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The midterm exam has 6 double sided pages and consists of two parts: Problems 1 to 4
are multiple choice. In this part every problem has 5 alternatives and only one of these is
correct. Check off the correct alternative. In problem 5 to 9 you must give arguments for
all your answers. Each problem counts equally. Write your answer directly on these pages.

You must write your candidate number on each sheet.

Good luck!



Problem 1
Supose that A is a 2× 2-matrix and that A−1 is given by:

A−1 =

[
2 −1
3 5

]
.

Then A is equal to

A
[

5 1
−3 2

]
, B

1

13

[
5 1

−3 2

]
, C

[
1 0
0 1

]
,

D
1

13

[
5 −1
3 2

]
, E

1

13

[−5 −1
3 −2

]

Problem 2
Given the system of linear equations:

3x + 2y − z = −15
5x + 3y + 2z = 0
3x + y + 3z = 11

−6x − 4y + 2z = 30

The reduced row-echolon form of the augmented matrix is:

A




1 0 0 5
0 1 0 2
0 0 1 7


, B




1 0 1 −4
0 1 0 2
0 0 1 6


, C




1 0 0 −4
0 1 0 2
0 0 1 7
0 0 0 0


,

D




1 0 7 45
0 1 −11 40
0 0 1 7


, E




1 0 0 −4
0 1 0 2
0 0 1 7
0 0 0 3
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Problem 3
Let A, B and C be n× n-matrices. Then one of the following is valid:

A If AB = AC, then B = C.

B If A is invertible, then AB = AC.

C If A is invertible and BA = CA, then B = C.

D For each pair of n× n-matrices A and B we have that (AB)T = AT BT .

E If det(A) = 0, then A is invertible.

Problem 4
If the matrix

A =




0 3 0 1
1 0 −2 2
1 3 −2 3

−5 5 1 −1


 ,

Then det(A) is equal to:

A 0, B 27, C -13, D 2, E 161.
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Problem 5
Solve the system of linear equations:

x + y + z = 3
x − y = 0

2x + z = 3

How many solutions does it have?
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Problem 6

a) Determine A−1 if A =




1 2 0
0 1 3
2 0 −1


.
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b) Use that x = A−1b to solve the system of linear equations

x + 2y = 4
y + 3z = 1

2x − z = 0

PAGE 6 OF 12



CANDIDATE NR.:

c) Use Cramer’s rule to solve the system of linear equations given in b).
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Problem 7
Show that

det







x y 1
1 2 1
0 1 1





 = 0

is the equation for a straight line in the plane R2, and that the points (1, 2) and (0, 1)
are incident with it.
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Problem 8

a) Show that if A =

[
0 0
1 0

]
, then A2 = 0 (the zero-matrix).

b) Compute A2 and A3 if A =




0 0 0
1 0 0
1 1 0


.
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c) Let A be a n × n matrix such that Ak = 0 for a natural number k. Show that A is
not invertible.
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d) Let A be a square matrix such that A4 = 0. Show that (I −A)−1 = I + A + A2 + A3,
where I is the identity matrix.
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Oppgave 9
For which values of α will the following system have no solutions? Exactly one solu-
tion? Infinitely many solutions?

3x − 2y +z = 1
−x + y −αz = 0
2x − y +(α− 1)2z = α
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