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ti foreword to the Student

case of proof exercises, solutions (some more detailed than others) at the back of the book.

Resist as long as possible the temptation to refer to the solutions! Try to be sure you’ve

worked the problem correctly before you glance at the answer. Be careful: Some solutions

in the book are not complete, so it is your responsiblity to fill in the details. The problems

that are marked with a sharp () are not necessarily particularly difficult, but they generally

involve concepts and results to which we shall refer later in the text. Thus, if your instructor

assigns them, you should make sure you understand how to do them. Occasional exercises

are quite challenging, and we hope you will work hard on a few; we firmly believe that only

by struggling with a real puzzler do we all progress as mathematicians.

Once again, we hope you will have fun as you embark on your voyage to learn linear

algebra. Please let us know if there are parts of the book you find particularly enjoyable or

troublesome. Linear algebra provides a beautiful example of the interplay between two branches of

mathematics: geometry and algebra. We begin this chapter with the geometric concepts

and algebraic representations of points, lines, and planes in the more familiar setting of two

and three dimensions (R2 and R3, respectively) and then generalize to the “n-dimensional”

space RZ. We come across two ways of describing (hyper)planes—either parametrically or

as solutions of a Cartesian equation. Going back and forth between these two formulations

will be a major theme of this text. The fundamental tool that is used in bridging these

descriptions is Gaussian elimination, a standard algorithm used to solve systems of linear

equations. As we shall see, it also has significant consequences in the theory of systems

of equations. We close the chapter with a variety of applications, some not of a geometric

nature.

I 1 Vectors

1.1 Vectors mR2
Throughout our work the symbol R denotes the set of real numbers. We define a vector’ in

to be an ordered pair of real numbers, x = (x1, x2). This is the algebraic representation

of the vector x. Thanks to Descartes, we can identify the ordered pair (x,, x2) with a point

in the Cartesian plane, R2. The relationship of this point to the origin (0, 0) gives rise to the

geometric interpretation of the vector x—namely, the arrow pointing from (0, 0) to (x,, x2),

as illustrated in Figure 1.1.
The vector x has length and direction. The length of x is denoted lxii and is given by

lixil = +x,

whereas its direction can be specified, say, by the angle the arrow makes with the positive

x1-axis. We denote the zero vector (0, 0) by 0 and agree that it has no direction. We say

two vectors are equal if they have the same coordinates, or, equivalently, if they have the

same length and direction.
More generally, any two points A and B in the plane determine a directed line segment

from A to B, denoted AB. This can be visualized as an arrow with A as its “tail” and B

as its head.” If A = (a,, a-) and B = (b, b2), then the arrow AB has the same length
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‘The word derives from the Latin vector, “carrier.” from vectus, the past participle of vehere, “to carry’ 1



I Vectors 3

B (b1, l’2)

A.’
(a1, 02) b1 — a1

and direction as the vector v = (b1 — a1, b2 — a2). for algebraic purposes, a vector should
always have its tail at the origin, but for geometric and physical applications, it is important
to be able to “translate” it—to move it parallel to itself so that its tail is elsewhere. Thus, at

least geometncallv, we think of the arrow A B as the same thing as the vector v. In the same

vein, if C = (c1. c) and D = (d1, d), then, as indicated in Figure 1.2, the vectors AB and

are equal if (b1 — a1, b, — a2) (d1 — c1, d2 — c2).2 This is often a bit confusing at
first, so for a while we shall use dotted lines in our diagrams to denote the vectors whose
tails are not at the origin.

Scalar multiplication

If c is a real number and x (x1. x’) is a vector, then we define cx to be the vector with
coordinates (cx1, cx,). Now the length of cx is

licxIl = (cxi)2 + (cx:)2 = c2(x +x) = icIx +x = c Mxii.

When c 0, the direction of cx is either exactly the same as or exactly opposite that of x,
depending on the sign of c. Thus multiplication by the real number c simply stretches (or
shrinks) the vector by a factor of id and reverses its direction when c is negative, as shown
in Figure 1.3. Because this is a geometric “change of scale,” we refer to the real number c
as a scatar and to the multiplication cx as scalar multiplication.

Definition. A vector x is called a unit vector if it has length 1, i.e., if lxii = 1.

Note that whenever x 0, we can find a unit vector with the same direction by taking

EXAMPLE 1

x 1
— = —x
lix lxii

The vector x = (1, —2) has length iixB = /P- (_2)2 = Thus, the vector

u
=

= (I, —2)

isaunitvectorinthesamedirectiOnaSx. Asacheck, lull2 = ()2+()2 + = i.

A

Given a nonzero vector x, any scalar multiple cx lies on the line that passes through

the origin and the head of the vector x. For this reason, we make the following definition.

Definition. We say two nonzero vectors x and y are parallel if one vector is a scalar

multiple of the other, i.e., if there is a scalar c such that y = cx. We say two nonzero

vectors are nonparallel if they are not parallel. (Notice that when one of the vectors is

0, they are not considered to be either parallel or nonparallel.)

Vector addition

If x = (xi, x,) andy = (yI’ Y2), then we define
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FIGURE 1.1 FIGURE 1.2

as shown in Figure 1.4.

FIGURE 1.4

The unit circle

>c<6

FIGURE 1.3

2The sophisticated reader may recognize that we have defined an equivalence relation on the collection of directed
line segments. A vector can then officially be interpreted as an equivalence class of directed line segments.

x + y = (xj + Yi X2 + y2)

Because addition of real numbers is commutative, it follows immediately that vector addi

tion is commutative:
x + y y + X.



(See Exercise 28 for an exhaustive list of the properties of vector addition and scalar

multiplication.) To understand this geometrically, we move the vector y so that its tail is

at the head of x and draw the arrow from the origin to the head of the shifted vector y, as

shown in figure 1.5. This is called the parallelogram law for vector addition, for, as we

see in figure 1.5, x + y is the “long” diagonal of the parallelogram spanned by x and y.
The symmetry of the parallelogram illustrates the commutative law x + y = y + x.

This would be a good place for the diligent student to grab paper and pencil and

make up some numerical examples. Pick a few vectors x and y, calculate their sums

algebraically, and then verify your answers by making sketches to scale.

Remark. We emphasize here that the notions of vector addition and scalar multiplication

make sense geometrically for vectors that do not necessarily have their tails at the origin. If
- - . -±.

we wish to add CD to AB, we simply recall that CD is equal to any vector with the same

length and direction, so we just translate CD so that C and B coincide; then the arrow from
- -

A to the point D in its new position is the sum AB + CD.

Vector subtraction

Subtraction of one vector from another is also easy to define algebraically. If x = (XI, X2)

andy = (yi, y2) then we set

x — y = (x1 — Yi X2 — Y2)

As is the case with real numbers, we have the following important interpretation of the

difference: x — y is the vector we must add to y in order to obtain x; that is,

(x — y) + y = x.

From this interpretation we can understand x — y geometrically. The arrow representing

it has its tail at (the head of) y and its head at (the head of) x; when we add the resulting
vector to y, we do in fact get x. As shown in Figure 1.6, this results in the other diagonal

of the parallelogram determined by x and y. Of course, we can also think of x — y as the

sum x + (—y) x + (—l)y, as pictured in Figure 1.7. Note that if A and B are points in
—

the plane and 0 denotes the origin, then setting x = OB andy = OA gives x — y AB.

FIGURE 1.6 FIGURE 1.7

EXAMPLE 2

Let A and B be points in the plane. The ,nidpoint M of the line segment AB is the unique
-* — . - -+ - —*

point in the plane with the property that AM = MB. Since AB = AM + MB = 2AM,

we infer that = . (See Figure 1.8.) What’s more, we can find the vector v =

whose tail is at the origin and whose head is at M, as follows. As above, we set x = 0 B
-* - - I - Iandy = OA, so AB = x — y and AM = rAB = r(x — y). Then we have

FIGURE 1.8

In coordinates, if A = (a1, a2) and B = (b1, b,), then the coordinates of M are the
average of the respective coordinates of A and B:

M = ((ai,a2) + (b1,b2)) = ((ai + b1), (a +b2)).

Chapter] Vectors and Matrices

X, + Y2

Y2

x,
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xy

x+(—y)

FIGURE 1.5
yI

— -+ -÷
OM = OA + AM

= y + (x — y)

= y + x —

= x+y= (x+y).

-* -* -4

In particular, the vector OM is the average of the vectors OA and 0 B.

A (a1, 02)

See Exercise 18 for a generalization to three vectors. A
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We now use the result of Example 2 to derive one of the classic results from high school

geometry.

Proposition 1.1. The diagonals of a parallelogram bisect one another.

FIGURE 1.9

B

Proof. The strategy is this: We will hnd vector expressions for the midpoint of each diagonal

and deduce from these expressions that these two midpoints coincide. We may assume one

vertex of the parallelogram is at the oduin, 0, and we label the remaining vertices A, B,

and C, as shown in figure 1.9. Let x = OA and y OC, and let M be the midpoint of

diagonal AC. (In the picture, we do not place lvi on diagonal OB, even though ultimately

we will show that it is on 0 B.) We have shown in Example 2 that

-

OM = (x + y).

-4.

Next, note that 0 B = x + y by our earlier discussion of vector addition, and so

-4 -4 -4

ON = OB = (x+y) = OM.

This implies that M = N, and so the point M is the midpoint of both diagonals. That is,

the two diagonals bisect one another. D

Here is some basic advice in using vectors to prove a geometric statement in R2. Set up

an appropriate diagram and pick two convenient nonparallel vectors that arise naturally

in the diagram; call these x andy, and then express all other relevant quantities in terms

of only x and y.

FIGURE 1.10 0

A

Q, and R as distinct points at the right in figure 1.10, our goal is to prove that F = Q = R;

we do this by expressing all the vectors ö, OQ. and in terms of x andy. For instance,

since = y and OL = OA = x, we get =
—

y, and so

Similarly,

4. 4.
-, ‘ iOP=OB+BP=OB+BL=y+x—y)

= + y.

—4 .,—+ , IOQ = OM = ((x+y)) = 1(+y); and
.. .. i i I

OR = OA + AR = OA + AN = x + (y — x) = yx + y.

-4 -4 -4

We conclude that, as desired, OP = 0 Q = OR, and so P = Q = R. That is, if we go

two-thirds of the way down any of the medians, we end up at the same point; this is, of

course, the point of intersection of the three medians. C

The astute reader might notice that we could have been more economical in the last

proof. Suppose we merely check that the points two-thirds of the way down two of the

medians (say, P and Q) agree. It would then follow (say, by relabeling the triangle slightly)

that the same is true of a different pair of medians (say, P and R). But since any two pairs

must have this point in common, we may now conclude that all three points are equal.

1.2 Lines
With these algebraic tools in hand, we now study lines3 in R2. A line o through the origin

with a given nonzero direction vector v consists of all points of the form x = tv for some

scalar t. The line f parallel to o and passing through the point P is obtained by translating
-4

£ by the vector X = OF; that is, the line £ through P with direction v consists of all points

of the form
x = x0 + tv

It should now be evident that vector methods provide a great tool for translating theo

rems from Euclidean geometry into simple algebraic statements. Here is another example.

Recall that a median of a triangle is a line segment from a vertex to the midpoint of the

opposite side.

Proposition 1.2. The medians of a triangle intersect at a point that is two-thirds of the way

from each vertex to the opposite side.

Proof. We may put one of the vertices of the triangle at the origin, 0, so that the picture
-4 -4

is as shown at the left in Figure 1.10: Let x = OA, y = OB, and let L, M, and N be the

midpoints of OA. AB, and OB, respectively. The battle plan is the following: We let P

denote the point two-thirds of the way from B to L, Q the point two-thirds of the way frow

O to 1W, and R the point two-thirds of the way from A to N. Although weve indicated F’

as t varies over the real numbers. (It is important to remember that, geometrically, points

of the line are the heads of the vectors x.) Itis compelling to think of t as atime parameter;

initially (i.e., at time t = 0), the point starts at x0 and moves in the direction of v as time

increases. For this reason, this is often called the parametric equation of the line.
--4

To describe the line determined by two distinct potnts P and Q, we pick x0 = OP as
-4

before and set y = 0 Q; we obtain a direction vector by taking
- -4. -4

v = PQ = OQ - OP = — x0.

3Note: In mathematics, the word line is reserved for straight’ lines, and the curvy ones are usually called curves.

B

0’
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Thus, as indicated in Figure 1.11, any point on the line through P and Q can be expressed
in the form

X = Xo + tv = x0 + t(yo — x0) = (1 — t)xo + tyo.

As a check, when t = 0 and t = 1, we recover the points P and Q, respectively.

EXAMPLE 3

Consider the line
= 3x1 + 1

(the usual Cartesian eqttation from high school algebra). We wish to write it in parametric
form. Well, any point (x1, x2) lying on the line is of the form

x = (x1,x2) = (x1,3x1 + 1) (0,1) + (x1, 3x1) = (0,1) +xi(l, 3).

Since x1 can have any real value, we may rename it t, and then, rewriting the equation as

x = (0, 1) + t(l, 3),

we recognize this as the equation of the line through the point P = (0, 1) with direction
vector v (1,3).

Notice that we might have given alternative parametric equations for this line. The
equations

x = (0, 1) + s(2, 6) and x = (1,4) + u(l, 3)

also describe this same line. Why? A

The “Why’?” is a sign that, once again, the reader should take pencil in hand and check
that our assertion is correct.

EXAMPLE 4

Consider the line £ given in parametric form by

x = (—1, 1) + t(2, 3)

and pictured in Figure 1.12. We wish to find a Cartesian equation of the line. Note that
£ passes through the point (—1, 1) and has direction vector (2, 3). The direction vector
determines the slope of the line:

rise — 3

run — 2’

so, using the point-slope form of the equation of a line, we find

Mathematics is built around sets and relations among them. Although the precise
definition of a set is surprisingly subtle, we will adopt the naïve approach that sets
are just collections of objects (mathematical or not). The sets with which we shall be
concerned in this text consist of vectors. In general, the objects belonging to a set are
called its elements or members. If X is a set and x is an element of X, we write this as

x E X.

We might also read the phrase “x, y e W” as “x and y are vectors in W” or “x and y
belong to R

We think of a line in 2 as the set of points (or vectors) with a certain property.
The official notation for the parametric representation is

£ = {x e : x = (3,0) + t(—2, 1) for some scalar t].

Or we might describe £ by its Cartesian equation:

£={x E2 :11 +2x2 =3].

In words, this says that “f is the set of points x in R2 such that Il + 2x2 = 3.”
Often in the text we are sloppy and speak of the line

(*) xi+2x2=3

rather than using the set notation or saying, more properly, the line whose equation

is(*).

1.3 On toW
The generalizations to 1R3 and llIhl are now quite straightforward. A vector x e iR3 is defined

to bean ordered triple of numbers (x1, x2, x3), which in turn has a geometric interpretation
as an arrow from the origin to the point in three-dimensional space with those Cartesian
coordinates. Although our geometric intuition becomes hazy when we move to W with

n > 3, we may still use the algebraic description of a point in n-space as an ordered n-tuple of
real numbers (xj, x2 t,1). Thus, we write x = (x1, x2 ) for a vector in n-space.
We define R’ to be the collection of all vectors (xi ,x,,...,x,) as x1, x2 t, vary over
L As we did in 1R2, given two points A = (at a) andB = (b1 b) e W, we

associate to the directed line segment from A to B the vector AB = (b1 — a1, ... , b, — an).

FIGURE 1.11

tv

1) + r(2, 3)

(—1,

FIGURE 1.12

x2 —1 — 3

x1 + 1 — 2’

3 5
i.e .,x2 = +

Of course, we can rewrite this as 3x1 — 2x = —5.
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Remark. The beginning linear algebra student may wonder why anyone would care about W

with n > 3. We hope that the rich structure we’re going to study in this text will eventually

be satisfying in and of itself. But some will be happier to know that “real-world applications”

force the issue, because many applied problems require understanding the interactions of

a large number of variables. For instance, to model the motion of a single particle in R,

we must know the three variables describing its position and the three variables describing

its velocity, for a total of six variables. Other examples arise in economic models of a

large number of industries, each of which has a supply-demand equation involving large

numbers of variables, and in population models describing the interaction of large numbers

of different species. In these multivariable problems, each variable accounts for one copy

of iR, and so an n-variable problem naturally leads to linear (and nonlinear) problems in W.

Length, scalar multiplication, and vector addition are defined algebraically in an anal

ogous fashion: If x, y E 1W’ and c E R, we define

1.

2. cx = (cxi, cx2 ,...,cx);

3. x+y=(x±y,x2+y2,...,xn+yn).

As before, scalar multiplication stretches (or shrinks or reverses) vectors, and vector addition

is given by the parallelogram law. Our notion of length in 1W’ is consistent with applying

the Pythagorean Theorem (or distance formula); for example, as Figure 1.13 shows, we

find the length of x = (x1, X2. x3) 1k3 by first finding the length of the hypotenuse in the

x 1x-plane and then using that hypotenuse as one leg of the right triangle with hypotenuse x:

11x112 = (x+x )2+x =x+x+x.

The parametric description of a line £ in R” is exactly the same as in R2: If xo E W

is a point on the line and the nonzero vector v e W is the direction vector of the line, then

points on the line are given by

More formally, we write this as

X=X0+tV, tER.

{x 1W’ :x = xo + tv for some t E 1k).

As we’ve already seen, two points determine a line; three or more points in 1W’ are called

coltinear if they lie on some line; they are called noncollinear if they do not lie on any line.

EXAMPLE 5

Consider the line determined by the points P = (1, 2, 3) and Q = (2, 1,5) in R. The

direction vector of the line isv = PQ = (2, 1,5) — (1,2,3) = (1, —1,2), and we get an

initial point x0 = ö,just as we did in R2. We now visualize Figure 1.11 as being in i

and see that the general point on this line is x = x0 + tv = (1,2, 3) + t(l, —1,2). A

The definition of parallel and nonparallel vectors in 1W’ is identical to that in R2. Two

nonparallel vectors u and v in R determine a plane, To, through the origin, as follows. To
consists of all points of the form

x = su + tv

as s and t vary over 1k. Note that for fixed s, as t varies, the point moves along a line with

direction vector v; changing s gives a family of parallel lines. On the other hand, a general

plane is determined by one point x0 and two nonparallel direction vectors u and v. The

plane T spanned by u and v and passing through the point x0 consists of all points x e

of the form
x = xo + su + tv

as s and t vary over 1k, as pictured in Figure 1.14. We can obtain the plane T by translating

To, the plane parallel to T and passing through the origin, by the vector x0. (Note that this

parametric description of a plane in R makes perfect sense in n-space for any n 3.)

‘/7,

Before doing some examples, we define two terms that will play a crucial role through

out our study of linear algebra.

Definition. Let v1 ,...,vk 1W’. If c1 ek E R, the vector

V = CjV1 + c2v + + f’/Vk

is called a linear combination of v1 ,...,Vt. (See Figure 1.15.)

x=(x1,x,,x3)

jx + x

FIGURE 1.13

FIGURE 1.14

c,v,

VI

c1v1

FIGURE 1.15



In terms of our new language, then, the span of two nonparallel vectors u, v E RI! is a plane

through the origin. (What happens if u and v are parallel? We will return to such questions

in greater generality later in the text.)

EXAMPLE 6

Consider the points x e R3 that satisfy the Cartesian equation

(t) Xl — 2x = 5.

The set of points (x1, x2) R2 satisfying this equation forms a line £ in 2; since x3 is

allowed to vary arbitrarily, we obtain a vertical plane—a fence standing upon the line £.

Let’s write it in parametric form: Any x satisfying this equation is of the form

x= (x1,x2,x3) = (5+2x2,x2,x3) = (5, 0, 0)+x2(2, 1, 0)+x3(0, 0, 1).

Since x2 and X3 can be arbitrary, we rename them s and t, respectively, obtaining the

equation

(*) x = (5, 0,0) + s(2, 1,0) + t(0, 0, 1),

which we recognize as a parametric equation of the plane spanned by (2, 1, 0) and (0, 0, 1)

and passing through (5, 0, 0). Moreover, note that any x of this form can be written as

x = (5 + 2s, s, t), andsox1
—

2x2 = (5 + 2s) — 2s = 5, fromwhich we seethatx is indeed

a solution of the equation (t). A

This may be an appropriate time to emphasize a basic technique in mathematics: How

do we decide when two sets are equal? first of alt, we say that X is a subset of Y,

written
x c Y,

if every element of X is an element of Y. That is, X C Y means that wheneverx E X,

it must also be the case that x E Y. (Some authors write X c Y to remind us that the

sets X and Y may be equal.)
To prove that two sets X and Y are equal (i.e., that every element of X is an

element of Y and every element of Y is an element of X), it is often easiest to show

that X C Y and Y C X. We ask the diligent reader to check how we’ve done this

explicitly in Example 6: Identify the two sets X and Y, and decide what justifies each

of the statements X C Y and Y C X.

EXAMPLE 7

As was the case for lines, a given plane has many different parametric representations. for
example,

(**) x=(7,l,—5)+u(2,1,2)+v(2,l,3)

is another description of the plane given in Example 6, as we now proceed to check. first,
we ask whether every point of (**) can be expressed in the form of (*) for some values of
s and t; that is, fixing a and v, we must find s and t so that

(5,0,0)+s(2, l,0)+t(0,0, 1) = (7, l,—5)+u(2. l,2)+v(2, 1,3).

This gives us the system of equations

2s = 2u+2e+2

= a + v + 1

t = 2u+3v—5,

whose solution is obviously s = a + a + 1 and t = 2u + 3v — 5. Indeed, we check the
algebra:

(5.0.0) +s(2, 1.0) + t(0, 0,1) = (5,0,0) + (a + a + l)(2, 1,0)

+ (2u + 3v — 5)(0, 0, 1)

= ((5,0,0) ± (2, 1,0) — 5(0,0, 1))

+ u((2, 1, 0) + 2(0, 0, 1)) + v((2, 1, 0) + 3(0, 0, 1))

= (7, 1, —5) + u(2, 1,2) + v(2, 1,3).

In conclusion, every point of (**) does in fact lie in the plane (*).
Reversing the process is a bit trickier. Given a point of the form (*) for some fixed

values of s and t, we need to solve the equations for a and a. We will address this sort
of problem in Section 4, but for now, we’ll just notice that if we take a = 3s — t — 8 and
a = —2s + t + 7 in the equation (**), we get the point (*). Thus, every point of the plane
(*) lies in the plane (**). This means the two planes are, in fact, identical. A

1EXAMPLE $

Consider the points x e R that satisfy the equation

x1 — 2x7 + x3 = 5.

Any x satisfying this equation is of the form

x=(xl,x2,x3)=(5+2x2—x3,x2, X3)=(5,0,0)+X2(2,1,0)+X3(—l,O,l).

So this equation describes a plane P spanned by (2, 1, 0) and (—1, 0, 1) and passing through
(5, 0, 0). We leave it to the reader to check the converse—that every point in the plane P
satisfies the original Cartesian equation. A

In the preceding examples, we started with a Cartesian equation of a plane in R3 and
derived a parametric formulation. Of course, planes can be described in different ways.

Chapter 1 Vectors and Matrices

Definition. Let v1 k e W. The set of all linear combinations of V1 Vk IS

called their span, denoted Span (v1 ,...,Vk). That is,

Span(vl,...,vk)

(v e R’7 : V = c1v1 + c2v2 + . + cv for some scalars c1 Ck}.

I Vectors 13



Chapter] Vectors and Matrices I Vectors 15

IEXAMPLE 9

We wish to find a parametric equation of the plane that contains the points P = (1, 2, 1)

and Q = (2,4,0) and is parallel to the vector (1, 1,3). We take x0 = (1,2, 1), u PQ =

(1, 2, —1), and v (1, 1, 3), so the plane consists of all points of the form

x=(l,2, 1)+s(1,2,—1)+t(i, 1,3), s,t eR. A

finally, note that three noncollinear points P, Q, R E R3 determine a plane. To get a
-÷ -* -

parametric equation of this plane, we simply take x0 = OP, u = PQ, and v = PR. We

should observe that if P, Q, and R are noncollinear, then u and v are nonparallel (why?).

It is also a reasonable question to ask whether a specific point lies on a given plane.

EXAMPLE 10

Let u = (1,1,0,—i) and v = (2,0, 1, 1). We ask whether the vector x = (1,3,—I, —2)

is a linear combination of u and v. That is, are there scalars s and t so that su + tv = x,

i.e.,

s(l, 1,0, —1) + t(2, 0, 1, 1) = (1,3. —1, —2)?

Expanding, we have

which leads to the system of equations

(s + 2t, s, t, —s + t) (1,3,—i, —2),

-s + t = -2.

From the second and third equations we infer that s = 3 and t = —1. These values also

satisfy the first equation, but not the fourth, and so the system of equations has no solution;

that is, there are no values of s and t for which all the equations hold. Thus, x is not a

linear combination of u and v. Geometrically, this means that the vector x does not lie in

the plane spanned by u and v and passing through the origin. We will learn a systematic

way of solving such systems of linear equations in Section 4. A

IEXAMPLE 11

Suppose that the nonzero vectors u, v, and w are given in R3 and, moreover, that v and w

are nonparallel. Consider the lint £ given parametrically by x = x0 + ru (r 1) and the

plane given parametrically by x = x1 + sv + tw (s, t, e R). Under what conditions do

£ and P intersect?

It is a good habit to begin by drawing a sketch to develop some intuition for what

the problem is about (see Figure 1.16). We must start by translating the hypothesis

that the line and plane have (at least) one point in common into a precise statement

involving the parametric equations of the line and plane; our sentence should begin

with something like “For some particular values of the real numbers r, s, and t, we

have the equation

Exercises 1. 1

FIGURE 1.16

For £ and T to have (at least) one point x in common, that point must be represented in
the form x” = x0 ± ru for some value of r and, likewise, in the form x = x1 + sv ± tw
for some values of s and t. Setting these two expressions for x equal, we have

x0 + ru = x1 + sv + tw for some values of r, s, and t,

which holds if and only if

x0 — x1 = —ru + sv + tw for some values of r, s, and t.

The latter condition can be rephrased by saying that X — x1 lies in Span (U. v. w).
Now, there are two ways this can happen. If Span (u, V. w) = Span (v. w), then x0 —

lies in Span (u. v, w) if and only if x0 — x1 = sv + tw for some values of s and t, and this
occurs if and only if x0 = x1 + sv + tw, i.e.. x0 e T. (Geometrically speaking, in this case
the line is parallel to the plane, and they intersect if and only if the line is a subset of the
plane.) On the other hand, if Span (U, v, w) W, then £ is not parallel to T, and they
always intersect. A

1. Given x = (2.3) andy = (—1, 1), calculate the following algebraically and sketch a
picture to show the geometric interpretation.

e. y — x

2. For each of the following pairs of vectors x and y, compute x + y. x — y, and y — x.
Also, provide sketches.
a.x=(l,l),y=(2,3) c.x=(l,2,—l),y=(2,2,2)

b. x = (2, —2), y (0, 2)
*3, Three vertices of a parallelogram are (1.2, 1), (2,4.3), and (3. 1,5). What are all the

possible positions of the fourth vertex? Give your reasoning.4

4. Let A = (1. —1,—i), B = (—1. 1,—I), C = (—1, —1, 1), and D (1, 1,1). Check
that the four triangles formed by these points are all equilateral.

5. Let £ be the line given parametrically by x = (1, 3) + t(—2, 1), t e R. Which of the
following points lie on £? Give your reasoning.
a. x=(—l,4) b. x=(7,0) c. x=(6,2)

1For exercises marked with an asterisk (*) we have provided either numerical answers or solutions at the back of
the book.

I

s+2t= I

S = 3

t=-1

a. X + y
b. x — y

c. x+2v

d. x+y f. 2x
— y

g. HxII
h. L

UxH
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6. Find a parametric equation of each of the following lines:

a.3x1 + 4x2 = 6

b. the line with slope 1/3 that passes through A = (—1,2)

c. the line with slope 2/5 that passes through A = (3, 1)

d. the line through A = (—2. 1) parallel to x = (1.4) ± t(3. 5)

e. the line through A = (—2, 1) perpendicular to x = (1.4) + t(3, 5)
*f the line through A = (1,2,1) and B = (2. 1.0)

g. thelinethroughA=(1,—2,l)andB=(2,l,—l)

*h. the line through (1, 1,0. —1) parallel to x (2 + t, 1 — 2t. 3t, 4— t)

7. Suppose x = Xo + tv andy = yo + sw are two parametric representations of the same

line £ in R’1.
a. Show that there is a scalar t0 so that y0 = Xo + t0v.

b. Show that v and w are parallel.
*$• Decide whether each of the following vectors is a linear combination of u = (1,0, 1)

andv= (—2,1,0).
a. x=(l,0,0) b. x=(3,—l,l) c. x=(0,l,2)

9. Let T be the plane in lR spanned by u = (1, 1,0) and v = (1, —1, 1) and passing

through the point (3,0, —2). Which of the following points lie on

a. x = (4, —1.—I) c. x = (7, —2, 1)

b. x=(l.—l,l) U. x=(5.2,0)

10. Find a parametric equation of each of the following planes:

a. theplanecontainingthepoint(_1,0.1)andthe1inex=(l.I,l)+t(l,7.)

b. the plane parallel to the vector (1. 3. 1) and containing the points (1, 1. 1) and

(—2,1,2)

c. the plane containing the points (1. 1. 2). (2,3.4), and (0. —1,2)

d. the plane in containing the points (1, 1, —1,2). (2.3,0, 1), and (1,2,2,3)

11. The origin is at the center of a regular rn-sided polygon.

a. What is the sum of the vectors from the origin to each of the vertices of the polygon?

(The case n = 7 is illustrated in Figure 1.17.) Give your reasoning. (Hint.’ What

happens if you rotate the vectors by 2ir/m?)

FIGURE 1.17

b. What is the sum of the vectors from one fixed vertex to each of the remaining

vertices’? (Hint: You should use an algebraic approach along with your answer to

part a.)
* 12. Which of the following are parametric equations of the same plane’?

a. T1: (1. l,0)±s(l.0. 1)+t(—2. 1,0)

b. T’: (1. 1, 1) + s(0. 1.2) ± t(2, —1,0)

c. T:(2.0.0)+s(4,—l,2)±t(0,l,2)

13. Given AABC, let M and N be the midpoints of AB and AC, respectively. Prove that
—* -

MN = 5BC.

14. Let .4BCD be an arbitrary quadrilateral. Let P. 0, R, and S be the midpoints of
AB, BC, CD, and DA, respectively. Use Exercise 13 to prove that PQRS is a
parallelogram.

*15 In ABC. shown in Fioure 1.18, IIAD= IABN and IICEN = ICBII. Let Q
denote the midpoint of CD. Show that A Q = c.4 E for some scalar c, and determine

the ratio c = IAQW/IAEW.

.4 E B

FIGURE 1.18 FIGURE 1.19

16. Consider parallelogram ABCD. Suppose = and DP = 4,. Show that

P lies on the diagonal AC. (See Figure 1.19.)

17. Given AABC. suppose that the point D is 3/4 of the way from A to B and that E is
the midpoint of BC. Use vector methods to show that the point P that is 4/7 of the
way from C to D is the intersection point of CD and AE.

1$. Let A. B. and C be vertices of a triangle in . Let x = 0.4. y = OB, and z = OC.
Show that the head of the vector v = (x + y + z) lies on each median of AABC (and
thus is the point of intersection of the three medians). This point is called the centmid
of the triangle ABC.

19. a. Letu. v E R2 Describe the vectors x = su + tv. where s ± t = 1. What particular
subset of such x’s is described by .c 0? By t 0? By s, t > 0?

b. Let u, v. w e R. Describe the vectors x = ru + sv + tw, where r + s + t = 1.
What subsets of such x’s are described by the conditions r 0’? s 0’? t 0?
1’, S, t > 0?

20. Assume that u and v are parallel vectors in IRIZ. Prove that Span (U. v) is a line.

21. Suppose v, w E W1 and c is a scalar. Prove that Span (v + cw, w) = Span (v, w). (See
the blue box on p. 12.)

22. Suppose the vectors v and w are both linear combinations of vi ,.,.,v1..
a. Prove that for any scalar c, cv is a linear combination of ‘i v.

b. Prove that v + w is a linear combination of vj vK.

When you are asked to “show” or “prove” something. you should make it a point to
write down clearly the information you are given and what it is you are to show. One
word of warning regarding part b: To say that v is a linear combination of v1 K

is to say that v c1v1 + c2v2 + ‘ + cv for some scalars c1
.

These scalars
will surely be different when you express a different vector w as a linear combination
of v1 ,...,Vk. so be sure you give the scalars for w different names.

*23. Consider the line f: x = x0 + rv ft IR) and the plane T: x = su + tv (s. t E R).
Show that if f and T intersect, then x0 T.

___B

C

d. T4: (0,2,1) +s(1. —1,—I) + t(3, —1, 1)



24. Consider the lines E: x = x0 + tv and in: x = x1 + su. Show that f and in intersect

if and only if xo — x1 lies in Span (u. v).

25. Suppose x. y E are nonparallel vectors. (Recall the definition on p. 3.)

a. Prove that if sx + ty = 0. then s = t = 0. (Hint: Show that neither s 0 nor t 0

is possible.)

b. Prove that ifax + by = cx ± dy, then a = c and b = d.

Two important points emerge in this exercise. First is the appearance of proof by

contradiction. Although it seems impossible to prove the result of part a directly, it is

equivalent to prove that if we assume the hypotheses and the failure of the conclusion,

then we arrive at a contradiction. In this case, if you assume sx + ty = 0 and s 0

(or t 0), you should be able to see rather easily that x and y are parallel. In sum,

the desired result must be true because it cannot be false.
Next, it is a common (and powerful) technique to prove a result (for example,

part b of Exercise 25) by first proving a special case (part a) and then using it to derive

the general case. (Another instance you may have seen in a calculus course is the

proof of the Mean Value Theorem by reducing to Rolle’s Theorem.)

26. “Discover” the fraction 2/3 that appears in Proposition 1.2 by finding the intersection

of two medians. (Parametrize the line through 0 and lvi and the line through A and N,

and solve for their point of intersection. You will need to use the result of Exercise 25.)

27. Given ABC, which triangles with vertices on the edges of the original triangle have

the same centroid? (See Exercises 18 and 19. At some point, the result of Exercise 25

may be needed, as well.)

28. Verify algebraically that the following properties of vector arithmetic hold. (Do so for

a = 2 if the general case is too intimidating.) Give the geometric interpretation of each

property.
a. Forallx,yeW,x+y=y+x.

b. Forallx.y,z eW,(x+y)+z=x+(y+z).

c. O+x=xforallxEW.

d. For each x e !L, there is a vector —x so that x + (—x) = 0.

e. For all c, d e JR and x R”, c(dx) = (cd)x.

f. Forallc ERandx.y eW,c(x±y) =cx+cy.

g. Forallc,deRandxeW,(c+ct)x=cx+dX.

h. For all x e W, Ix = x.

29. a. Using only the properties listed in Exercise 28. prove that for any x E we have

Ox = 0. (It often surpiises students that this is a consequence of the properties in

Exercise 28.)

b. Using the result of part a, prove that (— l)x = —x. (Be sure that you didn’t use this

fact in your proof of part a!)

Remark. The dot product of two vectors is a scalar. For this reason, the dot product is also

called the scatar product, but it should not be confused with the multiplication of a vector

by a scalar, the result of which is a vector. The dot product is also an example of an inner

product, which we will study in Section 6 of Chapter 3.

We know that when the vectors x and y e JR2 are perpendicular, their dot product is 0.

By starting with the algebraic properties of the dot product, we are able to get a great deal

of geometry out of it.

Proposition 2.1. The dot product has the following properties:

1. x y = y xfor all x, y e R’ (the commutative property):

2. xx = IIxI2 > Oandx’x = Oif and only ifx =0:

3 Chapter 1 Vectors and Matrices 2 Dot Product 19

Q yI I

FIGURE 2.1

This leads us to make the following definition.

Definition. Given vectors x, y E R2, define their dot product

X y = Xlvi + XIV2.

More generally, given vectors x, y e R’, define their dot product

X y = Xi V I + X2 y2 + + X, V.

3. (cx)
.

y = c(x . y)for all x, y e W andc eR;

2 Dot Product - - - -

We discuss next one of the crucial constructions in linear algebra, the dot product x y of

two vectors x. y e JRfl• By way of motivation, let’s recall some basic results from plane

geometry. Let P = (x1, x2) and Q (vl, y) be points in the plane, as shown in Figure

2.1. We observe that when LPOQ is a right angle. AOAP is similar to 0BQ, and SO

x/x1 = —YI/Y2, whence x1y1 + X2V2 0.

hers:

4. x (y + z) = x y + x zfor all x, y, z e W (the distributive propert’).

Proof. In order to simplify the notation, we give the proof with n = 2; the general argument

would include all n terms with the obligatory .... Because multiplication of real numbers

is commutative, we have

X Y = Xj Vi +X2V2 = ylxi + 2X2 = Y x.

The square of a real number is nonnegative and the sum of nonnegative numbers is non

negative, so x x =x +x Oand is equal toOonly whenx1 =x2 = 0.

The next property follows from the associative and distributive properties of real num

(cx) y = (cx1 )vi + (cx2)y2 = c(xj Vi) ± c(x2y2)

= c(x1’i + x2y2) c(x y).

The last result follows from the commutative, associative, and distributive properties of

real numbers:

x.(v+z)=x1(yi+zj)+x(y2+z2).tiyi+XiI+x:y2+x22:

= (x1vj + X’V’) + (XtZi + XZ) = x y + x z. D



=x.x+x.y+y’x±y’y

Although we use coordinates to define the dot product and to derive its algebraic

properties in Proposition 2. 1, from this point on we should try to use the properties

themselves to prove results (e.g.. Corollary 2.2). This will tend to avoid an algebraic

mess and emphasize the geometry.

-

and we let x = OA and y = OC be vectors representing adjacent sides emanating from
-

the origin. We have the diagonals 03 = x + y and CA = x y, so the diagonals are
orthogonal if and only if

(x + v) (x
—

y) = 0.

Using the properties of dot product to expand this expression, we obtain

The geometric meaning of this result comes from the Pythagorean Theorem: When

x and y are perpendicular vectors in R2, as shown in Figure 2.2. we have lix + yii2 =

iix2 + iiy2 and so, by Corollary 2.2, it must be the case that x
‘

y = 0. (And the conerse

follows, too, from the converse of the Pythagorean Theorem, which follows from the Law

of Cosines. See Exercise 14.) That is, two vectors in R2 are perpendicular if and only if

their dot product is 0.

FIGURE 2.2

Motivated by this, we use the algebraic dehnition of the dot prodtict of vectors in R”

to bring in the geometry’.

nition. We say vectors x and y ER” are orthogonaP if x 0.

Orthogonal and perpenctic’ttlar are synonyms, bitt we shall stick to the tormer. because that

is the common terminology in linear algebra texts.

EXAMPLE 1

To illustrate the power of the algebraic properties of the dot product. we prove that the

diagonals ofa parallelogram are orthogonal if and only’ if the parallelogram is a rhombus (that

is, all sides have equal length). As usual, we place one vertex at the origin tsee Figure 2.3),

(x+y)(x—y)=x’x+y’x—Xy—yy= lIxli2—1iy112,

so the diagonals are orthogonal if and only if Wxii2 = iiyW2. Since the length of a vector
is nonnegative, this occurs if and only if lxii = D ‘ ii, which means that all the sides of the
parallelogram have equal length. A

In general, when you are asked to prove a statement of the form P if and only if Q.
this means that you must prove two statements: If P is true, then Q is also true (“only
if”); and if Q is true, then P is also true (“if”). In this example. we gave the two
arguments simultaneously’, because they retied essentially only’ on algebraic identities.

A useful shorthand for writing proofs is the implication symbol,. The sentence

can be read in numerous way’s:

• “if P. then Q”
• “P implies Q•’
• “P only if Q”
• “Q whenever P”

P = Q

• “P is sufficient for Q” (because when P is true, then Q is true as well)

• “Q is necessary’ for P” (because P can’t be true unless Q is true)

The “reverse implication” symbol, , occttrs less frequently, because we ordinarily
write “P ,‘ Q” as “Q ‘, P.” This is called the converse of the original impli
cation. To convince yourself that a proposition and its converse are logically distinct,
consider the sentence “If students major in mathematics, then they’ take a linear algebra
course.” The converse is “If students take a linear algebra course, then they major in
mathematics.” How many of the students in this class are mathematics majors??

We often use the symbol to denote “if and only it”: P Q means
“P

,‘ Q and Q , P.” This is often read “P is necessary and sufficient
for Q”; here necessity’ corresponds to “Q P” and sufficiency corresponds to
“P = Q.”

Chaptc’r I Vectors and Matricea

Corollary 2.2. lix + yW = 11x112 + 2x y + llyW2

Proof. Using the properties of Proposition 2.1 repeatedly, we have

lix ±311- = (x+y) . (X+3’)

I

as desired.

= 11x112 + 2x
‘‘ + Uy112,

D

2 Dot Product 2 1

FIGURE 2.3

5This word derives from the Greek ortlios. meaning “straight,” “right.” or “true,” and gönia, meaning “angle.”



Armed with the definition of orthogonal vectors, we proceed to a construction that

will be important in much of our future work. Starting with two vectors x, y e W, where

y 0, Figure 2.4 suggests that we should be able to write x as the sum of a vector, xi

(read “x-parallel”), that is a scalar multiple of v and a vector, x (read “x-perp”), that is

orthogonal to y. Let’s suppose we have such an equation:

x=xU+xH where

xi is a scalar multiple of y and x± is orthogonal to y.

To say that x is a scalar multiple of y means that we can write x! = cy for some scalar c.

Now, assuming such an expression exists, we can determine c by taking the dot product of

both sides of the equation with y:

x y = (xi + x)
.

y = (x1 .
y) + (x v) = y = (cy)

.
y = cIlyB2.

This means that
x.y x.y

c = —v. and so x =

Byll- Ilyll—

2 Dot Product 23

The pattern of reasoning we’ve just been through is really not that foreign. When we

“solve” the equation
=2,

we assume x satisfies this equation and proceed to find candidates forx. At the end of

the process, we must check to see which of our answers work. In this case, of course,

we assume x satisfies the equation, square both sides, and conclude that x = 2. (That

is, if = 2, then x must equal 2.) But we check the converse: If x = 2, then

= =2.
It is a bit more interesting if we try solving

= x.

Now, squaring both sides leads to the equation

and so we conclude that if x satisfies the given equation, then x = 2 or x = —1. As

before, x = 2 is a fine solution, but x = —1 is not.

The vector xt is called the projection of x onto y, written projX.

The fastidious reader may be puzzled by the logic here. We have apparently assumed

that we can write x = xi + x-1- in order to prove that we can do so. Of course, as it stands,

this is no fair. Here’s how we fix it. We now define

X•
x =T3;-1l2Y

x.y
x =X—jj--jj2Y.

Obviously, xi + x = x and x11 is a scalar multiple of y. All we need to check is that xL is

in fact orthogonal to y. Well,

I /
X

x y

x.y
=XY 112M311

EXAMPLE 2

=

= (2.3,1) (—1,1,1)
(—1,1,1) = (—1. 1,1) and

ij2 Ii(—1, 1, 1)112 -

x = (2,3,1) — (—l. 1.1) = (, , )

Suppose x, y e R2. We shall see next that the formula for the projection of x onto y

enables us to calculate the angle between the vectors x and y. Consider the right triangle

in Figure 2.5; let 9 denote the angle between the vectors x and y. Remembering that the

Chapter 1 ‘Vectors and Matrices

I

x

FIGURE 2.4

Letx = (2,3,1) andy = (—1. 1.1). Then

To double-check, we compute x-
. = (, , ) (—1, 1, 1) = 0, as it should be. A

= x y — x y = 0,

as required. Note that by finding a formula for c above, we have shown that xu is the unique

multiple of y that satisfies the equation (x — x1) y = 0.

V
- .([l 3

FIGURE 2.5

cosine of an angle is the ratio of the signed length of the adjacent side to the length of the

hypotenuse, we see that
x y

signed length of xi cilyll —

_______

cos9=
length of x lxii lxii

xy

—
Ixililyli
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This, then, is the geometric interpretation of the dot product:

= lIxilIlyil cos9.

Note that if the angle 9 is obtuse, i.e., ir/2 < <yr, then c < 0 (the signed length of xi

is negative) and x y is negative.
Will this formula still make sense even when x. y c W? Geometrically, we simply

restrict our attention to the plane spanned by x and y and measure the angle 9 in that plane,

and so we blithely make the following definition.

Using Corollary 2.2, we have

Hx + yN2 = 11x11 + 2x
.
y + Uy112 = 2(x y + 1)

lix — yjj2 = Hx112 — 2x
.

y + Hy112 = 2(—x
.

y + 1).

Since Ix +yII2 > Oand lix — yH2 >0. we see thatx y+ 1 > Oand—x
.

y + 1 >0. Thus,

—l<x•y<1, andso Ixyl.

Note that equality holds if and only if either x + y = 0 or x — y = 0, i.e., if and only if

x = ±y.

In general, since x/lixll and y/yJ are unit vectors, we have

EXAMPLE 3

SetA=(l,—1,—l),B=(—l,l,—l),andC=(—l,—l,l).ThenAB=(—2,2,0)and
-

AC = (—2,0, 2), so
- -+

AB.AC 4 1
cos.BAC=

__ —. =

IIABII IIACII (2/)-

We conclude that LBAC = ir/3.

Since our geometric intuition may be misleading in k”, we should checkctlgebraicallv

that this definition makes sense. Since Icos 91 1, the following result gives its what is

needed.

Proposition 2.3 (Cauchy-Schwarz Inequality). If x, v e R”, then

lixililyil.

Moreove,; eqttali holds if and only if one of the vectors is a scalar multiple of the other

Proof. If one of the vectors is the zero vector, the result is immediate, so we assume hoh

vectors are nonzero. Suppose first that both x and y are unit vectors. Each of the vec

tors x + y and x — y (which we can picture as the diagonals of the parallelogram spanned

by x andy when the vectors are nonparallel, as shown in Figure 2.6) has nonnegative length.

<I, and so Ix.yI lLxIIyiI,
JJxJJ Ilyll

as required. Equality holds if and only if —— = that is, equality holds if and only

if x and y are parallel. H D

Remark. The dot product also arises in situations removed from geometry. The economist

introduces the comnniothte vector, whose entries are the quantities of various commodities

that happen to be of interest. For example. we might consider x = (x1, X2, X3, X4. x) E

where x represents the number of pounds of flour, x2 the number of dozens of eggs, x3

the number of pounds of chocolate chips, x4 the number of pounds of walnuts, and x5 the

number of pounds of butter needed to produce a certain massive quantity of chocolate chip

cookies. The economist next introduces the price vector p (pi, p, p3, p4. ps) E .

where is the price (in dollars) of a unit of the 1th commodity (for example, p’ is the price

of a dozen eggs). Then it follows that

p x p1.v1 + 132x2 + P3X3 + J)4X4 + 5X5

is the total cost of producing the massive quantity of cookies. (To he realistic, we might

also want to include x6 as the number of hours of labor, with corresponding hourly wage

p6.) We will return to this interpretation in Section 5 of Chapter 2.

The gambler uses the dot product to compute the expected value of a lottery that has

multiple payoffs tvith various probabilities. If the possible payoffs for a given lottery

are given by w = (u’1 w,,) and the probabilities of winning the respective payoffs

are given by p = (pj Pu), with pi + + p, 1, then the expected value of the

lottery isp . w = pIw1 + ... + paw,,. for example, if the possible prizes, in dollars, for a

particular lottery are given by the payoff vector w = (0. 1. 5, tOO) and the probability vector

is p = (0.5. 0.4. 0.09. 0.01). then the expected value is p w 0.4 + 0.45 + 1 = 1.85.

Thus, if the lottery ticket costs more than $1.85, the gambler should expect to lose money

in the long run.

Definition. Let x and y be nonzero vectors in R”. We define the angle between them to

be the unique & satisfying 0 9 r so that

x y
cos&=

lxii iI3’H

LExercises 1.2

1. For each of the following pairs of vectors x and y, calculate x y and the angle 9

between the vectors.

a. x = (2, 5), y = (—5, 2)

b. x = (2, 1),’ = (—1,1)

c. x = tI. 8), y = (7, —4)

e. x=(l,—l,6),y=(5,3,2)
*f x=(3,—4,5),y=(—l,0,l)

FIGURE 2.6

- g. x=(1,l,1,l),v=(l.—3,-—l.5)
d. x=(1,4,—3),y=(. 1,3)
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*2. For each pair of vectors in Exercise 1, calculate projx and proj.(y.

3. A methane molecule has four hydrogen (H) atoms at the points indicated in figure 2.7

and a carbon (C) atom at the origin. find the H — C — H bond angle. (Because of the

result of Exercise I . 1.4, this configuration is called a regular tetrahedron.)

FIGURE 2.7

(—1,—i, 1)

*4• Find the angLe between the long diagonal of a cube and a face diagonal.

5. Find the angle that the long diagonal of a 3 x 4 x 5 rectangular box makes with the

longest edge.
*6. Suppose x, y e 1k”, llxB = 3, Nli = 2, and the angle 8 between x and y is 8 = I

arccos(—1/6). Show that the vectors x + 2y and x
—

y are orthogonal.

7. Supposex,y e 1k”, lxii = v”, llIi = l,andtheanglebetweenxandyis3lr/4. Show

that the vectors 2x + 3y and x
—

y are orthogonal.

8. Suppose x, y, z e R2 are unit vectors satisfying x + y + z = 0. Determine the angles

between each pair of vectors.

9. Let e1 = (1, 0, 0), e = (0, 1, 0), and e = (0, 0, t) be the so-called standctrd basis for

1k. Let x e 1k be a nonzero vector. For i = 1. 2, 3, let 8 denote the angle between x

and e1. Compute cos2 8 + cos2 82 + cos2 83.

10. Let x = (1, 1, 1 1) e 1k” andy = (1,2,3,.... 11) e 1k”. Let 8 be the angle be

tween x and yin R”. Find urn 8. (The formulas 1 + 2+ ± n = n(,t + l)/2 and

12 + 22 + ... + n2 =n(n + l)(2n + 11/6 may be useful.)

11. Supposex, V1 V eR” andxisorthogonaltoeachofthevectOtsVt Vk. Show

that x is orthogonal to any linear combination c1v1 + c2v2 + + ckVk.6

12. Use vector inethods to prove that a parallelogram is a rectangle if and only if its

diagonals have the same length.

13. Use the algebraic properties of the dot product to show that

lix + YB2 + lix — yIi2 =2 (ilxil2 + iiylI2).

Interpret the result geometrically.

14. Use the dot product to prove the law of cosines: As shown in figure 2.8,

c2 a2 + b2 — 2ab cos 8.

15. Use vector methods to prove that a triangle that is inscribed in a circle and has a diameter

as one of its sides must be a right triangle. (Hint: See Figure 2.9. Express the vectors

u and v in terms of x and y.)

16. a. Lety eR”. Ifx. y = 0 for at/xe 1k”, then prove thaty = 0.

When you know some equation holds for at! wzlues of x, you should often choose

some strategic, particular value(s) for x.

b. Suppose y, z e 1k” and x y = x z for all x e 1k”. What can you conclude? (Hint:

Apply the result of part a.)
17. If x = (xj. X2) e R2 set p(x) = (—X2, Xi).

a. Check that p(x) is orthogonal to x. (Indeed, p(x) is obtained by rotating x an angle

ir/2 counterclockwise.)

b. Given x, y e R2, show that x p(y) = —p(x)
.

y. Interpret this statement geomet

rically.

1$. Prove the triangle inequatity: For any vectors x, y eR”, Nx + yB lix) + NyN. (Hint:

Use the dot product to calculate lix + y112.)

19. a. Give an alternative proof of the Cauchy-Schwarz Inequality by minimizing the

quadratic function Q(t) = lix — tyil2. Note that Q(t) 0 for all t.

b. If Q(t0) < Q(t) for all t, how ist0y related to x? What does this say about projx?

20. Use the Cauchy-Schwarz inequality to solve the following max/mm problem: If the

(long) diagonal of a rectangular box has length c, what is the greatest that the sum of

the length, width, and height of the box can be? For what shape box does the maximum

occur?

21. a. Letx andy be vectors with lxii Ilyll. Prove that the vector x + y bisects the angle

between x and y. (Hint: Because x + y lies in the plane spanned by x and y, one

has only to check that the angle between x and x + y equals the angle between y

and x + y.)

b. More generally, if x andy are arbitrary nonzero vectors, let a = lixil and b = )y).

Prove that the vector bx + ay bisects the angle between x and y.

22. Use vector methods to prove that the diagonals of a parallelogram bisect the vertex

angles if and only if the parallelogram is a rhombus. (Hint: Use Exercise 21.)

23. Given ABC with Don BC, as shown in Figure 2.10. prove that if AD bisects LBAC.

then IIBDII/llCDil = IIABII/IIACIi. (Hint: Use part b of Exercise 21. Let x = AB

Chapter 1 Vectors and Matrices

1. 1)

(—1, 1,-I)

C

FIGURE 2.8 FIGURE 2.9

C

6The symbol indicates that the result of this problem will be used later.
FIGURE 2.10



3 Hyperplanes in R’1

We emphasized earlier a parametric description of lines in R2 and planes in R3. Let’s begin

by revisiting the Cartesian equation of a line passing through the origin in R2, e.g.,

2x1 + x = 0.

We recognize that the left-hand side of this equation is the dot product of the vector a = (2, 1)

with x = (xi xa). That is, the vector x satisfies this equation precisely when it is orthogonal

to the vector a. as indicated in figure 3.1, and we have described the line as the set of vectors

in the plane orthogonal to the given vector a = (2, 1):

(*) a•x=O.

ft is customary to say that a is a normal7 vector to the line. (Note that any nonzero scalar

multiple of a will do just as well, but we often abuse language by referring to “the” normai

vector.)

?This is the first of se’.eral occurrences of the word nonna/—eidence of mathematicians propensity to uses

u.ord repeatedly with different meanings Here the meaning derives from the Latin nonna, varpentetS square.

ft is easy to see that specifying a normal vector to a line through the origin is equivalent

to specifying its slope. Specifically, if the normal vector is (a, b), then the line has slope

—a/b. What is the effect of varying the constant on the right-hand side of the equation

(*)? We get different lines parallel to the one with which we started. In particular, consider

a parallel line passing through the point X0, as shown in Figure 3.2. If x is on the line,

then x — x0 will be orthogonal to a, and hence the Cartesian equation of the line is

or

a (x — x0) = 0,

= c.

where c is the fixed real number a XO.8 (Why is this quantity the same for every point xo

on the line?)

EXAMPLE 1

Consider the line fo throtigh the origin in R2 with direction vector v = (1, —3). The points

on this line are all of the form

x=t(l,—3), teR.

Because (3, 1) . (1, —3) 0, we may take a = (3. 1) to be the normal vector to the line,

and the Cartesian equation of fo is

a x = 3x1 + X2 = 0.

(As a check, suppose we start with itt + 12 = 0. Then we can write It = —x2, and so

the solutions consist of vectors of the form

= (Xi. 12) = (—12, 12) = ,t2(l, —3), is E R.

Letting t = —x2, we recover the original parametric equation.)

5The sophisticated reader should compare this to the study of level curves of tunctions in multis añable calculus-

Here our function is J(x) = a x.

Chapter 1 Vectors and Motncc’s
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B

a

and y = AC; express AD in two ways as a linear combination of x and y and use

Exercise 1.1.25.)

24. Use vector methods to show that the angle bisectors of a triangle have a common point.

(Hint: Given OAB, letx = OA. v = OB.a = WAIl, b = BOBII, andc IIABII.

If we define the point P by = k(bx ± av), use part b of Exercise 21 to show

that P lies on all three angle bisectors.)

25. Use vector methods to show that the altitudes of a triangle have a common point. Recall

that altitudes of a triangle are the lines passing through a vertex and perpendicular to

the line through the remaining vertices. (Hint: See Figure 2.11. LetCbe the point of

intersection of the altitude from B and the altitude from A. Show that OC is orthogonal

to AB.)

FIGURE 2.11

26. Use vector methods to show that the perpendicular bisectors of the sides of a triangle

intersect in a point, as follows. Assume the triangle OAB has one vertex at the origin,

and let x = OA andy= 0 B. Let z be the point of intersection of the perpendicular

bisectors of 0 A and 0 B. Show that z lies on the perpendicular bisector of A B. (Hint:

What is the dot product of z — (x + y) with x — y?)

FIGURE 3.1

a- x=

FIGURE 3.2

a lx — x0) = 0

which we can rewrite in the form

a x = a x0

I
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Now consider the line £ passing through X = (2, 1) with direction vector v = (1, —3).

Then the points on £ are all of the form

x = x0 + tv = (2. 1) + t(l, —3), t R.

As promised, we take the same vector a = (3, 1) and compute that

3x +x2 = ax = a (x0 + tv) = ax0 + t(a . v) = a x0 = (3. 1) . (2, 1) = 7.

This is the Cartesian equation off. A

We can give a geometric interpretation of the constant c on the right-hand side of the

equation a x = c. Recall that

projx
= I

a,

and so, as indicated in Figure 3.3, the line consists of all vectors whose projection onto the

normal vector a is the constant vector
C

a
II all -

is the point on the line closest to the origin, and we say that the distance from the origin to

the line is

as desired.
As before, if we want the equation of the plane P parallel to Yo and passing through

(2, 3, —2), we take

a.
IlaB

In particular, since the hypotenuse of a right triangle is longer than either leg,

C

FIGURE 3.4

Substituting 03 = —a1 into the second equation, we obtain 01 + ct2 = 0, so a = —a1 as

well. Thus, any candidate for a must be a scalar multiple of the vector (1, —1. —1), and so

we take a = (1, —1, —1) and try the equation

a x = (1, —1,—i) x = 11 — —13 = 0

for Yo. Now, we know that a u = a V = 0. Does it follow that a is orthogonal to every

linear combination of u and v? We just compute: If x = su + tv, then

a x = a• (su + tv)

= s(a . U) ± t(a v) = 0.

C cl—va =—=IlproJaxoll
hall- hail

I
ax=c

X1 1’ —X3 = ax = a (Xo+sU+tV)

for any point xo on the line.

FIGURE 3.3

We now move on to see that planes in can also be described by using normal vectors.

jEXAMPLE 2

Consider the plane o passing through the origin spanned by u = (1, 0. 1) andy = (2, 1, 1),

as indicated schematically in figure 3.4. Our intuition suggests that there is a line orthogonal

to T, so we look for a vector a = (aj, a-a, a3) that is orthogonal to both u andy. It must

satisfy the equations

a1 + Ct3 = 0

Thus, every plane in R has an equation of the form

where a = (at, a2, a3) is the normal vector and c e R.

EXAMPLE 3

= a X + s(a U) + t(a . v)

=a.xo=(l,_l,_1).(2,3,—2)=L A

As this example suggests, a point x0 and a normal vector a give rise to the Cartesian

equation of a plane in

a (x — xo) = 0. or, equivalently, a x = a X0.

aixi + a’.2 + C13X3 = C,

Consider the set of points x = (x1, 12, x3) defined by the equation

— 217 + 513 3.

Let’s verify that this is, in fact, a plane in R3 according to our original parametric definition.

If x satisfies this equation. then x = 3 + 212 — 5x3 and so we may write

x = (xl, 12, 13) = (3 + 2x2 — 5x3, -2, 13)

(3,0,0) +12(2, 1,0)+13(—5,0, 1).

So, if we let x0 = (3. 0,0), U = (2, 1,0), and v = (—5,0, 1), we see thatx = x0 + x’u +

x3v, where X2 and X3 are arbitrary scalars. This is in accordance with our original definition

ofaplaneinR3. A
2cm1 + 02 + a3 = 0.
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As in the case of lines in JR2, the distance from the origin to the (closest point on the) plane

a x = c is
Ic

hall
Again, note that the point on the plane closest to the origin is

C

Wa 112

which is the point where the line through the origin with direction vector a intersects the
plane, as shown in Figure 3.5. (Indeed, the origin, this point, and any other point b on the
plane form a right triangle, and the hypotenuse of that right triangle has length (IbW.)

FIGURE 3.5

Finally, generalizing to ii dimensions, if a E JR’1 is a nonzero vector and C E R, then
the equation

ax=c

defines a hyperplane in JR’t. As we shall see in Chapter 3, this means that the solution set
has “dimension” n — 1, i.e., 1 less than the dimension of the ambient space JR’. Let’s write
an explicit formula for the general vector x satisfying this equation: If a = (a1, a2 a)
and a1 0, then we rewrite the equation

to solve for xl:

a1x1 + a2x7 + + ax,, C

xj = — (c — ax — — a,x,)
a

and so the general soltttion is of the form

x = (.11 ) = (c — ax — ‘ — ax,,) , 12

tc / ai / a’
=—,O 0)+x—---l.0 O)+x3—--..0.l 0

a1 a1 a1

+...+xn(_0 0l)

(We leave it to the reader to write down the formula in the event that ai = 0.)

EXAMPLE 4

Consider the hyperplane
11 + X2 13 + 214 + 15 = 2

in R5. Then a parametric description of the general solution of this equation can be written
as follows:

x = (—12 + X3 — 214 —15 + 2, X2, 13, 14, 15)

= (2,0.0.0.0) +x’(—l, 1,0,0,0) +13(1,0, 1,0,0)

To close this section, let’s consider the set of simultaneous solutions of two linear

equations in R3, i.e., the intersection of two planes:

a x = a1xj + ax, + a3x3 = C

b . x = blxl + b2x2 + b3x3 = d.

If a vector x satisfies both equations, then the point (xl, x,, x3) must lie on both the

planes; i.e., it lies in the intersection of the planes. Geometrically, we see that there are

three possibilities, as illustrated in Figure 3.6:

1. A plane: In this case, both equations describe the same plane.

2. The empty set: In this case, the equations describe parallel planes.

3. A line: This is the expected situation.

FIGURE 3.6
zt

Notice that if the two planes are identical or parallel, then the normal vectors will be the

same (up to a scalar multiple). That is, there will be a nonzero real number r so that ra = b;

if we multiply the equation

by r, we get

a x = aixi + a,x7 + a3x3 = C

b .x = ra . : b1xj+ b2x2 + b3x3 = tc.

If a point (xj, 12, 13) satisfying this equation is also to satisfy the equation

b . x = bx + b2x2 + b3x3

then we must have d = rc; i.e., the two planes coincide. On the other hand, if d rc, then

there is no solution of the pair of equations, and the two planes are parallel.

More interestingly, if the normal vectors a and b are nonparallel, then the planes

intersect in a line, and that line is described as the set of solutions of the simultaneous

equations. Geometrically, the direction vector of the line must be orthogonal to both a

and b.

EXAMPLE 5

We give a parametric description of the line of intersection of the planes

11+212— 13=2

—
12 + 213 5.

Subtracting the first equation from the second yields

—312 + 313 = 3, or

12 +13 1.

Adding twice the latter equation to the first equation in the original system yields

A’+14(2. 0, 0, l,0)+xs(—l, 0, 0, 0. I). 11 + 13 = 4.
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Then the genera) solution is of the form

Indeed, as we mentioned earlier, the direction vector (—1, 1, 1) is orthogonal to a —

(l,2,—1)andb=(1,—l,2). A

Much of the remainder of this course will be devoted to understanding higher-dimen

sional analogues of lines and planes in JR3. In particular, we will be concerned with the

relation between their parametric description and their description as the set of solutions of

a system of linear equations (geometrically, the intersection of a collection of hyperplanes).

The first step toward this goal will be to develop techniques and notation for solving systems

of in linear equations in ii variables (as in Example 5, where we solved a system of two

linear equations in three variables). This is the subject of the next section.

Exercises 1.3 j.
1. Give Cartesian equations of the given hyperplanes:

a. x=(—l,2)+t(3,2)

tb. The plane passing through (1, 2. 2) and orthogonal to the line x = (5. 1, —1) +

t(—l, 1,—I)

c. The plane passing through (2,0, 1) and orthogonal to the line x (2. —1,3) +

t(l,2,2)

d. The plane spanned by (I, I, I) and (2, 1,0) and passing through (1, 1,2)

e. The plane spanned by (1,0, 1) and (1,2. 2) and passing through (—1, 1, 1)
*f• The hyperplane in JR4 through the origin spanned by (1. —1. 1. —1), (1, 1, —1, —1),

and (1,—l,—l, 1).

*2. Redo Exercise 1.1.12 by finding Cartesian equations of the respective planes.

3. Find the general solution of each of the following equations (presented, as in the text,

as a combination of an appropriate number of vectors).

a. X —212+313 =4(inIR3) *d. xi 212 +3x3 =4(inJR4)

b.xj+x—x3+2x4=0(inR1) e.x+x3—3x4=2(inJR4)

c. II +12—13 + 2x4 = 5 (in R1)

4. Find a normal vector to the given hyperplane and use it to find the distance from t’

origin to the hyperplane.
a. x = (—1, 2) + t(3, 2)

b. The plane in JR3 given by the equation 2x1 + 12 —
13 = 5

c. The plane passing through (1, 2, 2) and orthogonal to the line x = (3, 1, —1)+

t(—l. 1,—I)

d. The plane passing through (2, —1, 1) and orthogonal to the line x = (3, 1, 1)

t(—1, 2, 1)
*e. The plane spanned by (1, 1,4) and (2, 1,0) and passing through (1. 1,2)

f. The plane spanned by (1, 1, 1) and (2, 1,0) and passing through (3,0,2)

g. ThehyperplaneinR4spannedby(l, —1,1, —l),(l, 1,—i, —l),and(l, —1, —1,1)

and passing through (2, 1, 0, 1)

5. Find parametric equations of the line of intersection of the given planes in JR3.

a. x1 + 12 + 13 = I, 2xi + 12 + 213 = 1

b. 11 —12 = l,x1 +12 + 213 = 5

*6. a. Give the general solution of the equation x + 5x — 213 = 0 in JR (as a linear

combination of two vectors, as in the text).

b. Find a specific solution of the equation x1 + 512 — 213 = 3 in JR3; give the general

solution.

c. Give the general solution of the equation x1 + 512 — 213 + 14 = 0 in W. Now give

the general solution of the equation x1 + 5x2 — 213 + 14 = 3.

7. The equation 2x1 — 312 = 5 defines a line in JR2.

a. Give a normal vector a to the line.

b. Find the distance from the origin to the line by using projection.

c. Find the point on the tine closest to the origin by using the parametric equation of

the line through 0 with direction vector a. Double-check your answer to part b.

U. Find the distance from the point w = (3, 1) to the line by using projection.

e. Find the point on the line closest to w by using the parametric equation of the line

through w with direction vector a. Double-check your answer to part d.

8. The equation 2x1 — 312 — 613 = —4 defines a plane in JR3.

a. Give its normal vector a.

b. find the distance from the origin to the plane by using projection.

c. Find the point on the plane closest to the origin by using the parametric equation of

the line through 0 with direction vector a. Double-check your answer to part b.

d. Find the distance from the point w = (3. —3, —5) to the plane by using projection.

e. Find the point on the plane closest to w by using the parametric equation of the line

through w with direction vector a. Double-check your answer to part d.

9. The equation 2x + 212 — 313 + 814 = 6 defines a hyperplane in JR4.

a. Give a normal vector a to the hyperplane.

b. Find the distance from the origin to the hyperplane using projection.

c. Find the point on the hyperplane closest to the origin by using the parametric equation

of the line through 0 with direction vector a. Double-check your answer to part b.

d. Find the distance from the point w = (1, 1, 1, 1) to the hyperplane using dot prod

ucts.

e. Find the point on the hyperplane closest to w by using the parametric equation of

the line through w with direction vector a. Double-check your answer to part d.

10. a. The equations x1 = 0 and 12 = 0 describe planes in JR3 that contain the x3-axis.

Write down the Cartesian equation of a general such plane.

b. The equations Ij — 12 = 0 and II — 13 0 describe planes in JR3 that contain the

line through the origin with direction vector (1, 1, 1). Write down the Cartesian

equation of a general such plane.

11. a. Assume b and c are nonparallel vectors in JR3. Generalizing the result of Exercise

10, show that the plane a x = 0 contains the intersection of the planes b . x = 0

and c x 0 if and only if a = sb ± rc for some s,r e JR, not both 0. Describe this

result geometrically.

b. Assume b and c are nonparallel vectors in JR’1. Formulate a conjecture about which

hyperplanes a x = 0 in W contain the intersection of the hyperplanes b . x = 0

and c x 0. Prove as much of your conjecture as you can.

Thus, we can determine both 11 and 12 in terms of 13:

x1 = 4 —

= —l + 13.

I
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12. Suppose a 0 and P C R is the plane through the origin with normal vector a.

Suppose T is spanned by u and v.

a. Suppose ti v = 0. Show that for every x E P, we have

x = projx + proj.x.

b. Suppose u v = 0. Shoss that for every x R. we have

x = proj1X ± projx + proj x.

(Hint: Apply part a to the vector x — projx.)

c. Give an example to shotv the resttlt of part a is false when u and v are not orthogonal.

13. Consider the line tin R given parametrically by x = xu + ta. Let o denote the plane

through the origin with normal vector a (so it is orthogonal to f).

a. Show that L and T0 intersect in the point X —
proj,Xo.

b. Conclude that the distance from the origin to t’ is — projxO II.

4 Systems of Linear Equations and Gaussian
Elimination

In this section e give an explicit algorithm for solving a system of in linear equations

in ii variables. Unfortunately, this is a little bit like giving the technical description of tying

a shoe—it is much easier to do it than to read how to do it. For that reason, before embarking

on the technicalities of the process. we will present here a few examples and introduce the

notation of matrices. On the other hand, once the technique is mastered, it will be important

lor us to understand why it yields all solutions of the system of equations. For this reason,

it is is essential to understand Theorem 4. 1.

lo begin with, a linear equation in the ii variables .v1, x2 ,, is an equation of the

turin
aix1 + £12X + ‘ + ax = I?.

where the coefficients a1. i I a, are fixed real numbers and b is a fixed real number.

Notice that if we let a = (a1 a) and x = (x1 ), then we can write this eqtiatiOfl

in vector notation as
a x = b.

We recognize this as the eqtiation of a hyperplane in R, and a ector x solves the equatiOfl

precisely when the point x lies on that hyperplane.

A system of in linear equations in a variables consists of in such equations:

Cl0.V1 + ai1x2 + + 0iJTI =

112 I I + (i772 + ‘ ‘ + 2t Xn = 1)’

Ii,,, j v1 + Cni 22 + ‘ ‘ ‘ + ‘1k,,, xfl = h,.

The notation appears cumbersome. but we have to live with it. A pair of subscripts is n

on the coefficientaL, to indicate in which equation it appears (the first index. 1) and to V...
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variable it is associated (the second index, j). A solution x (x1 ) is an n-tuple

of real numbers that satisfies all in of the equations. Thus, a solution gives a point in the

intersection of the in hyperplanes.
To co/ye a system of linear equations. we want to give a cornpleteparametric description

of the solutions. as we did for hvperplanes and for the intersection of ttvo planes in Example 5

in the preceding section. We will call this the general solution of the system. Some systems

are relatively simple to solve. for example, the system

xi

X,

=

—

X3 = —l

has exactly one solution, namely x = (1, 2, —1). This is the only point common to the three

planes described by the three equation.s. A slightly more complicated example is

Xl — X3 = I

X2 + 2x3 = 2.

These equations enable us to determine x1 and x2 in terms of x3: in particular, we can write

= 1 +x3 andxi = 2— 2.v5,wherex3 isfree to take on any real value. Thus, any solution

of this system is of the form

x = (1 + t, 2— 2t, t) = (1,2,0) + t(l, —2, 1) forsome t ER.

It is easily checked that every vector of this form is in fact a solution, as (1 + t) — t = 1

and (2 — 2t) + 2t = 2 for every t E R. Thus, we see that the intersection of the two given

planes is the line in R3 passing through (1, 2,0) with direction vector (1, —2. 1).

One should note that in the preceding example. we chose to solve for xi and x in terms

ofx3. We could just as well have solved, say, forx and X in terms ofxj by first writing

= x1 — I and then substituting to obtain x2 = 4 — 2x1. Then we would end up writing

x=(s.4—2.v.—l±s)=(O.4.l)±s(l.2.l) forsomesE.

We will soon give an algorithm for solving systems of linear equations that will eliminate

the ambiguity in deciding which variables should be taken as parameters. The variables

that are allowed to vary freely (as parameters) are calledfree earlcthles, and the remaining

variables, which can be expressed in terms of the free variables, are called pilot variables.

Broadly speaking, if there are in equations, whenever possible we will try to solve for the

first in variables (assuming there are that many) in terms of the remaining variables. This

is not always possible (for example, the first variable may not even appear in any of the

equations), so we will need to specify a general procedure to select which will be pivot

variables and which will be free.
When we are solving a system of equations, there are three basic algebraic operations

we can perform that will not affect the solution set. They are the following ele,nentai’

operations:

(i) Interchange any pair of equations.

(ii) Multiply any equation by a nonzero real number.

(iii) Replace any equation by its sum with a multiple of any other equation.

The first two are probably so obvious that it seems silly to write them down; however, soon

you will see their importance. ft is not obvious that the third operation does not change

the solution set: we will address this in Theorem 4.1. First, let’s consider an example of

solving a system of linear equations using these operations.
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EXAMPLE 1

Consider the system of linear equations

We can simplify our notation somewhat by writing the equations in vector notation:

A1 x

A2 . x =

311 — 212 + 213 + 914 = 4

2x1 + 2x7 — 213 — 414 = 6.

We can use operation (i) to replace this system with

2x1 + 2X2 — 213 — 4x4 = 6

31i — 2X2 + 213 + 9x4 = 4;

then we use operation (ii), multiplying the first equation by 1/2, to get

Xj + X2 — 13 — 2x4 = 3

3x1 — 217 + 213 + 9x4 = 4;

now we use operation (iii), adding —3 times the first equation to the second:

11 + 12 — 13 — 214 = 3

— D13 + 13 + l5.t4 = —5.

Next we use operation (ii) again, multiplying the second equation by —1/5, to obtain

11 + X2 — 13 — 214 = 3

12
—

.t3 — 314 = 1;

finally, we use operation (iii), adding —1 times the second equation to the first:

Xj + 14=2

12
—

13 — 314 = 1.

from this we see that II and x2 are determined by x3 and x4, both of which are free to take

on any values. Thus, we read off the general solution of the system of equations:

In vector form, the general solution is

II = 2 — 14

12 = 1 + x3 + 3x4

X3 13

X4 x4

x (x,x3,x3,x4) = (2,1.0,0) +13(0,1,1,0) +14H1, 3,0, 1),

which is the parametric representation of a plane in R.

Before describing the algorithm for solving a general system of linear equations, V’s’

want to introduce some notation to make the calculations less cumbersome to write C.

We begin with a system of in equations in n unknowns:

a111j + a12x2 + + t1n1,i =

aixi + a22x2 + + a,,x,, = b2

A,,, . X

where A1 = (an, a12 a1,,) e R, i 1,2 in. To simplify the notation further, we

introduce the in x ii (read “in by n”) matrix9

and the column vectors10

and write our equations as

a1 ... at,,

a1 . . . a2,,

A=

Cl,,, . . . a,,,,,

Xi b1

x b2
X = E R and b = e IR”,

b,,,

where the multiplication on the left-hand side is defined to be

A1 . x a11x1 + + a,,x,,

A . X (12111 + ‘ ‘ + (l2nXn

Ax= =

A,,, . x a,,, .t + + (1flfrt

We will discuss the algebraic and geometric properties of matrices a bit later, but for now we

simply use them as convenient shorthand notation for systems of equations. We emphasize

that an in x n matrix has in rows and ii columns. The coefficient appearing in the th

row and the Jth column is called the ij-entry of A. We say that two matrices are equal if

they have the same shape (that is, if they have equal numbers of rows and equal numbers of

columns) and their corresponding entries are equal. As we did above, we will customarily

denote the row vectors of the matrix A by A,,, e R”.

We reiterate that a solution x of the system of equations Ax = b is a vector having the

requisite dot products with the row vectors A1:

A,x=b1 foralli=l,2 m.

That is, the system of equations describes the intersection of the in hyperplanes with normal

vectors A1 and at (signed) distance b1/11A1 1 from the origin. To give the general solution,

we must find a parametric representation of this intersection.

9The word ntatrLr derives from the Latin mZitrix, “womb” (originally, pregnant animal”), from mater, “mother.”

Ax = b,

I

a,,, ixi + a,,,2x2 + + Cl,,,,,X,, = bm. 1We shall henceforth try to write vectors as columns, unless doing so might cause undue typographical hardship.
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Notice that the first two types of elementary operations do not change this collection

of hyperplanes. so it is no surprise that these operations do not affect the solution set

of the system of equations On the other hand, the third type actually changes one of the

hyperplanes without changing the intersection. To see why. suppose a and b are nonparallel

and consider the pairs of equations

a.x=O (a+cb)x0
and

b•x=O b . x = 0.

Suppose x satisfies the first set of equations so a x = 0 and b . x = 0; then x satisfies

the second set as well, since (a + cb) x = (a . x) + c(b . x) 0 + cO = 0 and b x = 0

remains true. Conversely, if x satisfies the second set of equations, we have b . x 0

and a x = (a + cb) x — c(b . x) = 0 — cO = 0, so x also satisfies the first set. Thus the

solution sets are identical. Geometrically, as shown in Figure 4.1, taking a bit of poetic

license, we can think of the hyperplanes a x = 0 and b . x 0 as the covers of a book,

and the solutions x will form the “spine” of the book. The typical equation (a + cb) x = 0

describes one of the pages of the book, and that page intersects either of the covers precisely

in the same spine. This follows from the fact that the spine consists of all vectors orthogonal

to the plane spanned by a and b: this is identical to the plane spanned by a ± ch and b

(or a).
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for an elementary operation of type (iii, suppose we add r times the kth equation to the (ti:

since AL u = b and A, u = b. it follows that

(rAL +A)u=(IAL u)±A ‘u)=rbt +b,.

and so u satisfies the ‘ new” th equation.
To prove conversely that if u satisfies Cx = d. then it satisfies Ax = I), we merely note

that each argument we’ve given can be reversed: in particular. the ini’erse ofctii elementary

operation is again an elementary operation. Note that it is important here that r 0 for

an operation of type (ii). Q

We introduce one further piece of shorthand notation, the auqnientect nicttrLv

• t2n
[Ab]=

C/fl, I . . . Ct,n,, l)n,

I,

Notice that the augmented matrix contains all of the information of the original system of

equations. because we can recover the latter by filling in the x1 ‘s. ±s, and =‘s as needed.

The elementary operations on a s stem of equations become operations on the rows of

the augmented matrix: in this setting. we refer to them as elenentarv ,.()fl operations of the

corresponding three types:

(I) Interchange any pair of rows.

(ii) Multiply all the entries of any row by a nonzero real number.

(iii) Replace any row by its sum with a multiple of any other row.

Since we have established that elementary operations do not affect the solution set of a

system of ecluations. we can freely perform elementary row operations on the augmented

matrix of a system of equations with the goal of finding an “equivalent” augmented matri\

from which we can easily read off the general solution.

IEXAMPLE 2

We revisit Example 1 in the notation of acigmented matrices. To solve

The general result is the following:

Theorem 4.1. If a system of eqttations Ax = b is changed into the new system Cx = d

elementary operations then the sv.cte,ils hate the same set of solutions.

Proof. We need to show that every solution of Ax = b is also a solution of Cx = d, ant

vice versa. Start with a solution u of Ax = b. Denoting the rows of A by A1 Am,

have

A1 ii = b1

• U = b2

A,,, . u = b,,

If we apply an elementary operation of type (i). u still satisfies precisely the same list

equations. If we apply an elementary operation of type (ii). say’ multiplying the kth equat

by r 0, we note that if u satisfies AL u = bh. then it must satisfy trAk) . a = rbk.

3.vi — 2x + 2.13 ± 9x4 = 4

2.v + 2.12 — 2.13 — 4.14 = 6.

we begin by forming the appropriate acLgmented matrix

f3 —2 2 9 4

[2 2 —2 —4 6

We denote the process of performing row operations by the symbol and (in this example)

we indicate above it the type of operation we are performing:

t —2 2 9 t2 2 —2 —4 1 f I —l —2 3

[2 2 —2 —4 6] H —2 2 9 4] H —2 2 9 4

ttj 1 1 —l —2 31 ‘a ti 1 —1 —2 31 it,, fI 0 0 1 2

0 —5 5 15 —5] [0 1 —l —3 1] [0 1 —l —3

a x = 0

FIGURE 4.1

b .

x

(a + ch) = ()
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11 + X4 = 2

17 — 13 — 3.54 = 1,

and read off the general solution just as before.

To recap. we have discussed the elementary operations that can be performed on a

system of linear equations without changing the solution set, and we have introduced the

shorthand notation of augmented matrices. To proceed, we need to discuss the final form our

system should have in order for us to be able to read off the solutions easily. To understand

this goal, let’s consider a few more examples.

EXAMPLE 3

(a) Consider the system

It + 212 — 14 =

13 + 214 = 2.

We see that using the second equation, we can determine 13 in terms of 14 and

using the first, we can determine x1 in terms of 12 and 14. In particular, the

solution is

(b) The system

11 1—212+ X4 1 —2

12 12 0 1 0
X = = +12 +14

13 2 —214 2 0 —2

14 14 0 0 1

It + 212 + X3 + 14 = 3

X3 + 2X4 = 2

requires some algebraic manipulation before we can read off the solution. AlthoU

the second equation determines 13 in terms of x4, the first describes 11 in terms of

13, and x4; but 12, 13, and 14 are not all allowed to vary arbitrarily: We would likel

modify the first equation by removing 13. Indeed, if we subtract the second equafi

from the first, we will recover the system in (a).

(c) The system

11 + 212

I

=3

— X3 = 2

involves similar difficulties. The value of xj seems to be determined, on the oneb

by x2 and. on the other, by x3: this is problematic (try 12 = 1 and 13 = 3). Inde

recognize that this system of equations describes the intersection of two planes in R3

(that are distinct and not parallel); this should be a line, whose parametric expression

should depend on only one variable. The point is that we cannot choose both x2 and

13 to be free variables. We first need to manipulate the system of equations so that we

can determine one of them in terms of the other (for example, we might subtract the

first equation from the second). A

The point of this discussion is to use elementary row operations to manipulate systems of

linear equations like those in Examples 3(b) and (c) above into equivalent systems from

which the solutions can be easily recognized, as in Example 3(a). But what distinguishes

Example 3(a)?

What do we learn from the respective augmented matrices for our earlier examples?

tl 2 0 —l 11 fi 2 1 1 1 tI 2 0 3

[o 0 1 2 2]’ [o 0 1 2 1]’ Li 0—1 2

Of the augmented matrices from Example 3, (a) is in reduced echelon form, (b) is in echelon

form, and (c) is in neither. The key point is this: When the matrix is in reduced echelon

form, we are able to determine the general solution by expressing each of the pivot variables

in terms of the free variables.

tThe word echelon derives from the French échelle, ladder.” Although we don’t usually draw the rungs of the

ladder, they are there: [2]. OK, perhaps it looks more ltke a staircase.

‘Condition 2 is actually a consequence of 1. but sve state it anyway for clarity.

From the final augmented matrix we are able to recover the simpler form of the equations,

A

Remark. It is important to distinguish between the symbols = and -; when we conven

one matrix to another by performing one or more row operations. we do not have equal

matrices.

Definition. We call the first nonzero entry of a row treading left to right) its leading

entry. A matrix is in echelon 11 form if

1. The leading entries move to the right in successive rows.

2. The entries of the column below each leading entry are all 0.12

3. All rows of 0’s are at the bottom of the matrix.

A matrix is in reduced echelon form if it is in echelon form and, in addition.

4. Every leading entry is 1.

5. All the entries of the column above each leading entry are 0 as well.

If a matrix is in echelon form, we call the leading entry of any (nonzero) row a

pivot. We refer to the columns in which a pivot appears as pivot columns and to the

corresponding variables (in the original system of equations) as pivot variables. The

remaining variables are called free vctriahles.

I

I
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Here are a few further examples.
We stop for a moment to formalize the manner in which we have expressed the para

metric form of the general solution of a system of linear equations once it’s been put in

rethtced echelon form.

EXAMPLE 4

The matrix

[02 1 1 4

00302

0 0 0 —l 1

is in echelon form. The pivot variables are 12, X3, and x4; the free variables are x1 and x5.

However, the matrix
1 2 —1

000

003

is not in echelon form, because the row of 0’s is not at the bottom; the matrix

1 2 1 14

00302

is not in echelon form, since the entry below the leading entry of the second row is nonzero.

And the matrix
[o i 1

[1 2 3

in also not in echelon form, because the leading entries do not move to the right. A

EXAMPLE 5

The auemented matrix
12004 1

0 0 1 0 —2 2

0001 1 1

is in reduced echelon form. The corresponding system of equations is

11+212 +4x5 = I

13 —2x5=2

14 + 15 = 1.

Notice that the pivot variables, 11,13, and x4, are completely determined by the free variabl

12 and x5. As usual, we can write the general solution in terms of the free variables onlY

0 0 1 —1

Our strategy now is to transform the augmented matrix of any system of linear equations

into echelon form by performing a sequence of elementary row operations. The algorithm

goes by the name of Gaussian elimination. The first step is to identify the first column

(starting at the left) that does not consist only of 0’s; usually this is the first column, but

it may not be. Pick a row whose entry in this column is nonzero—usually the uppermost

such row, but you may choose another if it helps with the arithmetic—and interchange this

with the first row; now the first entry of the first nonzero column is nonzero. This will be

our first pivot. Next, we add the appropriate multiple of the top row to all the remaining

rows to make all the entries below the pivot equal to 0. For example, if we begin with the

matrix
3 —l 2 7

A= 2 1 3 3

2242

then we can switch the first and third rows of A (to avoid fractions) and clear out the first

pivot column to obtain

I
Definition. We say that we’ve written the general solution in standard form when it is

expressed as the sum of a particular solution—obtained by setting all the free variables

equal to 0—and a linear combination of vectors, one for each free variable—obtained

by setting that free variable equal to 1 and the remaining free variables equal to 0 and

ignoring the particular solution.13

I

I

x=

1

14

X

l—2x2—4x5 1 —2

17 0

= 2 +2x = 2 +12 0 +15

I —X 1 0

xs 0 0

2 4 2

A’= 0 —1 —l 1

0 —4 —4 4

We have circled the pivot for emphasis. (If we are headed for the reduced echelon form,

we might replace the first row of A’ by (1, 1,2, 1), but this can wait.)

The next step is to find the first column (again, starting at the left) in the new matrix

having a nonzero entry below the first roit Pick a row below the first that has a nonzero

entry in this column, and, if necessary, interchange it with the second row. Now the second

entry of this column is nonzero; this is our second pivot. (Once again, if we’re calculating

the reduced echelon form, we multiply by the reciprocal of this entry to make the pivot 1.)

We then add appropriate multiples of the second row to the rows beneath it to make all the

31n other words, if xj is a free variable, the corresponding vector in the general solution has th coordinate equal

to I and kth coordinate equal to 0 for all the other free variables Xk. Concentrate on the circled entries in the

vectors from Example 5:

—2 —4

©
X2 0 +X5 2

0 —1

©

—4

0

‘3

—l

1 I
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EXAMPLE 6

1 1

—1 1

01

2 —1

0

0

0

3 —1 0 0

0 2 —4

2 —1 0

3 —6 9

3 —1 0 0

2 0 1 —2

0 1 —1 1

000 0

6 Chapter] Vectors and Matrices

entry of By is 1. This contradicts Theorem 4.1, for if Cv = 0, then Av = 0, and so By = 0
as well. D

In fact, it is not difficult to see that more is true, as we ask the ambitious reader to check in
Exercise 16:

Theorem 4.3. Each matrix has a unique reduced echelottJrm.

We conclude with a few examples illustrating Gaussian elimination and its applications.

Give the general solution of the following system of linear equations:

Xi +X2+3X3 — X4 = 0

X1 + X2 + X3 + x4 + 2x5 = —4

x2+2x3+2x— X5 0

2x1
—

+ X4 — 6x5 = 9.

We begin with the augmented matrix of coefficients and put it in reduced echelon form:

3 —l 0 0 1 1

2 —4 0 2 4

2 2 —I 0 0 1 2

0 1—6 9 0—3—6

1 3 —l 0 0 1 1

1 2 0 1 —2 0 1

0 0 2—2 20 0

0 0 3 —3 3 0 0

entries beneath the pivot equal to 0. Continuing with out example, we obtain

2 4 2

A”= oIJ—i 1.

0000

At this point, A” is in echelon form; note that the zero row is at the bottom and that the

pivots move toward the right and down.

In general, the process continues until we can find no more pivots—either because we

have a pivot in each row or because we’re left with nothing but rows of zeroes. At this

stage, if we are interested in finding the reduced echelon form, we clear out the entries in

the pivot columns above the pivots and then make all the pivots equal to 1. (A few words

of advice here: If we start at the right and work our way up and to the left, we in general

minimize the amount of arithmetic that must be done. Also, we always do our best to avoid

fractions.) Continuing with our example, we find that the reduced echelon form of A is

2 4 2 1 2 1 0 1 2

A”= 0(IJ—1 1 0 i—i 0 1 —lI=RA.

0000 0000 0000

It should be evident that there are many choices involved in the process of Gaussian

elimination. For example, at the outset, we chose to interchange the first and third rows

of A. We might just as well have used either the first or the second row to obtain our first

pivot, but we chose the third because we noticed that it would simplify the arithmetic to

do so. This lack of specificity in our algorithm is perhaps disconcerting at first, because

we are afraid that we might make the “wrong” choice. But so long as we choose a row

with a nonzero entry in the appropriate column, we can proceed. It’s just a matter of

making the arithmetic more or less convenient, and—as in our experience with techniques

of integration—practice brings the ability to make more advantageous choices.

Given all the choices we make along the way, we might wonder whether we always

arrive at the same answer. Evidently, the echelon form may well depend on the choices.

But despite the fact that a matrix may have lots of different echelon forms, they all mu

have the same number of nonzero row.c; that number is called the rank of the matrix.

Proposition 4.2. All ecltelonfonns ofan rn x n matrix A have the same number ofn’”’

rows.

Proof. Suppose B and C are two echelon forms of A, and suppose C has (at least) 0

more row of zeroes than B. Because there is a pivot in each nonzero row, there is (at

one pivot variable for B that is a free variable for C, say x. Since x is a free variabi

C, there isa vector v = (aj, a, a3 1,0 0) that satisfies Cv 0. We 0’

this vector by setting x = I and the other free variables (for C) equal toO, and then solvt

for the remaining (pivot) variables.’4

On the other hand, x1 is a pivot variable for B; assume that it is the pivot in the th ro

That is, the first nonzero entry of the fth row of B occurs in the th column. Then the

4To see why v has this fo. we must understand why the kth entry of v isO wheneer k > j. So suppose k,

If x is a free variable, then b construction the kth entn ot v is 0. on the other hand, if Xk is a pivot V0

then the value of Xk is determined only by the values of the pivot vaab1es x with I > k; since, by cOflS

these are all 0. once again, the k’5 entry of v is 0.

1 0 1 0 —2 3

0 1 2 0 1 —2

0 0 0 1 —1

00000 0

Thus, the system of equations is given in reduced echelon form by

X1 + X3 —2x5= 3

xi+2x3 + x5=—2

X4 — X5 = 1,

from which we read off

x1= 3— x3+2x

x = —2 — 213 —

X3 =

X4 = 1 ± .i.

15 =
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EXAMPLE 7

We wish to find a normal vector to the hyperplane in ll spanned by the vectors v1 =

(1.0. 1,0), V2 = (0, 1,0, 1), and v3 = (1,2.3,4). That is, we want avector x E R1 satis

fying the system of equations v1 x = v2 x = v3 x = 0. Such a vector x must satisfy the

system of equations
+x3 =0

x: + 14O

x1 + 2x + 313 + 414 = 0.

Putting the augmented matrix in reduced echelon form, we find

1 0100 10100 10 0—1 0

0101 0—0 101 0—0 101 0.

12340 00220 001 1 0

12 —1
X=

13 —l

X4 1

that is, a normal vector to the plane is (any nonzero scalar multiple of) (1, —1, —1, 1). ‘

reader should check that this vector actually is orthogonal to the three given vectors.

Recalling that solving the system of linear equations

A1x=bj, A.x=b2 A,,1x=b

amounts to finding a parametric represerftation of the intersection of these in hyperpl

we consider one last example.

EXAMPLE 8

We seek a parametric description of the intersection of the three hyperplanes in R4 given

by

Il —
12 + 213 + 314 = 2

2xi + X2 + 13 = I

1! + 2x — 13 — 314 = 7.

Again, we start with the augmented matrix and put it in echelon form:

1—1 23 2 1—1 23 2 1—1 23 2

2 1 1 0 1 0 3 —3 —6 —3 —‘ 0 3 —3 —6 —3

1 2—1—3 7 0 3—3—6 5 0 00 0 8

Without even continuing to reduced echelon form, we see that the new augmented matrix

gives the system of equations

It —
12 + 213 + 314 = 2

312 — 313 — 614 = —3
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and so the general solution is

11 3

12 —2

X 13 = 0 +13

14 1

15 0

—1

0

0

+15

- 2

—1

0

1

1 A

11

From this we read off

and so the general solution is

0= 8.

11= X4

17 =

13 —14

X4 = 14,

Exercises 1.4

a. x + 12

It + 212 + 13 = 1

12 + 213 = 1

*b Xj + 212 + 313 =

The last equation, 0 = 8, is, of course, absurd. What happened? There can be no values of

1i, -2. 13. and 14 that make this system of equations hold: The three hyperplanes described

by our equations have no point in common. A system of linear equations may not have any

solutions in this case it is called inconsistent. We study this notion carefully in the next

section. A

1. Use elementary operations to find the general solution of each of the following systems

of equations. Use the method of Example 1 as a prototype.

c. 3x1 —
612 — 13 + 14 = 6

—11 +212+213 +314=3

4x — 812 — 313 — 214 = 3

*2. Decide which of the following matrices are in echelon form, which are in reduced

echelon form, and which are neither. Justify your answers.

d.
fI 1 0

0 2

f 1 1

e. 0 0 0

to 0 1

2x1 + 412 + 5X3 1

Xt + 212 + 213 = 0

to I
a. I

t2 3

t2 1 3
b. I

[0 1 —l

t 1 0 2
c. I

[0 1 —1
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f 1 0 —2 0 1

g. 0 1 1 0 1

[0 0 0 1 4

3. for each of the following matrices A. determine its reduced echelon form and give the

general solution of Ax = 0 in standard form.

1 0

3 —1

0 —l

1 2

3 1

—3 7 3

1 1

0 2 1

2 22

0

5

3

4

12

1 1 1 —1 0 —2

2 04 1—1 10
b=

1 2 0—2 2 —3

0 1—1 2 4 7

5. For the following matrices A, give the general solution of the equation Ax = x in

standard form. (Hint: Rewrite this as Bx = 0 for an appropriate matrix B.)

0 —1 0

*b. A = —2 1 2 c. A = 0 0 —l

1 00

6. For the following matrices A, give the general solution of the equation Ax = 2x in

standard form. F3 16 —151
1011

a.A=I I b.A=Ii 12 91
[21] I I

[1 16 —13]

7. One might need to find solutions of Ax = b for several different h’s. say b1 bk.

In this event, one can augment the matrix A with all the b’s simultaneously, forming

the “multi-augmented” matrix [A b1 b . . bk]. One can then read off the various

solutions from the reduced echelon form of the multi-augmented matrix. Use this

method to solve Ax b for the given matrices A and vectors b.

1 0 —l f_l tl

a.A= 2 1 —1 , b=j 1 , b2=13
—1 2 2 L [2

ti 2 —1 ol til to
b.A=I I, b=l I, b2=I

3 2 1] [0]

1 1 1 1 0 0

c.A=0 1 1, b1=0,b2= 1,b3=0

1 2 1 0 0 1

*8. Find all the unit vectors x e R3 that make an angle of 7r/3 with each of the vectors

(1,0, —1) and (0, 1, 1).

9. Find all the unit vectors x e R3 that make an angle of ir/4 with (1,0, 1) and an angle

of 7r/3 with (0, 1,0).

10. Find a normal vector to the hyperplane in R1 spanned by
*a (1,1,1, 1), (1,2, 1,2), and (1,3,2,4);

b. (1,1,1,1), (2,2, 1,2), and (1,3,2,3).

11. find all vectors x e R4 that are orthogonal to both
*a (1,0,1,1) and (0, 1,—I. 2);

b. (1,1,1, —1) and (1,2,—I, 1).

12. find all the unit vectors in R that make an angle of 7r/3 with (1, 1, 1, 1) and an angle

of ir/4 with both (1, 1,0,0) and (1,0,0, 1).

*13. Let A be an m x it matrix, let x, y E W1, and let c be a scalar. Show that

a. A(cx) = c(Ax)

0 Chapter 1 èctors mid twIutrices

ft 1 0 —l

f. 10 2 1 0

[o 0 0 1

0

3

—3

—l

—1

0

fI
*a A

= I —2

[3

f7
*b A

= I —l

[3

c.

—l

—2 4

1 —2

—3 6

2 —1

3 1

4 3

I 6

tio —6
a. A = I

L18 —Il I
1 00

11 —2
*e A = I

[2 —4

1 2

—1 —3
f.A=:

1—1

1 —1

A =
0

—l 1 —1

1 1 0

o 1 1
h.A=

—l 2 3

04 4

—2 0 3

—1

3

4

0

0

—l

0

—2
1 1 1 1

1 2 1 2
d. A =

1 3 24

1 2 2 3

—l

0

—6

—7

4. Give the general solution of the equation Ax = b in standard form.

f2 l—lJ f3
a.A=I 1 2 il, b=I 0

1 2] [—3

f2_1J f_4
b.A=I 2 il, b=I 0

[—i ] [3

f2 —1 lJ f_4
*c A=12 I b=I o

[1 1 2] [3

f2—1 iJ fl

d. A=12 1 31, b=I—1
I

•0

Ll 1 2] [_l

fI 1 1 ii 16
e.AI I, b=I

[3 3 2 0] [17

b. A(x+y)=Ax+Ay
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14. Let .1 be an at x it matrix, and let b e
a. Show that if u and v e are both solutions of Ax b, then u — v is a solution of

Ax = 0.

b. SLippose u isa solution of Ax = 0 and p is a solution of Ax = b. Show that u + p

is a solution of Ax = I).
Hint: Use Exercise 13.

15. a. Prove or give a counterexample: If A is an in x a matrix and x E satisfies

Ax = 0. then either every entry of A is 0 or x = t).

b. Prove or give a counterexample: If A is an at x it matrix and Ax = 0 for every

vector x e ‘, then every entty of A is 0.

Although an example does not constittite a proof, a couitterexantple is a fine disproof:

A counterexample is merely an explicit example illustrating that the statement is false.

Here, the evil authors are asking you first to decide whether the statement is true

or false. It is important to try examples to develop your intuition. In a problem like

this that contains arbitrary positive integers at and it. it is often good to stan with small

values. Of course, if we take at = a I. we get the statement

if a is a real number and cix = 0 for every real number x, then a = 0.

Here you might say, “Well, if a 0, then I can divide both sides of the equation by ci

and obtain x = 0. Since the edltiation must held for alt real numbers x, we must have

ci = 0.” But this doesn’t give us any insight into the general case, as we can’t divide

by vectors or matrices.
What are some alternative approaches? You might try picking a particular value

of x that will shed light on the situation. For example, if we take x = 1. then we

immediately get a = 0. How might you cisc this idea to handle the general case? If

you wanted to show that a particular entry. say Cti, of the matrix A was 0, could OU

pick the vector x appropriately?
There’s another way to pick a particular value of x that leads to information.

Since the only given object in the problem is the real number a, we might try letting

I = a and see what happens. Here we get cix = ci2 = t). from which we conclude

immediatel that a = t). How does this idea help us with the general case? Remember

that the entries of the vector Ax are the dot prodticts A1x. Looking back at part a of

Exercise 1.2. 16. we learned there that if a x = t) for all x, then a = 0. How does out

current path of reasoning lead its to this’?

16. Prove that the redLLced echelon form of a matrix is unique, as follows. Stippose B and

C are reduced echelon forms of a given nonzero in x it matrix A.

a. Deduce from the proof of Proposition 4.2 that B and C have the same pivot variable

b. Explain why the pivots of B and C are in the identical positions. (This is true eve

without the assumption that the matrices are in reduced echelon form.)

c. By considering the solutions in standard form of Bx = 0 and Cx = 0, deduce

B = C.

17. In rating the efficiency of different computer algorithms for solving a system of eqU

tions, it is usually considered sufficient to compare the number of multiplications

qcured to carry edt the algorithm.
a. Show that

n(it — 1) + (a — l)Ot —2) + + (2)(1) = — k)

multiplications are required to bring a general it x a matrix to echelon form by

(forward) Gatissian elimination.

b. Show that Z(k2 — k) = (it3 — it). (Hint: For some appropriate formulas, see

Exercise 1.2.10.)

c. Now show that it takes a + (a — 1) + (it — 2) + + I = it (a + I )/2 multipli

cations to bring the matrix to reduced echelon form by clearing out the columns

above the pivots, working right to left. Show that it therefore takes a total of

it3 + it2 + it multiplications to put A in reduced echelon form.

d. Gauss-Jordan elimination is a slightly different algorithm used to bring a matrix to

reduced echelon form: Here each column is cleared out, both below and above the

pivot, before moving on to the next column. Show that in general this procedure

requires n2(n — I)/2 multiplications. For large a. which method is preferred?

5 The Theory of Linear Systems ¶
We developed Gacissian elimination as a technique for finding a parametric description

of the solutions of a system of linear Cartesian equations. Now we shall see that this

same technique allows its to proceed in the opposite direction. That is, given vectors

V1 E ?“. we would like to find a set of Cartesian equations whose solution is

precisely Span (vi k) In addition. we will rephrase in somewhat more general terms

the observations we have already made about solutions of systems of linear equations.

5.1 Existence, Constraint Equations, and Rank
Scippose A is an at x a matrix. There are two eqctally important ways to interpret the system

of equations Ax = b. In the preceding section, we concentrated on the row vectors of A:

If A1 A,,, denote the i-on’ vectors of A, then the vector c isa solution of Ax = h if and

only if
Aj.c=b1, A2.c=b2

Geometrically. c is a solcition precisely when it lies in the intersection of all the hvperplanes

defined by the system of equations.
On the other hand, we can define the coluntn vectors of the at x it matrix A as follows:

ci

eR”. j=l,2 it.

ci,,

We now make an observation that will be crucial in our future work: The matrix product

Ax can also be written as

a11x1 + . +a1,,x,, all a12 a1,,

a1x1 + + ci,,x,, (hi a27 ai,,
(*) Ax= =xt

:
±x2

:

ci,,,
— + + a,,,,, v,, a,,, a,,,2 ci,,,,,

k= I
=xiau +x,a2++x,,a,,.



Thus, a solution c = (ci c,1) of the linear system Ax = b provides scalars c1 c

so that
b = c1a1 ± + c,a,1.

This is our second geometric intemretation of the system of linear equatios: A solution

c gives a representation of the vector b as a linear combination, c1a1 + + c,a,. of the

column vectors of A.

EXAMPLE 1

Consider the four vectors

4 1 1 2

3 0 1 1
b , v1 = , v-’ = , and v3 =

1 1 1 1

2 2 1 2

Suppose we want to express the vector b as a linear combination of the vectors v1, Vs, and

v. Writing out the expression

Now we modify the preceding example slightly.

1 12 1

01 1 1

1 1 1 0’

212 1

1 1 2 1

01 1 1

0 0 1 1•

000 1

The last row of the augmented matrix corresponds to the equation

0xl+0x2+0x3= 1,

which obviously has no solution. Thus, the original system of equations has no solu

tion: The vector b’ in this example cannot be written as a linear combination of v1. v3,

andy3. A

These examples lead us to make the following definition.

Definition. If the system of equations Ax = b has no solutions, the system is said to be

inconsistent: if it has at least one solution, then it is said to be consistent.

4 Chapter] Vectors and Matrices
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This tells us that the solution is

[_.3 1
x = 0 , so b = —2v1 + Ov + 3v3.

C 3]

which, as the reader can check, works. A

EXAMPLE 2

We would like to express the vector

1

I

as a linear combination of the same vectors v1, v, and v3. This then leads analogously to

the system of equations
.Vj + X2 + 2x3 = I

X2 + X3 1

Xj + X2 + X3 = 0

2x1 + X2 + 2.13 =

j

1 1 2 4

x1v1 ±x:V2+x3V3 =X1
[°]

+x21 +x31

= [1’
we obtain the system of equations

xj ± x, + 2x3 = 4

X2 + X3 = 3

XI + X7 + X3 = I

2x1 + x2 + 2x = 2.

In matrix notation, we must solve Ax = b, where the columns of A are v1, v2, and v3:

1 1 2

0 1 1
A=

1 1 1

2 1 2

So we take the augmented matrix to reduced echelon form:

and to the augmented matrix

whose echelon form is

0
[AbJ=

.3

12 4 1

1 1 3 0

1 1 1 0

1 2 2 0

1

0

0

0

1 2 4

1 1 3

0 —l —3

—l —2 —6

124 1

1 1 3 0

01 3 0

000 0

00

10

01

00

—2

0
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A system of equations is consistent precisely when a solution exists. We see that the
system of equations in Example 2 is inconsistent and the system of equations in Example 1
is consistent. It is easy to recognize an inconsistent system of equations from the echelon
form of its augmented matrix: The system is inconsistent precisely when there is an equation
that reads

Oxi + 0x + ... + 0x = c

for some nonzero scalar c, i.e., when there is a row in the echelon form of the augmented
matrix all of whose entries are 0 except for the rightmost.

Turning this around a bit, let [U cj denote an echelon form of the augmented matrix
[A b 1. The system Ax = b is consistent if and only if any zero row in U corresponds to
a zero entry in the vector c.

There are two geometric interpretations of consistency. Prom the standpoint of row
vectors, the system Ax = b is consistent precisely when the intersection of the hyperplanes

A1.x=b1 17

is nonempty. from the point of view of column vectors, the system Ax = b is consistent
precisely when the vector b can be written as a linear combination of the column vectors
a1 a,, of A; in other words, it is consistent when b e Span (a1 a,,).

In the next example, we characterize those vectors b e R4 that can be expressed as a
linear combination of the three vectors v1, v, and v3 from Examples 1 and 2.

EXAMPLE 3

x1 + x + 213 =

12 + 13 = 172

lj + 1 + 13 = b3

2xj + x2 + 213 = 174

have a solution’? We form the augmented matrix [A b I and put it in echelon form:

1 1 2 b 1 1 2 ‘l

0 1 1 b 0 1 1 2

I I I b 0 0 —l b3hl

2 1 2 174 0—1—2 b4—2b1

1 1 2 b

--,
I b—b ‘1’

0 0 0 —bi+b2—b3+b4

We deduce that the original system of equations will have a solution if and unIv if

(**) —h + b2 — + 174 = 0.

That is. the vector b belongs to Span (V1. v. v) precisely when b satisfies the conct ra it

equation (**). Changing letters slightly, we infer that a Cartesian equation of the hvperplane

spanned by v1. v2, and v in is —x +12 —13 +14 = 0.

EXAMPLE 4

Asafurther example, we take

1 —l 1

3 2 —l

1 4 —3

3 —3 3

and we look for constraint equations that describe the vectors b for which Ax = b is

consistent. i.e.. all vectors b that can be expressed as a linear combination of the columns

of A.
As before, we consider the augmented matrix [ A hJ and determine an echelon form

U I ci. In order for the system to be consistent, every entry of c corresponding to a row

of 0’s in U must be 0 as well:

1 —1 1 b! I —l I bj

3 2 —l b t) 5 —4 17,
— 3b

[AIb]= -

_

-

1 4 —3 b 0 —4 b
—

3 —3 fr 0 () 0 174— 3b

1 —l 1 hi

0 5 —4 b’—3bi

t) 0 0 h
—

172 ± 2h

0 t) 0 173—3171

Here we have two rows of 0’s in U, so we conclude that Ax = b is consistent if and only

if b satisfies the two constraint c’cjuatlolis

2hi—b2+h:0 and —3171+174=0.

These equations describe the intersection of two hyperplanes through the origin in with

respective normal vectors (2, —1, 1.0) and (—3.0,0. 1). A

Notice that in the ]ast two examples. we have reversed the process of Sections 3 and 4.

There we expressed the general solution of a system of linear equations as a linear combi

nation of certain vectors, just as we described lines, planes. and by perplanes parametrically

earlier. Here, starting with the column vectors of the matrix A. we have found the constraint

eqtiations that a vector b must satisfy in order to be a lindar combination of them (that is.

to he in their span). This is the process of determining Cartesian equations of a space that

is defined parametrically.

Remark. It is worth noting that since A has different echelon forms, one can arrive at

different constraint equations. We will investigate this more deeply in Chapter 3.

I

For what vectors

will the system of equations

hi

17,
-

b3

174
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EXAMPLE 5

Find a Cartesian equation of the plane in R given parametrically by

1 1 2

x= . +s

We ask which vectors b = (b1, b7, b3) can be written in the form

1 1 2 b1

2 +s 0 +t 1 =

1 1 1 b3

This system of equations can be rewritten as

1 2
-

b—1
ts I

0 1 1= b—2
Lt]

b3—1

and so we want to know when this system of equations is consistent. Reducing the aug

mented matrix to echelon form, we have

1 2 b1—1 1 2 b1—1

0 1 b2—2 ‘- 0 1 b2—2

1 1 b3—1 0 0 b3—b1+b2—2

Thus, the constraint equation is —b + b2 + b3 — 2 = 0. A Cartesian equation of the given

plane isxi —x2 —x3 = —2. A]

In general, given an in x n matrix, we might wonder how many conditions a vect

b e R must satisfy in order to be a linear combination of the columns of A. From ti

procedure we’ve just followed, the answer is quite clear: Each row of 0’s in the

form of A contributes one constraint. This leads us to our next definition.

Definition. The rank of a matrix A is the number of nonzero rows (the number of pivots]

in any echelon form of A. It is usually denoted by r.

Then the number of rows of 0’s in the echelon fo is in — r, and b must satisfy m —I
constraint equations. Note that it is a consequence of Proposition 4.2 that the rank of I

matrix is weH-defined, i.e., independent of the choice of echelon form.
Now, given a system of in linear equations in n variables, let A denote its coefficie

matrix and r the rank of A. We summarize the above remarks as follows.

Proposition 5.1. The linear system Ax = b is consistent if and only if the rank of

augmented matrix [A b I equals the rank of A. In particular when the rank of A eqU

in, the system Ax = b wilt be consistent for all vectors b e R.

Proof. Let [U I c] denote the echelon form of the augmented matrix [A I b 1. We kn

that Ax = b is consistent if and only if any zero row in U corresponds to a zero entry in

vector c, which occurs if and only if the number of nonzero rows in the augmented mal

[U I ci equals the number of nonzero rows in U, i.e., the rank of A. When r = in, there is

no row of 0’s in U and hence no possibility of inconsistency. 0

5.2 Uniqueness and Nonuniqueness of Solutions

We now turn our attention to the question of how many solutions a given consistent system

of equations has. Our experience with solving systems of equations in Sections 3 and 4

suggests that the solutions of a consistent linear system Ax = b are intimately related to

the solutions of the system Ax = 0.

nition. A system Ax = b of linear equations is called inhomnogeneous when b

rresponding equation Ax = 0 is called the associated homogeneous system.

To relate the solutions of the inhomogeneous system Ax band those of the associated

homogeneous system Ax = 0. we need the following fundamental algebraic observation.

Proposition 5.2. Let A be an in x ii matrix and let x, y e R”. Then

(This is catted the distributive property of matrix multiplication.)

Proof. Recall that, by definition, the th entry of the product Ax is equal to the dot product

A1 x. The distributive property of dot product (the last property listed in Proposition 2.])

dictates that
A1 .(x+y)A1 .x+Ajy,

and so the ith entry of A(x + y) equals the ith entry of Ax + Ay. Since this holds for all

= 1 m, the vectors are equal. 0

This argument establishes the first part of the following theorem.

Theorem5.3. Assumethesvstem Ax = bis consistent, and letuj beaparticutarsollitioll.l5

Tlzeiz all the soltitions are ofthe form

U = Ui + V

for smite solttrion v of the associated homogeneous system Ax = 0.

Proof. first we observe that any such vector u is a solution of Ax = b. Using Proposition

5.2, we have

Au=A(ui +v)=AUi +Av=b+O=b

Conversely, every solution of Ax = b can be written in this form, for if u is an arbitrary’

solution of Ax = b, then. by’ distributivity again,

A(u—uj)= Au—Au1 =b—b=O.

so v = u — u1 is a solution of the associated homogeneous system; now we just solve for

u, obtaining u = u1 + v, as required. 0

Remark. As Figure 5.1 suggests, when the inhomogeneous system Ax = b is consistent,

its solutions are obtained by translating the set of solutions of the associated homogeneous

18 Chapter 1 Vectors and Matrices

A(x + y) = Ax + Ay.

‘5This is classical terminology for any single solution of the inhomogeneous system. There need not be anything

special about it. tn Example 5 on p. 44, we saw a way to pick a particular particular solution.
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system by a particular solution U. Since li lies on each of the hyperplanes A, x = b= 1 in, we can translate each of the hyperplanes A1 . x = 0, which pass through t1origin, by the vector u1. Thus, translating the intersection of the hyperplanes A, x =
in, by the vector Uj gives us the intersection of the hyperplanes A1 . x = bin, as indicated in figure 5.2.

FIGURE 5.2

Of course, a homoreneous system is always consistent, because the trivial soltitiox 0, is altvays a solution of Ax 0. Now, if the rank of A is r, then there will be r pivvariables and,i
— r free variables in the general solution of Ax = 0. In particular, if r = n.then x = 0 is the only solution of Ax = 0.

Definition. If the system of equations Ax b has precisely one solution, then we .that the system has a unique solution.

Thus, a homogeneous system Ax = 0 has a unique solution when r = n and iimany solutions when r < ii. Note that it is impossible to have r > n, since therebe more pivots than columns. Similarly, there cannot he more pivots than rows inmatrix, so it follows that whenever it > in (i.e., there are mote variables than equationthe homogeneous system Ax = 0 must have infinitely many solutions.
From Theorem 5.3 we know that if the inhomogeneous system Ax = b is consiSthen its solutions are obtained by translating the solutions of the associated homogensystem Ax = 0 by a particular solution. So we have the following proposition.

Proposition 5.4. Suppose the system Ax = b is consistent. Then it has a unique solutiOn
and only if the cissociated homogeneous system Ax = 0 has only the trivial solution. I
happens exactly when r = iz.

We conclude this discussion with an important special case. It is natural to ask when

the inhomogeneous system Ax = b has a unique solution for every b Rz. from Propo

sition 5.1 we infer that for the system always to be consistent, we must have r = in; from

Proposition 5.4 we infer that for solutions to be unique, we must have r = n. And so we

see that we can have both conditions only when r = in = it.

itt An nx it matrix of

We observe that an it x it matrix is nonsingular if and only if there is a pivot in each row,

hence in each column, of its echelon form. Thus, its reduced echelon form must be the

n x it matrix —

10

01

It seems silly to remark that when in = ii, if r = it, then r = in, and conversely. But

the following result, which will be extremely important in the next few chapters, is an

immediate consequence of this observation.

Proposition 5.5. Let A he an n x n matrix. The following are equivalent:

1. A is nonsingular.

2. Ax = 0 has only the trivial solution.

3. for every b e W, the equation Ax = b has a solution (indeed, a unique

solution).

a. b b. b

=

c. b

= l]

V

Solutions of Ax = 0

FIGURE 5.1

U1
Solutions of,4 b

•0

Solutions ofAx4

Solutions ofAx = 0

A, x

A1 •x=O
A, x

A, . x = 0

Exercises 1.5

*1. By solving a system of equations, find the linear combination of the vectors v1 = 0

t01 [21 t 1 [-I

V2 = 1 , V3 = 1 that gives b = 0

[2] LI] [-2

*2. For each of the following vectors b e R4, decide whether b is a linear combination of

0

0 —1 —2
v1 = , v’ = , and v3 =

1 - 0

—2 1 0



3. Find constraint equations (if any) that b must satisfy in order for Ax = b to be consistent.

[ 3 —1

6 —2

L—9
t 1 1 1

*b A
=

—1 1 2

1 3 4

fo i i

c.A=jl 2 1

2 1 —1

4. Find constraint equations that b must satisfy in order to be an element of

a. V = Span ((l, 2, 1), (2, —4, —2))

b. V = Span ((1,0, 1, 1), (0, 1, 1, 2). (1, 1, 1,0))

V = Span ((1.0,1.1), (0.1,1.2), (2, —1,1,0))

U. V=Span((l,2,3),t1,0.2),(121))

5. By finding appropriate constraint equations, give a Cartesian equation of each of the

following planes in R3.

a. x=s(i,_2,_2)+t,0,),s,teR

b. x = (1,2,3) + s(1, —2, —2) + t(2, 0,—i), s, t eR

c. x= (4,2, i)+s(i,O, 1)+t(1,2,—1),S,t eR

6. Suppose A is a 3 x 4 matrix satisfying the equations

I
c. The rows of A are orthogonal to

0
, and for some nonzero vector b e R2 both

1 1

0 1
the vectors and are solutions of the equation Ax = b.

1 1

0 1 [i7 [27

For some vectors b1, b2 e R2 both the vectors 0 and 1 are solutions of the

Li] Li]
‘1 t’l

equation Ax = b1,andboth the vectors 0 I and 1 are solutions of the equation

Ax=b2. Lo] Li]
*$LetA=1 a

[a 3a

a. For which numbers a will A be singular?

b. For all numbers a not on your list in part a, we can solve Ax = b for every vector

b E R2. For each of the numbers a on your tist, give the vectors b for which we

can solve Ax = b.

[1 a a

9.LetA=Ia 2 1

La a I

a. For which numbers a will A be singular?

b. for all numbers a not on your list in part a, we can solve Ax = b for every vector

b e R3. For each of the numbers a on your list, give the vectors b for which we

can solve Ax = b.

10. Let A be an in x ii matrix. Prove or give a counterexample: If Ax = 0 has only the

trivial solution x = 0. then Ax = b always has a unique solution.

11. Let A and B be in x n matrices. Prove orgive a counterexample: If Ax = 0 and Bx = 0

have the same solutions, then the set of vectors b such that Ax b is consistent is the

same as the set of the vectors b such that Bx = b is consistent.

12. In each case, give positive integers in and ii and an example of an in x n matrix A with

the stated property, or explain why none can exist.

*a. Ax = b is inconsistent for every b e R’.

*b. Ax = b has one solution for every b e R”.

c. Ax = b has no solutions for some b e R’ and one solution for every other b E R’.

d. Ax = b has infinitely many solutions for every b e R’.

e. Ax = b is inconsistent for some b E and has infinitely many solutions whenever

it is consistent.

f. There are vectors b. b7. b3 so that Ax = b1 has no solution. Ax = b2 has exactly

one solution, and Ax = b3 has infinitely many solutions.

13. Suppose A is an in x n matrix with rank in and v1 ,...,Vk e W are vectors with

Span (vi vk) = W. Prove that Span (Av1 AVk) = R’.

14. Let A be an rn x n matrix with row vectors A1 A, e R.

*a. Suppose A1 + .. . + A,1 0. Deduce that rank(A) <rn. (Hint: Why must there

be a row of 0’s in the echelon form of A?)

b. More generally, suppose there is some linear combination c1A1 + ... + = 0.

where some c1 0. Show that rank(A) <in.
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[i 1 2

*dA12 —1 2

LI —2 1

1 2 i

0 1 1
e. A =

—1 3 4

—2 —l 1

1 1 1

f. A=
1 —l 1

1 1 —1

1 2 3
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1 0
1 1

A[2 [] and A [ii =

[o7
Findavectorx e R4suchthatAX I

.

Give yourreasoning. (Hint: LookcarefU

L]
at the vectors on the right-hand side of the equations.)

7. find a matrix A with the given property or explain why none can exist.

a. One of the rows of A is (1, 0, 1), and for some b e R2 both the vectors 0

[27
1

1 are solutions of the equation Ax = b.

b. The rows of A are linear combinations of (0, 1,0, i) and (0,0, 1, 1), and for

b e R2 both the vectors and
[i]

are solution of the equation Ax b.

I
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15. Let A be an in x n matrix with colttmn vectors a1,..., a
a. Suppose a1 +• + a,, = 0. Prove that rank(A) <it. (Hint. Consider solutions of

Ax =0.)

b. More generally, suppose there is some linear combination c1a1 + + c,a 0,

where some c1 0. Prove that rank(A) < n.

6 Some Applications

We whet the reader’s appetite with a few simple applications of systems of linear equations.

In later chapters. when we begin to think of matrices as representing functions, we will find

further applications of linear algebra.

6.1 Curve Fitting
The first application is to fitting data points to a certain class of curves.

EXAMPLE I

We want to find the equation of the line passing through the points (1, 1), (2. 5), and

(—2, —11). Of course, none of us needs any linear algebra to solve this problem—the

point-slope formula will do; but let’s proceed anyhow.

We hope to find an equation of the form

FIGURE 6.1

= mx + b

three equations in the two variables in and b when we substitute the respective points into

the equation:
lm+b= I

2m+b= 5

—2m + b = —11.

It is easy enough to solve this system of equations using Gaussian elimination:

1 1 1 1 1 1 1 1 1 10 4

2 1 5 0 —l 3 — 0 1 —3 —f 0 1 —3

—2 1 —Il 0 3 —9 0 0 0 0 0 0

and so the line we sought is v = 4x — 3. The reader should check that all three p°
indeed lie on this line.

Ot course, tvith three data points, we would expect this system of equations to be

inconsistent. In Chapter 4 we will see a beautiful application of dot products and projection

to find the line of regression (least squares Iine’) giving the best fit to the data points in

that situation.
Given three points, it is plausible that if they are not collinear, then we should be able

to fit a parabola

y = ax2 + bx + c

to them (provided no two lie on a vertical line). You are asked to prove this in Exercise 7,

but let’s do a numerical example here.

EXAMPLE 2

Giventhepoints (0, 3), (2, —5). and(7. l0),wewishtofindtheparabOlay = ax2 + bx + c

passing through them. (See figure 6.2.) Now we write down the system of equations in

that is satisfied by each of the three points. (See figure 6.1.) That gives us a system of

2 3

FIGURE 6.2

—15

the variables a, b, and c:

Oa +Oh±c= 3

4a ± 2b ± C = —5

]

49(1 + 7b + = 10.

I

—)

We’re supposed to solve this system by Gaussian elimination, but we can’t resist the temp

tation to use the fact that c = 3 and then rewrite the remaining equations as

2a + b = —4

7a+b 1.

which we can solve easily to obtain a = I and b = —6. Thus. our desired parabola is

v = x2 — 6x + 3: once again, the reader should check that each of the three data points lies
A

The curious reader might wonder whether, given a + I points in the plane (no two with

the same x-coordinate), there is a polynomial PC) of degree at most a so that all a + 1

points lie on the graph v = P(x). The answer is yes, as we will prove with the Lagrange

mterpolanonformtda in Chapter 3. It is widely used in numerical applications.

on this curve.


