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Problem 1 (20p)

Which of the following propositions are correct? Please mark your answers on
a separate sheet with ’True’, ’False’, and ’Undecidable’. Justifications are not
needed.

(i) The function cos is even.

(ii) limx→∞
ln(x2)
x

= 0.

(iii) The function x 7→ x3 is everywhere strictly increasing.

(iv) limn→∞
π
n

∑n
j=1 sin

(
jπ
n

)
=
∫ π
−π sin(x) dx.

(v) A given continuous function satisfying f(0) = 0 is differentiable at the origin.

(vi) The differential equation y′ + x2y = 0 is separable.

(vii) ln(1 + x) = x−O(x2) for x close to 0.

(viii) Every bounded function has a global maximum.

(ix) If limh→0
f(x0+h)−f(x0)

h
exists, then f is differentiable at x0.

(x) Every continuously differentiable (C1) function is also uniformly continuous.

Problem 2 (10p)

Integrate the following expressions.

(i)
∫ dx
x(x−1)

(ii)
∫ π
−π sin(x) cosh(x) dx (cosh(x) = ex+e−x

2 )

(iii)
∫∞
−∞

dx
1+x2
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Problem 3 (10p)

The function sinh : R→ R given by

sinh(x) = ex − e−x
2 ,

can be written in the form sinh(x) = ∑∞
k=0 akx

k.

(i) Determine the coefficients ak, for all k = 0, 1, 2, . . .

(ii) Calculate the limit

lim
x→0

sin(x)− sinh(x)
x3 .

Problem 4 (10p)

For each of the following functions, determine whether they are (i) surjective
(onto), (ii) injective (one-to-one), and (iii) invertible, on the sets given.

(i) x 7→ x+ x3 : R→ R

(ii) x 7→ cos(x) : (−π
2 ,

π
2 )→ (0, 1]

Problem 5 (10p)

(i) Find all critical (stationary) points to the function f : R→ R given by

f(x) = ln(1 + x2)
1 + x2 .

(ii) Locate any global maxima and minima of f , and determine where the func-
tion is increasing/decreasing. Find any asymptotes as x→ ±∞.
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Problem 6 (10p)

Simplify
n∑
k=0

xk, n ∈ N.

For which values of x does limn→∞
∑n
k=0 x

k converge?

Problem 7 (10p)

The function sin : R → [−1, 1] is smooth (C∞) and therefore continuous. Show
that is also uniformly continuous.

Problem 8 (10p)

Consider, for x ≥ 0, the initial-value problem

y′(x)− 6x y(x) = 0, y(0) = 1. (∗)

(i) The solution x 7→ y(x) of (∗) admits an inverse y 7→ x(y), y ≥ 1. Formulate
the initial-value problem corresponding to (∗), but for the inverse function
x = x(y).

(ii) Determine the solution y and its inverse.

Problem 9 (10p)

Let f : R→ R be a function satisfying

sup
x∈R
|f(x)| ≤ B,

for a finite number B. Show, using an ε/δ type of argument, that the function
F : R→ R defined by

F (x) =
∫ x

0
f(s) ds

is continuous at each x0 ∈ R.
A proof without ε/δ can at most give half of the points for this problem.


