EXERCISES 18.6

Find general solutions for the nonhomogeneous equations in
Exercises $1-12$ by the method of undetermined coefficients.

1. $y^{\prime \prime}+y^{\prime}-2 y=1$
2. $y^{\prime \prime}+y^{\prime}-2 y=x$
3. $y^{\prime \prime}+y^{\prime}-2 y=e^{-x}$
4. $y^{\prime \prime}+2 y^{\prime}+5 y=x^{2}$
5. $y^{\prime \prime}+y^{\prime}-2 y=e^{x}$
6. $y^{\prime \prime}+4 y=x^{2}$
7. $y^{\prime \prime}-y^{\prime}-6 y=e^{-2 x}$
8. $y^{\prime \prime}+4 y^{\prime}+4 y=e^{-2 x}$
9. $y^{\prime \prime}+2 y^{\prime}+2 y=e^{x} \sin x$
10. $y^{\prime \prime}+2 y^{\prime}+2 y=e^{-x} \sin x$
11. $y^{\prime \prime}+y^{\prime}=4+2 x+e^{-x}$
12. $y^{\prime \prime}+2 y^{\prime}+y=x e^{-x}$
13. Repeat Exercise 3 using the method of variation of parameters.
14. Repeat Exercise 4 using the method of variation of parameters.
15. Find a particular solution of the form $y=A x^{2}$ for the Euler equation $x^{2} y^{\prime \prime}+x y^{\prime}-y=x^{2}$, and hence obtain the general solution of this equation on the interval $(0, \infty)$.
16. For what values of r can the Euler equation $x^{2} y^{\prime \prime}+x y^{\prime}-y=x^{r}$ be solved by the method of Exercise 15? Find a particular solution for each such r.
17. Try to guess the form of a particular solution for $x^{2} y^{\prime \prime}+x y^{\prime}-y=x$, and hence obtain the general solution for this equation on the interval $(0, \infty)$.
