EXERCISES 4.2

Use fixed-point iteration to solve the equations in Exercises 1–6. Obtain 5 decimal place precision.

1.
$$2x = e^{-x}$$
, start with $x_0 = 0.3$

2.
$$1 + \frac{1}{4} \sin x = x$$
 3. $\cos \frac{x}{3} = x$

4.
$$(x+9)^{1/3} = x$$
 5. $\frac{1}{2+x^2} = x$

6. Solve
$$x^3 + 10x - 10 = 0$$
 by rewriting it in the form $1 - \frac{1}{10}x^3 = x$.

In Exercises 7–16, use Newton's Method to solve the given equations to the precision permitted by your calculator.

7. Find
$$\sqrt{2}$$
 by solving $x^2 - 2 = 0$.

8. Find
$$\sqrt{3}$$
 by solving $x^2 - 3 = 0$.

9. Find the root of
$$x^3 + 2x - 1 = 0$$
 between 0 and 1.

10. Find the root of
$$x^3 + 2x^2 - 2 = 0$$
 between 0 and 1.

11. Find the two roots of
$$x^4 - 8x^2 - x + 16 = 0$$
 in [1, 3].

12. Find the three roots of
$$x^3 + 3x^2 - 1 = 0$$
 in $[-3, 1]$.

13. Solve
$$\sin x = 1 - x$$
. A sketch can help you make a guess x_0 .

14. Solve
$$\cos x = x^2$$
. How many roots are there?

15. How many roots does the equation
$$\tan x = x$$
 have? Find the one between $\pi/2$ and $3\pi/2$.

16. Solve
$$\frac{1}{1+x^2} = \sqrt{x}$$
 by rewriting it $(1+x^2)\sqrt{x} - 1 = 0$.

Find the maximum and minimum values of the functions in Exercises 18–19.

18.
$$\frac{\sin x}{1+x^2}$$
 19. $\frac{\cos x}{1+x^2}$

20. Let
$$f(x) = x^2$$
. The equation $f(x) = 0$ clearly has solution $x = 0$. Find the Newton's Method iterations x_1, x_2 , and x_3 , starting with $x_0 = 1$.

21. (Osc

starti x_2 . V

root

22. (Diverging f(x))
What

23. (Con f(x) What

24. Verif

 x_{n+1}

 y_{n+1}

25. Sensi prope and the export Grown seque grow

a) 5

over,

b) 1

1