EXERCISES 9.8

Find Maclaurin series representations for the functions in Exercises 1–8. Use the binomial series to calculate the answers

1.
$$\sqrt{1+x}$$

$$2. \ x\sqrt{1-x}$$

3.
$$\sqrt{4+x}$$

4.
$$\frac{1}{\sqrt{4+x^2}}$$

5.
$$(1-x)^{-2}$$

6.
$$(1+x)^{-3}$$

7.
$$\cos^{-1} x$$

8.
$$\sinh^{-1} x$$

9. (Binomial coefficients) Show that the binomial coefficients

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$
 satisfy

(i)
$$\binom{n}{0} = \binom{n}{n} = 1$$
 for every n , and

(ii) if
$$0 \le k \le n$$
, then $\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$.

It follows that, for fixed $n \ge 1$, the binomial coefficients

$$\binom{n}{0}$$
, $\binom{n}{1}$, $\binom{n}{2}$, ..., $\binom{n}{n}$

are the elements of the *n*th row of **Pascal's triangle** below, where each element with value greater than 1 is the sum of the two diagonally above it.

10. (An inductive proof of the Binomial Theorem) Use mathematical induction and the results of Exercise 9 to prove

the Binomial Theorem:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

= $a^n + na^{n-1}b + \binom{n}{2} a^{n-2}b^2 + \binom{n}{3} a^{n-3}b^3 + \dots + b^n$.

■ 11. (The Leibniz Rule) Use mathematical induction, the Product Rule, and Exercise 9 to verify the Leibniz Rule for the nth derivative of a product of two functions:

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} g^{(k)}$$

$$= f^{(n)} g + n f^{(n-1)} g' + \binom{n}{2} f^{(n-2)} g''$$

$$+ \binom{n}{3} f^{(n-3)} g^{(3)} + \dots + f g^{(n)}.$$

■ 12. (Proof of the Multinomial Theorem) Use the Binomial Theorem and induction on n to prove Theorem 24. Hint: Assume the theorem holds for specific n and all k. Apply the Binomial Theorem to

$$(x_1 + \dots + x_n + x_{n+1})^k = ((x_1 + \dots + x_n) + x_{n+1})^k$$
.

II 13. (A Multifunction Leibniz Rule) Use the technique of Exercise 12 to generalize the Leibniz Rule of Exercise 11 to calculate the kth derivative of a product of n functions $f_1 \ f_2 \ \cdots \ f_n$.