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Abstract

In a class of systems of balance laws in several space dimensions, we prove the stability of solutions
with respect to variations in the flow and in the source. This class comprises a model describing
the cutting of metal plates by means of laser beam is proved to admit solutions.
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1. Introduction

Following [3], we consider this system of n balance laws in several space dimensions:{
∂tui + divx ϕi(t, x, ui, ϑ ∗ u) = Φi(t, x, ui, ϑ ∗ u)
ui(0, x) = ūi(x)

i = 1, . . . , n . (1)

Here, t ∈ [0,+∞[ is time, x ∈ RN is the space coordinate and u1, . . . , un are the unknowns. The
function ϑ is a smooth function defined in RN attaining values in Rm×n, so that

ϑ ∈ C2
c(RN ;Rm×n) ,

(
ϑ ∗ u(t)

)
(x) =

∫
RN

ϑ(x− ξ) u(t, ξ) dξ ,
(
ϑ ∗ u(t)

)
(x) ∈ Rm .

Requirements on the flows ϕi, on the sources Φi and on the initial data ūi ensuring the well
posedness of (1) are provided below.

A key property of system (1) is that the equations are coupled only through the nonlocal
convolution term ϑ∗u. It is this feature that allows a well posedness and stability theory, although
we are dealing with systems of balance laws in several space dimensions.

The driving example motivating (1) is a new model for the cutting of metal plates by means of
a laser beam, presented in [3, Section 3], see also [2, 4]. However, (1) also comprises the model [7],
see also [3, Section 4], devoted to the dynamics on a conveyor belt, as well as several crowd
dynamics models, e.g. [1, 6, 8]. Theorem 2.3 below, applied to each of these cases, provides the
stability of solutions with respect to perturbations of fluxes and sources.

2. Results

Throughout, gradx f and divx f denote the gradient and the divergence of f with respect to

the space variable x ∈ RN . Throughout, we fix the non trivial time interval Î = [0, T̂ ]. For any
k > 0, we also denote Uk = [−k, k] and Umk = [−k, k]m.

Recall the definition of solution to (1), based on [9, Definition 1], and the well posedness result
obtained in [3].

Definition 2.1 ([3, Definition 2.1]). Let ū ∈ L∞(RN ,Rn). A map u : Î → L∞(RN ,Rn) is a

solution on Î to (1) with initial datum ū if, for i = 1, . . . , n, setting for all w ∈ R

ϕ̃i(t, x, w) = ϕi
(
t, x, w, (ϑ ∗ u)(t, x)

)
and Φ̃i(t, x, w) = Φi

(
t, x, w, (ϑ ∗ u)(t, x)

)
,
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the map ui is a Kružkov solution [9] to

{
∂tui + divx ϕ̃i(t, x, ui) = Φ̃i(t, x, ui)
ui(0, x) = ūi(x)

, for i = 1, . . . , n.

Theorem 2.2. [3, Theorem 2.2] Assume ϕ,Φ and ϑ satisfy the following conditions, for a given

λ ∈ (C0 ∩ L1)(Î × RN × R+;R+):

(ϕ) For any U > 0, ϕ ∈ (C2 ∩W2,∞)(Î × RN × UU × UmU ;Rn×N ) and for all t ∈ Î, x ∈ RN ,
u ∈ UU , A ∈ UmU

max


∥∥gradx ϕ(t, x, u,A)

∥∥ , ∥∥divx ϕ(t, x, u,A)
∥∥ ,∥∥gradx divx ϕ(t, x, u,A)

∥∥ , ∥∥gradx gradA ϕ(t, x, u,A)
∥∥ ,∥∥gradA ϕ(t, x, u,A)

∥∥ , ∥∥∥grad2
A ϕ(t, x, u,A)

∥∥∥
 ≤ λ(t, x, U) .

(Φ) For any U > 0, Φ ∈ (C1∩W1,∞)(Î×RN ×UU ×UmU ;Rn) and for all t ∈ Î, x ∈ RN , u ∈ UU ,

A ∈ UmU , max
{∥∥Φ(t, x, u,A)

∥∥ , ∥∥gradx Φ(t, x, u,A)
∥∥} ≤ λ(t, x, U).

(ϑ) ϑ ∈ C2
c(RN ;Rm×n).

Then, for any C̄ > 0 there exists a T∗ ∈ Î and positive L, C such that for any datum

ū ∈ (L1 ∩ L∞ ∩BV)(RN ;Rn) with

‖ūi‖L1(RN ;Rn) ≤ C̄,
‖ūi‖L∞(RN ;Rn) ≤ C̄,

TV(ūi) ≤ C̄,
(2)

problem (1) admits a unique solution u ∈ C0
(
[0, T∗]; L

1(RN ;Rn)
)

in the sense of Definition 2.1,

satisfying for all t ∈ [0, T∗] the bounds
∥∥u(t)

∥∥
L1(RN ;Rn)

≤ C,
∥∥u(t)

∥∥
L∞(RN ;Rn)

≤ C and TV(u(t)) ≤
C. Moreover, if also w̄ satisfies (2) and w is the corresponding solution to (1), the following
Lipschitz estimate holds:

∥∥u(t)− w(t)
∥∥
L1(RN ;Rn)

≤ L ‖ū− w̄‖L1(RN ;Rn).

We complete the above statement proving the stability of solutions with respect to Φi and ϕi.

Theorem 2.3. Let ϕ1, ϕ2 and Φ1,Φ2 satisfy satisfy (ϕ) and (Φ) in Theorem 2.2, with the same
function λ. Let ϑ1, ϑ2 satisfy (ϑ). Assume moreover that∫

Î

∫
RN

sup
u∈UU

λ(t, x, u) dx dt < +∞ . (3)

Then, the solutions u` ≡ (u`1, . . . , u
`
n) to

{
∂tu

`
i + divx ϕ

`
i(t, x, ui, ϑ

` ∗ u) = Φ`i(t, x, ui, ϑ
` ∗ u)

ui(0, x) = ūi(x)
,

for ` = 1, 2, satisfy∥∥∥u1(t)− u2(t)
∥∥∥
L1(RN ;Rn)

≤ C∗
(∥∥∥∂u(ϕ1 − ϕ2)

∥∥∥
L∞(I×RN×UU×Um

U ;Rn)

+
∥∥∥gradxA(ϕ1 − ϕ2)

∥∥∥
L1(I×RN ;L∞(UU×Um

U ;R(N+m×n)×n))
(4)

+
∥∥∥Φ1 − Φ2

∥∥∥
L1(I×RN ;L∞(UU×Um

U ;Rn))
+
∥∥∥ϑ1 − ϑ2

∥∥∥
L1(I×RN ;Rm×n)

)
.

for a constant C∗ dependent on the assumptions (ϕ), (Φ) and (ϑ), whose value is estimated
in (9), (10) and (11).

Proof of Theorem 2.3. Below, we often use the standard bound

‖ϑ ∗ u‖L∞(I×RN ;Rn) ≤ ‖ϑ‖L∞(RN ;Rm×n) ‖u‖C0(I;L1(RN ;R)) , (5)
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that holds for ϑ satisfying (ϑ) and u ∈ C0(I; L1(RN ;Rn)). By (ϑ), we may assume that∥∥ϑji∥∥L1(RN ;R)
≤ 1/n for all j = 1, . . . ,m and i = 1, . . . , n. This requirement simplifies several

estimates below, since it ensures that, for U ∈ R+,

ui(x) ∈ UU for all i = 1, . . . , n and x ∈ RN ⇒ (ϑ ∗ u)(x) ∈ UmU for all x ∈ RN .

As in [3, Formula (5.3)], define

Λ(t, U) =
∥∥λ(·, ·, U)

∥∥
L1([0,t]×RN ;R)

. (6)

Fix positive U and R with

‖ū‖L1(RN ;Rn) < R , ‖ū‖L∞(RN ;Rn) < U and TV(ū) < R .

Introduce the L1 closed sphere centered at the initial datum ū with radius R

BL1(ū, R, U) =
{
u ∈ L1(RN ;Rn) : ‖u− ū‖L1(RN ;Rn) ≤ R and u(x) ∈ UnU

}
.

Throughout, we denote by C a quantity dependent only on λ and on the assumptions (ϕ),
(Φ) and (ϑ), but independent of T , R and U . Similarly, CU is a constant depending only on
‖ϕ‖W2,∞(I×RN×UU×Um

U ;Rn×m) and on ‖Φ‖W1,∞(I×RN×UU×Um
U ;Rn).

For any positive T ∈ Î, denote I = [0, T ] and define the map

T : C0
(
I;BL1(ū, R, U)

)
× P → C0

(
I;BL1(ū, R, U)

)
w , (ϕ,Φ, ϑ) → u

(7)

where the parameter space is P = (C2 ∩W2,∞)(Î × RN × UŪ × UmŪ ;Rn×N )× (C1 ∩W1,∞)(Î ×
RN × UŪ × UmŪ ;Rn)×C2

c(RN ;Rm×n).
The map T is proved to be a contraction for T small in [3, Theorem 2.2]. Hence, the present

proof consists in showing that T is Lipschitz continuous in ϕ,Φ, ϑ. We consider the three variables
ϕ,Φ and ϑ separately and apply repeatedly [5, Theorem 2.6], as refined in [10, Theorem 2.5]. The
assumptions (H1*) and (H2*) are verified in [3, Section 5]. We now check (H3*).

In the estimates below we set for simplicity ū = 0.

Step 1: (H3*) holds:. Fix an index i ∈ {1, . . . , n}, define ΩUT = I × Rn × UU and for a fixed
w ∈ C0(I;BL1(ū, R, U)) denote

f(t, x, u) = ϕ1
i

(
t, x, u, ϑ1 ∗ w(t, x)

)
F (t, x, u) = Φ1

i

(
t, x, u, ϑ1 ∗ w(t, x)

)
g(t, x, u) = ϕ2

i

(
t, x, u, ϑ2 ∗ w(t, x)

)
G(t, x, u) = Φ2

i

(
t, x, u, ϑ2 ∗ w(t, x)

) (8)

Then, we directly have:
∂u(f − g) ∈ L∞(ΩUT ;RN ) holds by (ϕ). since ∂u(f − g) = ∂u(ϕ1

i − ϕ2
i ).

∂u(F −G) ∈ L∞(ΩUT ;RN ): holds by (ϕ), since ∂u(F −G) = ∂u(Φ1
i − Φ2

i ).∫ T
0

∫
RN

∥∥∥((F −G)(t, x, ·)
)
−
(
divx(f − g)(t, x, ·)

)∥∥∥
L∞([−U,U ];R)

dxdt < +∞ holds, due to the

inequality
∣∣∣((F −G)(t, x, U)

)
−
(
divx(f − g)(t, x, U)

)∣∣∣ ≤ 4λ(t, x, U) and (3) applies.

We use below A as a dummy variable for the fourth argument in ϕ1, ϕ2,Φ1 and Φ2.

Step 2: Dependence on ϕ. Assume that Φ1 = Φ2 and ϑ1 = ϑ2 in (8). Then, with reference to the
notation in [10, Theorem 2.2] and using also [9, theorem 1], we have

κ∗0 ≤ C CU (1 +RT ) (as in [3, Formula (5.6)])

κ∗ ≤ ‖∂uF‖L∞(I×RN×UU ;R) +
∥∥∂u divx(f − g)

∥∥
L∞(I×RN×UU ;R)

≤
∥∥∥Φ1

∥∥∥
W1,∞(I×RN×UU×Um

U ;R)
+
∥∥∥∂u divx(ϕ1 − ϕ2)

∥∥∥
L∞(I×RN×UU×Um

U ;R)

3



+
∥∥∥∂u gradA(ϕ1 − ϕ2)

∥∥∥
L∞(I×RN×UU×Um

U ;Rm)
‖divx ϑ‖L∞(RN ;Rm×n)‖w‖L1(I×RN ;Rn)

≤ C CU (1 +RT )

eκ
∗
0t − eκ∗t

κ∗0 − κ∗
≤ t emax{κ∗0 ,κ

∗}t (by [10, Remark 2.8] and [3, Formula (5.16)])

≤ t eCCU (1+RT )t

and clearly
∥∥∂u(f − g)

∥∥
L∞(I×RN×UU ;R)

=
∥∥∂u(ϕ1 − ϕ2)

∥∥
L∞(I×RN×UU×Um

U ;R)
. Moreover,

∫ T

0

∫
RN

∥∥gradx(F − divx f)(t, x, ·)
∥∥
L∞(UU ;RN )

dxdt ≤ CU Λ(T,U) (1 +RT +R2 T 2)

the latter expression above is computed in [3, Formula (5.5)]. We also need to estimate∫ T

0

∫
RN

∥∥∥((F −G)− divx(f − g)
)

(t, x, ·)
∥∥∥
L∞(UU ;R)

dxdt

=

∫ T

0

∫
RN

∥∥divx(f − g)(t, x, ·)
∥∥
L∞(UU ;R)

dxdt

≤
∫ T

0

∫
RN

∥∥∥divx(ϕ1 − ϕ2)
(
t, x, ·, (ϑ ∗ w)(t, x)

)∥∥∥
L∞(UU ;R)

dx dt

+

∫ T

0

∫
RN

∥∥∥gradA(ϕ1 − ϕ2)
(
t, x, ·, (ϑ ∗ w)(t, x)

)∥∥∥
L∞(UU ;Rm×n)

∥∥divx(ϑ ∗ w)
∥∥
L∞(I×RN ;Rm)

dx dt

≤
∫ T

0

∫
RN

∥∥∥divx(ϕ1 − ϕ2)(t, x, ·, ·)
∥∥∥
L∞(UU×Um

U ;R)
dxdt

+CU

∫ T

0

∫
RN

∥∥∥gradA(ϕ1 − ϕ2)(t, x, ·, ·)
∥∥∥
L∞(UU×Um

U ;Rm×n)
dx dt

≤ CU

∥∥∥gradxA(ϕ1 − ϕ2)
∥∥∥
L1(I×RN ;L∞(UU×Um

U ;RN+m×n))
.

Inserting the estimates above in the one provided by [10, Theorem 2.5], we have:∥∥∥u1(t)− u2(t)
∥∥∥
L1(RN ;Rn)

≤
(

1 + CCUΛ(T,U)(1 +RT +R2T 2)
)
T TV(ū)eCCU (1+RT )T

∥∥∥∂u(ϕ1 − ϕ2)
∥∥∥
L∞(I×RN×UU×Um

U ;R)
(9)

+CU e
C CU (1+RT )T

∥∥∥gradxA(ϕ1 − ϕ2)
∥∥∥
L1(I×RN ;L∞(UU×Um

U ;RN+m×n))
.

Step 3: Dependence on Φ. Assume ϕ1 = ϕ2 and ϑ1 = ϑ2, so that f = g in (8). Then, again with
reference to the notation in [10, Theorem 2.5], we have κ∗ = ‖∂uF‖L∞(I×RN×UU ;R) ≤ CU so that∥∥∥u1(t)− u2(t)

∥∥∥
L1(RN ;R)

≤ CU T
∥∥∥Φ1 − Φ2

∥∥∥
L1(I×RN ;L∞(UU×Um

U ;R))
. (10)

Step 4: Dependence on ϑ. We are left with the case ϕ1 = ϕ2 = ϕ and Φ1 = Φ2 = Φ. We
fix for simplicity the notations ϕϑ

1

= ϕ1
(
t, x, u, ϑ1 ∗ w(t, x)

)
, ϕϑ

2

= ϕ1
(
t, x, u, ϑ2 ∗ w(t, x)

)
and

Φϑ
1

= Φ1
(
t, x, u, ϑ1 ∗ w(t, x)

)
, Φϑ

2

= Φ1
(
t, x, u, ϑ2 ∗ w(t, x)

)
. Then, always with reference to [10],

κ∗ ≤ ‖∂uF‖L∞(I×RN×UU ;R) +
∥∥∂u divx(f − g)

∥∥
L∞(I×RN×UU ;R)

≤
∥∥∥Φ1

∥∥∥
W1,∞(I×RN×UU×Um

U ;R)
+

∥∥∥∥∂u divx

(
ϕϑ

1

− ϕϑ
2
)∥∥∥∥

L∞(I×RN×UU×Um
U ;R)
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+
∥∥∥∂u gradA ϕ

ϑ1
∥∥∥
L∞(I×RN×UU×Um

U ;Rm×n)

∥∥∥divx(ϑ1 ∗ w)
∥∥∥
L∞(I×RN ;Rm)

+
∥∥∥∂u gradA ϕ

ϑ2
∥∥∥
L∞(I×RN×UU×Um

U ;Rm×n)

∥∥∥divx(ϑ2 ∗ w)
∥∥∥
L∞(I×RN ;Rm)

≤ C CU (1 +RT ) ,

and κ∗0 ≤ C CU (1 +RT ). Similarly to the previous case,∥∥∂u(f − g)
∥∥
L∞(I×RN×UU ;R)

≤ R ‖ϕ‖W1,∞(I×Rn×UU×Um
U ;R)

∥∥∥ϑ1 − ϑ2
∥∥∥
L1(I×RN ;Rm×n)

.

We also need to estimate∫ T

0

∫
RN

∥∥∥((F −G)− divx(f − g)
)∥∥∥

L∞(UU ;R)
dxdt

≤ CU R
(
‖Φ‖W1,∞(I×RN×UU ;R) + ‖ϕ‖W2,∞(I×RN×UU ;R)

)∥∥∥ϑ1 − ϑ2
∥∥∥
L1(I×RN ;Rm×n)

,

so that, following the same procedure used in Step 2,∥∥∥u1(t)− u2(t)
∥∥∥
L1(RN ;R)

≤
(

1 + CΛ(T,U)(1 +RT +R2T 2)
)
CU RT TV(ū)eCCU (1+RT )T

×
∥∥∥ϑ1 − ϑ2

∥∥∥
L1(I×RN ;Rm×n)

(11)

+CU e
C CU (1+RT )T R

∥∥∥ϑ1 − ϑ2
∥∥∥
L1(I×RN ;Rm×n)

.

Summing up the estimates (9), (10) and (11) we obtain the Lipschitz continuous dependence
of T defined in (7) on the parameter p ≡ (ϕ,Φ, ϑ). A straightforward argument allows to conclude
that also the fixed point of T is Lipschitz continuous in p. �

3. Application to the Laser Beam

The cutting of metal plates by means of a laser beam can be described through the following
equations, introduced in [3, Section 3]:{

∂thm + divx(hm V ) = L
∂ths = −L . (t, x) ∈ R+ × R2 (12)

In this 3D framework, the laser beam is parallel to the vertical z axis and its trajectory is prescribed
by the map xL = xL(t). Above, hm is the height of the melted metal and hs is the height of solid
part, both measured along the z axis. The vector V is the projection of the melted material
velocity on the horizontal (x, y)-plane. The source L describes the laser position and intensity: it
describes the net rate at which the solid part turns into melted. In particular,

V =
(
w(t, x)− Tg(t, x)hm

) − gradx(η ∗ hs)√
1 +

∥∥gradx(η ∗ hs)
∥∥2
,

L =
i(t, x)

1 +
∥∥∥gradx

(
η ∗ (hs + hm)

)∥∥∥2 ,

w(t, x) = W
(∥∥x− xL(t)

∥∥) ,
Tg(t, x) = τg

(∥∥x− xL(t)
∥∥) ,

i(t, x) = I
(∥∥x− xL(t)

∥∥) , (13)

where Tg is related to the shear stress, see [3, Formula (3.7)]; W = W(x) describes the effect on
the horizontal (x, y)-plane of the vertical wind that pushes the melted material and is produced
around the laser beam at x = xL(t); the laser intensity is I = I(x), again centered at the moving
laser position x = xL(t). The system in (12) fits into (1) as shown by the following proposition.
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Proposition 3.1 ([3, Proposition 3.1]). Model (12)–(13) fits into (1) setting u ≡ (hm, hs) and

N = 2
n = 2
m = 4
u1 = hm
u2 = hs

ϑ(x) =


∂x1

η(x) 0
0 ∂x1η(x)

∂x2η(x) 0
0 ∂x2

η(x)


ϕ1(t, x, u1, A) =

−
(
w(t, x)− Tg(t, x)u1

)
u1√

1 + (A3)2 + (A4)2

[
A3

A4

]
ϕ2(t, x, u2, A) = 0

Φ1(t, x, u,A) =
i(t, x)√

1 + (A1 +A3)2 + (A2 +A4)2

Φ2(t, x, u,A) = − i(t, x)√
1 + (A1 +A3)2 + (A2 +A4)2

,

Moreover, if xL ∈ (C2 ∩W2,∞)([0, T̂ ];R2), W, I, τg ∈ C2
c(R;R) and η ∈ C3

c(R2;R) for a positive

T̂ , then, assumptions (ϕ), (Φ), (ϑ) and (3) hold.

(The verification of (3) is immediate and hence omitted).
Theorem 2.3 ensures the stability of solutions to (12)–(13) with respect to variations in the

functions defining the model, namely: xL, τg,W, I and η. A numerical investigation of the role
of ẋL is presented in [4]. Here, on the basis of Theorem 2.3, we can specify how the solutions
to (12)–(13) depend on w and Tg. Indeed, the bound (4) ensures that, calling (h`m, h

`
s) for ` = 1, 2

solutions to (12)–(13) corresponding to functions w`, T `g∥∥∥(h1
m − h2

m)(t)
∥∥∥
L1(R2;R)

+
∥∥∥(h1

s − h2
s)(t)

∥∥∥
L1(R2;R)

≤ C∗
(∥∥∥w1 − w2

∥∥∥
L∞(I×R2;R)

+
∥∥∥T 1

g − T 2
g

∥∥∥
L∞(I×R2;R)

+
∥∥∥gradx(w1 − w2)

∥∥∥
L∞(I×R2;R2)

+
∥∥∥gradx(T 1

g − T 2
g )
∥∥∥
L∞(I×R2;R2)

)
.
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