EXERCISES 9.5

Determine the centre, radius, and interval of convergence of each of the power series in Exercises 1-8.

$$1. \sum_{n=0}^{\infty} \frac{x^{2n}}{\sqrt{n+1}}$$

$$2. \sum_{n=0}^{\infty} 3n (x+1)^n$$

$$3. \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{x+2}{2} \right)^n$$

4.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4 2^{2n}} x^n$$

5.
$$\sum_{n=0}^{\infty} n^3 (2x-3)^n$$

6.
$$\sum_{n=1}^{\infty} \frac{e^n}{n^3} (4-x)^n$$

7.
$$\sum_{n=0}^{\infty} \frac{(1+5^n)}{n!} x^n$$

$$8. \sum_{n=1}^{\infty} \frac{(4x-1)^n}{n^n}$$

- 9. Use multiplication of series to find a power series representation of $1/(1-x)^3$ valid in the interval (-1,1).
- 10. Determine the Cauchy product of the series $1 + x + x^2 + x^3 + \cdots$ and $1 - x + x^2 - x^3 + \cdots$. On what interval and to what function does the product series converge?
- 11. Determine the power series expansion of $1/(1-x)^2$ by formally dividing $1 - 2x + x^2$ into 1.

Starting with the power series representation

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots, \qquad (-1 < x < 1),$$

determine power series representations for the functions indicated in Exercises 12-20. On what interval is each representation valid?

12.
$$\frac{1}{2-x}$$
 in powers of x

13.
$$\frac{1}{(2-x)^2}$$
 in powers of x

14.
$$\frac{1}{1+2x}$$
 in powers of x

15.
$$ln(2-x)$$
 in powers of x

16.
$$\frac{1}{x}$$
 in powers of $x-1$

16.
$$\frac{1}{x}$$
 in powers of $x-1$ 17. $\frac{1}{x^2}$ in powers of $x+2$

18.
$$\frac{1-x}{1+x}$$
 in powers of x

19.
$$\frac{x^3}{1-2x^2}$$
 in powers of x

20. $\ln x$ in powers of x-4

Determine the interval of convergence and the sum of each of the series in Exercises 21-26.

21.
$$1 - 4x + 16x^2 - 64x^3 + \dots = \sum_{n=0}^{\infty} (-1)^n (4x)^n$$

1 22.
$$3 + 4x + 5x^2 + 6x^3 + \dots = \sum_{n=0}^{\infty} (n+3)x^n$$

1 23.
$$\frac{1}{3} + \frac{x}{4} + \frac{x^2}{5} + \frac{x^3}{6} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n+3}$$

24.
$$1 \times 3 - 2 \times 4x + 3 \times 5x^2 - 4 \times 6x^3 + \cdots$$

= $\sum_{n=0}^{\infty} (-1)^n (n+1)(n+3) x^n$

1 25.
$$2 + 4x^2 + 6x^4 + 8x^6 + 10x^8 + \dots = \sum_{n=0}^{\infty} 2(n+1)x^{2n}$$

1 26.
$$1 - \frac{x^2}{2} + \frac{x^4}{3} - \frac{x^6}{4} + \frac{x^8}{5} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n+1}$$

Use the technique (or the result) of Example 6 to find the sums of the numerical series in Exercises 27–32.

$$27. \sum_{n=1}^{\infty} \frac{n}{3^n}$$

28.
$$\sum_{n=0}^{\infty} \frac{n+1}{2^n}$$

1. 29.
$$\sum_{n=0}^{\infty} \frac{(n+1)^2}{\pi^n}$$

130.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n(n+1)}{2^n}$$

31.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n2^n}$$

32.
$$\sum_{n=3}^{\infty} \frac{1}{n2^n}$$