## Institutt for matematiske fag

Contact:
Haaken A. Moe
Phone: 92650655
English

FINAL EXAM, MA0002

Tuesday May 22. 2007
Time: 15.00-19.00
Grades: June 12. 2007

Permitted aids:
All printed and handwritten, calculator.

Justify all answers!
Show calculations, or refer to theory.

Problem 1 Matrixes:
a) Find the two eigenvalues of the matrix $A=\left[\begin{array}{ll}4 & -2 \\ 5 & -3\end{array}\right]$, and find the corresponding eigenvectors.
b) Calculate $A^{20}\left[\begin{array}{l}3 \\ 6\end{array}\right]$.

Problem 2 Differential equations:
a) Solve the initial value problem $\frac{d y}{d x}=x^{2}$, when $y(3)=5$.
b) Find all equilibria of the equation in a). Are the equilibria you found stable or unstable?
c) Solve the initial value problem $t \frac{d x}{d t}=2 x+t^{3} e^{t}$, when $x(0)=-1$.

Problem 3 In this problem we are studying this equation:

$$
f(x, y)=2\left(x+y^{2}\right)-x^{3}
$$

a) Find $\nabla f$, the gradient of $f$.
b) Find the critical points of $f$.
c) Given the parametrized line $l(t)$

$$
\begin{aligned}
& x=2 t \\
& y=-3 t+1,
\end{aligned}
$$

where $-3 \leq t \leq 3$. This means that the line starts in the point $(-6,10)$ and ends in the point $(6,-8)$. What is the absolute max and what is the absolute $\min f$ achieves on the points of this line?
d) What is the directional derivative of $f$ along the vector $\underline{u}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$, in the point where the line from $\mathbf{c}$ ) intersects the line given by $x=y$ ?
e) Find an equation for the tangent plane of $f$ in the point $(1,1)$.

