣∣∣wr − wb,ε∣∣∣. Then,

∆F(t̄) ≤ 0 .

If the interacting wave is a phase transition wave with positive speed,
then no wave is generated at time t̄. Thus we have ∆Fw(t̄) = 0,

∆Fṽ(t̄) = −
∣∣∣vl − vr∣∣∣ and ∆Fb(t̄) =

∣∣∣vl − vr∣∣∣+∣∣∣wr − wb,ε∣∣∣−∣∣∣wr − wb,ε∣∣∣.
Then,

∆F(t̄) = 0 .

3. The case when the states (ρr, ηr) and (ρ̄b,ε, η̄b,ε)(t̄) are connected by a
phase transition wave with positive speed.

In this situation the state (ρr, ηr) is in the free phase F and the state
(ρ̄b,ε, η̄b,ε)(t̄) is in the congested phase C and so, the interacting wave
is a linear wave.

In this case a phase transition wave with negative speed between the
states (ρl, ηl) and (ρ̄b,ε′ , η̄b,ε′)(t̄), possibly followed by a wave of the
second family between the states (ρ̄b,ε′ , η̄b,ε′)(t̄) and (ρ̄b,ε, η̄b,ε)(t̄), are
generated at time t̄. Following the usual notations, define va,ε

′
=

ṽ
(
ūa,ε′(t)

)
and wa,ε

′
= w

(
ūa,ε′(t)

)
. Then ∆Fw(t̄) = −

∣∣∣wl − wr∣∣∣,
13



∆Fṽ(t̄) =
∣∣∣vl − vb,ε′∣∣∣−∣∣∣vl − vr∣∣∣ and ∆Fb(t̄) =

∣∣∣wb,ε − wb,ε′∣∣∣−∣∣∣vb,ε − vr∣∣∣.
Since wl = wb,ε

′
, wr = wb,ε and vb,ε

′
= vb,ε, we have

∆F(t̄) =
∣∣∣vl − vb,ε′∣∣∣− ∣∣∣vl − vr∣∣∣− ∣∣∣wl − wr∣∣∣+

∣∣∣wb,ε − wb,ε′∣∣∣− ∣∣∣vb,ε − vr∣∣∣
=
∣∣∣vl − vb,ε∣∣∣− ∣∣∣vl − vr∣∣∣− ∣∣∣vb,ε − vr∣∣∣ ≤ 0 .

4. The case when the states (ρr, ηr) and (ρ̄b,ε, η̄b,ε)(t̄) are connected by a
linear wave.

In this situation both the states (ρr, ηr) and (ρ̄b,ε, η̄b,ε)(t̄) are in the
free phase F and so, the interacting wave is also a linear wave.

In this case no wave is generated at time t̄, then ∆Fw(t̄) = −
∣∣∣wl − wr∣∣∣,

∆Fṽ(t̄) = −
∣∣∣vl − vr∣∣∣ and ∆Fb(t̄) =

∣∣∣vl − vb,ε∣∣∣+∣∣∣wl − wb,ε∣∣∣−∣∣∣vr − vb,ε∣∣∣−∣∣∣wr − wb,ε∣∣∣. Then, by applying twice the triangular inequality,

∆F(t̄) =
∣∣∣vl − vb,ε∣∣∣+

∣∣∣wl − wb,ε∣∣∣− ∣∣∣vr − vb,ε∣∣∣− ∣∣∣wr − wb,ε∣∣∣
−
∣∣∣vl − vr∣∣∣− ∣∣∣wl − wr∣∣∣ ≤ 0 .

The proof is thus completed. �

Lemma 3.10 Assume that t̄ is a point of discontinuity for the boundary

datum at x = a. Then, ∆F(t̄) ≤
∣∣∣∣w ((ūa,ε) (t+)

)
− w

((
ūa,ε

)
(t−)

)∣∣∣∣ +∣∣∣∣ṽ ((ūa,ε) (t+)
)
− ṽ

((
ūa,ε

)
(t−)

)∣∣∣∣.
Proof. In general, at time t̄, a wave with positive speed emerges from the
boundary x = a. We denote with ur = (ρr, ηr) the trace of the approximate
solution before time t̄ at x = a+ and, for simplicity, we define

v+ = ṽ
((
ūa,ε

)
(t+)

)
, v− = ṽ

((
ūa,ε

)
(t−)

)
, vm = ṽ(um), vr = ṽ(ur),

w+ = w
((
ūa,ε

)
(t+)

)
, w− = w

((
ūa,ε

)
(t−)

)
, wm = w(um), wr = w(ur).

We solve the Riemann problem at time t̄ between the states ūb,ε(t+) and
ur. We have the following cases.

1. The states ūa,ε(t+) and ūa,ε(t−) are both in the congested phase C.

If ur belongs to the curve of the first family passing through ūa,ε(t−),
then the Riemann problem produces a wave of the first family between
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ūa,ε(t+) and um and a wave of the second family between um and
ur. Consequentely ∆Fw(t̄) = |wm − wr|, ∆Fṽ(t̄) = 0 and ∆Fa(t̄) =∣∣v+ − vm∣∣ − ∣∣v− − vr∣∣. Then, since wm = w+, wr = w−, vr = vm and
by the triangular inequality,

∆F(t̄) = |wm − wr|+
∣∣∣v+ − vm∣∣∣− ∣∣∣v− − vr∣∣∣

=
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − vm∣∣∣− ∣∣∣v− − vm∣∣∣

≤
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

If ur = ūa,ε(t−), then the Riemann problem between ūa,ε(t+) and
ūa,ε(t−) produces a wave of the first family between ūa,ε(t+) and um

and a wave of the second family between um and ūa,ε(t−). Conse-
quentely ∆Fw(t̄) =

∣∣wm − w−∣∣, ∆Fṽ(t̄) = 0 and ∆Fa(t̄) =
∣∣v+ − vm∣∣.

Then, since wm = w+, vm = v+,

∆F(t̄) =
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

2. The states ūa,ε(t+) and ūa,ε(t−) are both in the free phase F .

If ur belongs to the phase transition passing through ūa,ε(t−), then ur

is in the congested phase C. The Riemann problem produces a phase
transition, with positive or negative speed, between ūa,ε(t+) and um

(which is in C) and a wave of the second family between um and
ur. Thus ∆Fw(t̄) = |wm − wr| and ∆Fṽ(t̄) + ∆Fa(t̄) =

∣∣v+ − vm∣∣ −∣∣v− − vr∣∣. Then, since wm = w+, wr = w−, vr = vm and by the
triangular inequality,

∆F(t̄) ≤
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

If ur = ūa,ε(t−), then the Riemann problem between ūa,ε(t+) and
ūa,ε(t−) produces a linear wave between ūa,ε(t+) and ūa,ε(t−). Thus
∆Fw(t̄) =

∣∣w+ − w−
∣∣, ∆Fṽ(t̄) =

∣∣v+ − v−∣∣ and ∆Fa(t̄) = 0. Then,

∆F(t̄) =
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

3. The state
(
ūa,ε

)
(t−) is in the free phase F and the state

(
ūa,ε

)
(t+)

is in the congested phase C.

If ur belongs to the phase transition passing through ūa,ε(t−), then ur

is in the congested phase C. The Riemann problem produces a wave
of the first family between ūa,ε(t+) and um and a wave of the second
family between um and ur. Thus ∆Fw(t̄) = |wm − wr|, ∆Fv(t̄) = 0
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and ∆Fa(t̄) =
∣∣v+ − vm∣∣ − ∣∣v− − vr∣∣. Then, since wm = w+, wr =

w−, vr = vm,

∆F(t̄) ≤
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

If ur = ūa,ε(t−), then the Riemann problem between ūa,ε(t+) and
ūa,ε(t−) produces a wave of the first family between ūa,ε(t+) and um

(which is in F ∩C) and a linear wave between um and ūa,ε(t−). Thus
∆Fw(t̄) =

∣∣wm − w−∣∣, ∆Fṽ(t̄) =
∣∣vm − v−∣∣ and ∆Fa(t̄) =

∣∣v+ − vm∣∣.
Then, since wm = w+ and by the triangualar inequality,

∆F(t̄) ≤
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

4. The state
(
ūa,ε

)
(t−) is in the congested phase C and the state

(
ūa,ε

)
(t+)

is in the free phase F .

If ur belongs to the curve of the first family passing through ūa,ε(t−),
then the Riemann problem produces a phase transition, with positive
or negative speed, between ūa,ε(t+) and um (which is in C) and a wave
of the second family between um and ur. Thus ∆Fw(t̄) = |wm − wr|
and ∆Fṽ(t̄) + ∆Fa(t̄) =

∣∣v+ − vm∣∣− ∣∣v− − vr∣∣. Then, as before,

∆F(t̄) ≤
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

If ur = ūa,ε(t−), then the Riemann problem between ūa,ε(t+) and
ūa,ε(t−) produces a phase transition between ūa,ε(t+) and um and a
wave of the second family between um and ūa,ε(t−). Thus ∆Fw(t̄) =∣∣wm − w−∣∣, ∆Fṽ(t̄)+∆Fa(t̄) =

∣∣v+ − vm∣∣. Then, since wm = w+ and
vm = v+,

∆F(t̄) =
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

The proof is so concluded. �

Lemma 3.11 Assume that t̄ is a point of discontinuity for the boundary

datum at x = b. Then, ∆F(t̄) ≤
∣∣∣∣w ((ūa,ε) (t+)

)
− w

((
ūa,ε

)
(t−)

)∣∣∣∣ +∣∣∣∣ṽ ((ūa,ε) (t+)
)
− ṽ

((
ūa,ε

)
(t−)

)∣∣∣∣.
Proof. In general, at time t̄, a wave with negative speed emerges from the
boundary x = b. We denote with ul = (ρl, ηl) the trace of the approximate
solution before time t̄ at x = b− and, for simplicity, we define

v+ = ṽ
((
ūb,ε
)

(t+)
)
, v− = ṽ

((
ūb,ε
)

(t−)
)
, vm = ṽ(um), vl = ṽ(ul),

w+ = w
((
ūb,ε
)

(t+)
)
, w− = w

((
ūb,ε
)

(t−)
)
, wm = w(um), wl = w(ul).
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We solve the Riemann problem at time t̄ between the states ul and ūb,ε(t+).
We have the following cases.

1. The states ūb,ε(t+) and ūb,ε(t−) are both in the congested phase C.

If ul belongs to the curve of the second family passing through ūb,ε(t−),
then we have a wave of the first family between ul and um and a wave of
the second family between um and ūb,ε(t+). Consequentely ∆Fw(t̄) =

0, ∆Fṽ(t̄) =
∣∣∣vl − vm∣∣∣ and ∆Fb(t̄) =

∣∣wm − w+
∣∣ − ∣∣∣wl − w−∣∣∣. Then,

since wl = wm, vl = v−, vm = v+ and by the triangular inequality,

∆F(t̄) =
∣∣∣wm − w+

∣∣∣− ∣∣∣wl − w−∣∣∣+
∣∣∣vl − vm∣∣∣

=
∣∣∣wm − w+

∣∣∣− ∣∣∣wm − w−∣∣∣+
∣∣∣v+ − v−∣∣∣

≤
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

If ul belongs to the phase transition passing through ūb,ε(t−), then ul is
in the free phase F . We have a phase transition between ul and um and
a wave of the second family between um and ūb,ε(t+). Consequentely

∆Fw(t̄) = 0, ∆Fṽ(t̄) + ∆Fb(t̄) =
∣∣∣vl − vm∣∣∣ +

∣∣wm − w+
∣∣ − ∣∣∣vl − v−∣∣∣.

Then, since wm = w− and vm = v+,

∆F(t̄) =
∣∣∣wm − w+

∣∣∣− ∣∣∣vl − v−∣∣∣+
∣∣∣vl − vm∣∣∣

=
∣∣∣w− − w+

∣∣∣− ∣∣∣vl − v−∣∣∣+
∣∣∣vl − v+∣∣∣

≤
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

If ul = ūb,ε(t−), the Riemann problem between ūb,ε(t−) and ūb,ε(t+)
produces a wave of the first family between ūb,ε(t−) and um and a
wave of the second family between um and ūb,ε(t+). Consequentely
∆Fw(t̄) = 0, ∆Fṽ(t̄) =

∣∣v− − vm∣∣ and ∆Fb(t̄) =
∣∣wm − w+

∣∣. Then,
since wm = w− and vm = v+,

∆F(t̄) =
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

2. The states ūb,ε(t+) and ūb,ε(t−) are both in the free phase F .

If ul belongs to the phase transition passing through ūb,ε(t−), then ul

is in the congested phase C. The Riemann problem produces a wave of
the first family between ul and um (which is in F∩C) and a linear wave

between um and ūb,ε(t+). Thus ∆Fw(t̄) = 0 and ∆Fṽ(t̄) =
∣∣∣vl − vm∣∣∣
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and ∆Fb(t̄) =
∣∣vm − v+∣∣+∣∣wm − w+

∣∣−∣∣∣vl − v−∣∣∣. Then, since vm = v−

and wm = w−,

∆F(t̄) =
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

If ul belongs to the linear wave passing through ūb,ε(t−), then the Rie-
mann problem produces a linear wave between ul and ūb,ε(t+). Thus

∆Fw(t̄) = 0 and ∆Fṽ(t̄) = 0 and ∆Fb(t̄) =
∣∣∣vl − v+∣∣∣ +

∣∣∣wl − w+
∣∣∣ −∣∣∣vl − v−∣∣∣− ∣∣∣wl − w−∣∣∣. Then,

∆F(t̄) ≤
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

If ul = ūb,ε(t−), then the Riemann problem between ūb,ε(t−) and
ūb,ε(t+) produces a linear wave between ūb,ε(t+) and ūb,ε(t−). Thus
∆Fw(t̄) = 0, ∆Fṽ(t̄) = 0 and ∆Fb(t̄) =

∣∣w+ − w−
∣∣+∣∣v+ − v−∣∣. Then,

∆F(t̄) =
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

3. The state
(
ūb,ε
)

(t−) is in the free phase F and the state
(
ūb,ε
)

(t+) is
in the congested phase C.

If ul belongs to the phase transition passing through ūb,ε(t−), then ul

is in the congested phase C. The Riemann problem produces a wave
of the first family between ul and um and a wave of the second family

between um and
(
ūb,ε
)

(t+). Thus ∆Fw(t̄) = 0, ∆Fv(t̄) =
∣∣∣vl − vm∣∣∣

and ∆Fb(t̄) =
∣∣wm − w+

∣∣ − ∣∣∣vl − v−∣∣∣. Then, since wm = w− and

vm = v+,

∆F(t̄) ≤
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

If ul belongs to the linear wave passing through ūb,ε(t−), then the
Riemann problem produces a phase transition between ul and um and a
wave of the second family between um and

(
ūb,ε
)

(t+). Thus ∆Fw(t̄) =

0, ∆Fv(t̄) + ∆Fb(t̄) =
∣∣∣vl − vm∣∣∣+ ∣∣wm − w+

∣∣− ∣∣∣vl − v−∣∣∣− ∣∣∣wl − w−∣∣∣.
Then, since wm = wl and vm = v+,

∆F(t̄) ≤
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

If ul = ūb,ε(t−), the Riemann problem between ūb,ε(t−) and ūb,ε(t+)
produces a phase transition between ūb,ε(t−) and um and wave of the
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second family between um and ūb,ε(t+). Thus ∆Fw(t̄) = 0, ∆Fṽ(t̄) +
∆Fb(t̄) =

∣∣vm − v−∣∣+∣∣w+ − wm
∣∣. Then, since wm = w+ and vm = v+,

∆F(t̄) =
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

4. The state
(
ūb,ε
)

(t−) is in the congested phase C and the state
(
ūb,ε
)

(t+)
is in the free phase F .

If ul belongs to the curve of the second family passing through ūb,ε(t−),
then the Riemann problem produces a wave of the first family be-
tween ul and um (which is in F ∩ C) and a linear wave between um

and
(
ūb,ε
)

(t+). Consequentely ∆Fw(t̄) = 0, ∆Fṽ(t̄) =
∣∣∣vl − vm∣∣∣ and

∆Fb(t̄) =
∣∣vm − v+∣∣ +

∣∣wm − w+
∣∣ − ∣∣∣wl − w−∣∣∣. Then, since wl = wm

and vl = v−,

∆F(t̄) ≤
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

If ul belongs to the phase transition passing through ūb,ε(t−), then ul

is in the free phase F . The Riemann problem produces a linear wave
between ul and

(
ūb,ε
)

(t+). Consequentely ∆Fw(t̄) = 0, ∆Fṽ(t̄) = 0

and ∆Fb(t̄) =
∣∣∣vl − v+∣∣∣+ ∣∣∣wl − w+

∣∣∣− ∣∣∣vl − v−∣∣∣. Then, since wl = w−,

∆F(t̄) ≤
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

If ul = ūb,ε(t−), the Riemann problem between ūb,ε(t−) and ūb,ε(t+)
produces a wave of the first family between ūb,ε(t−) and um and a
linear wave between um and ūa,ε(t+). Thus ∆Fw(t̄) = 0, ∆Fṽ(t̄) =∣∣v− − vm∣∣ and ∆Fb(t̄) =

∣∣wm − w+
∣∣ +

∣∣vm − v+∣∣. Then, since wm =
w−,

∆F(t̄) ≤
∣∣∣w+ − w−

∣∣∣+
∣∣∣v+ − v−∣∣∣ .

The proof is so concluded. �

Proposition 3.12 There exists M > 0 such that

F(t) ≤M , (3.12)

for a.e. t > 0.

Proof. This is a consequence of the previous Lemmas 3.7, 3.8, 3.9, 3.10,
and 3.11. �
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3.3 Existence of solutions

Next we aim to bound the number of waves and of interactions. The follow-
ing result holds.

Proposition 3.13 The construction in Subsection 3.1 can be done for every
positive time and, for every ν ∈ N \ {0}, it produces a 1

ν -approximate wave-
front tracking solution to (1.2).

Proof. We consider the construction in Subsection 3.1 and the function
uν = (ρν , ην) there built, for ν ∈ N \ {0}. It is sufficient to prove that
the number of waves and interactions generated is finite. We define the
functional Nν(t), which counts the number of discontinuities of (ρν , ην).
Note that the functional Nν(t) is locally constant in time and can vary at
interaction times in the following way.

1. If at time t̄ > 0 two waves interact at x̄ ∈ (a, b), then ∆Nν(t̄) ≤ 0.
More precisely, ∆Nν(t̄) = 0 if and only if the interaction is either
2-1/1-2 or LW-PT /PT -2; see Lemma 3.7.

2. If at time t̄ > 0 a wave interacts with the boundary at x = a, then
∆Nν(t̄) ≤ 0. In the case ∆Nν(t̄) = 0 the interaction is 1/PT ; see
Lemma 3.8.

3. If at time t̄ > 0 a wave interacts with the boundary at x = b, then
∆Nν(t̄) ≤ 0. In the case ∆Nν(t̄) = 0 the interaction is LW/PT ; see
Lemma 3.9.

4. If the time t̄ > 0 is a point of discontinuity for the boundary value(
ρa,ν , ηa,ν

)
, then ∆Nν(t̄) ≤ 2; see Lemma 3.10.

5. If the time t̄ > 0 is a point of discontinuity for the boundary value(
ρb,ν , ηb,ν

)
, then ∆Nν(t̄) ≤ 2; see Lemma 3.11.

The number of waves can increase only in the cases 4., and 5. By con-
struction, theese cases happen at most a finite number of times.

The interactions inside the domain (a, b), 1-1/1 and PT -1/PT , can
happen at most a finite number of times, since we have a uniform bound on
the number of waves.

To prove that the number of interactions is finite, we have to consider
and to bound the number of interactions of the following types:

1. Inside the domain: 2-1/1-2 and LW-PT /PT -2.

2. Left boundary: 1/PT .

3. Right boundary: LW/PT .
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Consider first the interaction LW/PT that can happen a finite number
of times, since the interacting wave is a linear wave and it is not generated
in any other interaction. Then, we consider the interactions 2-1/1-2 and
1/PT . The combination of theese interactions can not happen an infinite
number of times. Indeed 2-1/1-2 can not happen an infinite number of
times since one of the interacting waves, the wave of the first family, is not
generated in any other interaction; consequentely also 1/PT can happen a
finite number of times. Finally, it remains to consider only the interaction
LW-PT /PT -2, that can happen a finite number of times, since no other
interaction produces a linear wave. The proof is so concluded.

�

We can next conclude the proof of the Theorem 3.3.

Proof of Theorem 3.3. Fix an ε-approximate wave-front tracking solution
ūε to (1.2), in the sense of Definition 3.4. By Proposition 3.12, we deduce
that there exists a constant M > 0, depending on the total variation of the
flux of the initial datum, such that, for a.e. t > 0,

Fṽ + Fw ≤M .

The above inequality states that the functional TV
(
(ρ̄ε, η̄ε)(t, ·)

)
is uni-

formly bounded for a.e. t > 0. Hence, at least by a subsequence, there is
a function (ρ̄, η̄), which is a solution to (1.2) in the sense of Definition 3.1.
The proof is so concluded. �
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