Norwegian University of Science and Technology
Department of Mathematical
Sciences

## MA0002 Mathematical <br> Methods B <br> Spring 2023

Exercise set 6

1 Let

$$
A=\left(\begin{array}{ccc}
3 & -2 & 4 \\
1 & 1 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
2 & 3 & 1 \\
0 & -4 & 5
\end{array}\right)
$$

(a) Calculate $A+B$.
(c) Find the matrix $C$ such that $A+B+C=\mathbf{0}$.

2 Let

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
-2 & 0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
-1 & 0 \\
1 & 3 \\
4 & -2
\end{array}\right)
$$

(a) Calculate $A B$.
(b) Calculate $B A$.

3 Let

$$
A=\left(\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right)
$$

(a) Calculate $2 A$.
(b) Calculate $A^{2}$.
(c) What is the inverse matrix of $A$ ?

4 Let

$$
A=\left(\begin{array}{cc}
3 & 2 \\
0 & -1
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{ccc}
1 & 3 & 0 \\
0 & -1 & 2 \\
-1 & -2 & 1
\end{array}\right)
$$

For each of the matrices $A, B$ and $C$; find the inverse matrix or explain why it does not exist.

5 Let

$$
A=\left(\begin{array}{ll}
3 & 6 \\
1 & a
\end{array}\right), \quad \mathbf{x}=\binom{x_{1}}{x_{2}}, \quad \text { and } \quad \mathbf{b}=\binom{b_{1}}{b_{2}}
$$

(a) Show that for $a \neq 2$ the equation $A \mathbf{x}=\mathbf{b}$ has exactly one solution.
(b) Let $a=4$. Solve the equation

$$
A \mathrm{x}=\binom{1}{3}
$$

by using the inverse matrix $A^{-1}$.
(c) Let $a=2$. Determine conditions on $b_{1}$ and $b_{2}$ such that the equations $A \mathbf{x}=\mathbf{b}$ has
(i) infinitely many solutions,
(ii) no solutions.
(d) Explain your results from (a), (b) and (c) graphically. Tip: think about what the slope of the equations tells you.

