524 CHAPTER9 Sequences, Series, and Power Series

In Exercises 1-26, determine whether the given series converges or
diverges by using any appropriate test. The p-series can be used
for comparison, as can geometric series. Be alert for series whose
terms do not approach 0.
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In Exercises 27-30, use s, and integral bounds to find the smallest
interval that you can be sure contains the sum s of the series. If the
midpoint s} of this interval is used to approximate s, how large
should n be chosen to ensure that the error is less than 0.001 ?
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For each positive series in Exercises 31-34, find the best upper
bound you can for the error § — su encountered if the partial sum
s is used to approximate the sum s of the series. How many terms
of each series do you need to be sure that the approximation has
error less than 0.001?
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35, Use the integral test to show that"; T2

Show that the sum s of the series is less than /2.

H 36. Show that Y52 5(1/(n Inn(Inlnn)?) converges if and only if
p > L. Generalize this result to series of the form

converges.
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where Inj n = Inlnlnln---Inn.
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E 37. Prove the root test. Hint: Mimic the proof of the ratio test.
X o+l
Use the root test to show that Z
n=l1

H 39, Use the root test to test the following series for convergence:

38 converges.
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Repeat Exercise 38, but use the ratio test instead of the root

test.
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H 41. Try to use the ratio test to determine whether Z W
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converges. What happens? Now observe that
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Does the given series converge? Why or why not?
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H 42. Determine whether the series Z 55("7? converges. Hint:
n=1

7!
Proceed as in Exercise 41. Show thata, > 1/(2n).
(a) Show that if k > 0 and # is a positive integer, then

] n
n<k(l+k) .

(b) Use the estimate in (a) with0 <k < 1 to obtain an upper
bound for the sum of the series Y _po /2" For what
value of k is this bound lowest? .

B 43.

(c) If we use the sum s, of the first # terms to approximate
the sum s of the series in (b), obtain an upper bound for
the error § — s, using the inequality from (a). For given 7,
find k to minimize this upper bound.
(Improving the convergence of a series) We know that
Y1 /(n o+ 1)) = 1. (See Example 3 of Section 9.2.)
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