Norwegian University of Science and Technology
Institutt for matematiske fag

## MA0002 Brukerkurs i <br> Matematikk B <br> Vår 2023

11 Find the equation for the line that goes through the point $(3,2)$ and is perpendicular to the vector $(-1,1)^{T}$.

2 Find the equation for the plane that goes through the point $(1,0,-3)$ and is perpendicular to the vector $(1,-2,-1)^{T}$.

3 Find a parametric equation for the line that goes through the points $(2,1)$ and $(3,5)$.
Then find the equation for the line on standard form.

4 We have
(1) A plane that passes through the point $(2,0,-1)$ and has normal vector $(-1,1,3)^{T}$.
(2) A line passing through the points $(1,0,-2)$ and $(-1,-1,1)$.

Where does the plane and the line meet?

5 Evaluate the function

$$
f\left(x_{1}, x_{2}\right)=\frac{2 x_{1}-x_{2}}{x_{1}^{2}+x_{2}^{2}}
$$

in the point $(1,4)$.

6 Find the largest possible domain and corresponding range of the function

$$
f\left(x_{1}, x_{2}\right)=\sqrt{9-x_{1}^{2}-x_{2}^{2}} .
$$

Then find the equation for the level curves $f\left(x_{1}, x_{2}\right)=c$ for the possible values of $c$.

