EXERCISES 18.5

Exercises involving the solution of second-order, linear, homogeneous equations with constant coefficients can be found at the end of Section 3.7.

Find general solutions of the DEs in Exercises 1-4.

1.
$$y''' - 4y'' + 3y' = 0$$

2.
$$y^{(4)} - 2y'' + y = 0$$
 3. $y^{(4)} + 2y'' + y = 0$

3.
$$y^{(4)} + 2y'' + y = 0$$

4.
$$y^{(4)} + 4y^{(3)} + 6y'' + 4y' + y = 0$$

5. Show that $y = e^{2t}$ is a solution of

$$y'''-2y'-4y=0$$

(where 'denotes d/dt), and find the general solution of this DE.

6. Write the general solution of the linear, constant-coefficient DE having auxiliary equation $(r^2 - r - 2)^2(r^2 - 4)^2 = 0$.

Find general solutions to the Euler equations in Exercises 7-12.

7.
$$x^2y'' - xy' + y = 0$$

8.
$$x^2y'' - xy' - 3y = 0$$

9.
$$x^2y'' + xy' - y = 0$$

10.
$$x^2y'' - xy' + 5y = 0$$

11.
$$x^2y'' + xy' = 0$$

11.
$$x^2y'' + xy' = 0$$
 12. $x^2y'' + xy' + y = 0$

13. Solve the DE $x^3y''' + xy' - y = 0$ in the interval x > 0.

14. Show that the change of variables $x = e^t$, $z(t) = y(e^t)$, transforms the Euler equation

$$ax^2 \frac{d^2y}{dx^2} + bx \frac{dy}{dx} + cy = 0$$

into the constant-coefficient equation

$$a\frac{d^2z}{dt^2} + (b-a)\frac{dz}{dt} + cz = 0.$$

15. Use the transformation $x = e^t$ of the previous exercise to solve the Euler equation

$$x^{2} \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} + 2y = 0, \qquad (x > 0).$$