Norwegian University of Science and Technology
Institutt for matematiske fag

MA0002 Brukerkurs i

Matematikk B
Vår 2023

Exercise set 14

1 In this exercise we are working with the matrices

$$
A=\left(\begin{array}{ccc}
0 & 1 & 2 \\
-1 & 3 & 2 \\
1 & -4 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
2 & -7 & 2 \\
1 & 4 & 3 \\
0 & 0 & -1
\end{array}\right)
$$

(a) Calculate $A B$
(b) Is $A B=B A$? Justify your answer.
(c) Determine A^{-1}.
(d) Solve the equation $A \mathbf{x}=(1,1,1)^{T}$.

2 Let $f\left(x_{1}, x_{2}\right)=\cos \left(x_{1}^{2}-2 x_{2}\right)+e^{x_{1}}+x_{2}^{3}$. Find the gradient of f.

3 Let

$$
L=\left[\begin{array}{cc}
0 & 5 \\
0.9 & 0
\end{array}\right]
$$

be the Leslie matrix for a population consisting of two age groups.
a) Find both the eigenvalues for the matrix L.
b) Give a biological interpretation of the largest eigenvalue.
c) Find the stable age distribution.

4 Find the global maximum and minimum of $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}+x_{1}+2 x_{2}$ if they exist.

5 Solve the following initial-value problem.

$$
\binom{\frac{d y_{1}}{d t}}{\frac{d y_{2}}{d t}}=\left(\begin{array}{ll}
-3 & 4 \\
-1 & 2
\end{array}\right)\binom{y_{1}(t)}{y_{2}(t)}
$$

where $y_{1}(0)=1$ and $y_{2}(0)=2$.

