EXERCISES 9.8

Find Maclaurin series representations for the functions in
EXercises 1-8. Use the binomial series to calculate the answers.
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It follows that, for fixed n > 1, the binomial coefficients
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are the elements of the nth row of Pascal’s triangle below,
where each element with value greater than 1 is the sum of the
two diagonally above it.

B10. (An inductive proof of the Binomial Theorem) Use
mathematical induction and the results of Exercise 9 to prove
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the Binomial Theorem:
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H 11. (The Leibniz Rule) Use mathematical induction, the Product
Rule, and Exercise 9 to verify the Leibniz Rule for the nth
derivative of a product of two functions:
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H 12. (Proof of the Multinomial Theorem) Use the Binomial
Theorem and induction on n to prove Theorem 24. Hint:
Assume the theorem holds for specific # and all k. Apply the
Binomial Theorem to
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H 13. (A Multifunction Leibniz Rule) Use the technique of
Exercise 12 to generalize the Leibniz Rule of Exercise 11 to
calculate the kth derivative of a product of # functions
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