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i Foreword to the Student

exercises, solutions (some more detailed than others) at the back of the bo?k. ]
(I::l::i;fagr?(?rfg );s possible the temptation to refer to the solutions! Try to be sure ¥09 ve C H A P T E R 1
worked the problem correctly before you glance at the answer. Be carefu_l: Some so Etllons
in the book are not complete, sO it is your responsiblity to fill in 'the details. The pro c;rlrlls
that are marked with a sharp (*) are not necessarily particularly difficult, bl‘lt they gener y
involve concepts and results to which we shall refer later in the text. Thus, if ?'our mstruc.:tor
assigns them, you should make sure you understand how to do them. Occaspnal et;iermsc;,s L

are quite challenging, and we hope you will work hard on a lflew; \:'/e‘i:rrsnly believe that only VE CT O RS AND M ATRI C E S

. with a real puzzler do we all progress as mathema icians. .

” Stgur%cgeh:ggain, we hopefJ you will have fun as you embark on your voyage to lqam :?ear =
algebra. Please let us know if there are parts of the book you find particularly enjoyable or

troublesome.

inear algebra provides a beautiful example of the interplay between two branches of
B mathematics: geometry and algebra. We begin this chapter with the geometric concepts
and algebraic representations of points, lines, and planes in the more familiar setting of two
and three dimensions (R? and R?, respectively) and then generalize to the “n-dimensional”
space R". We come across two ways of describing (hyper)planes—either parametrically or
as solutions of a Cartesian equation. Going back and forth between these two formulations
will be a major theme of this text. The fundamental tool that is used in bridging these
descriptions is Gaussian elimination, a standard algorithm used to solve systems of linear
equations. As we shall see, it also has significant consequences in the theory of systems
of equations. We close the chapter with a variety of applications, some not of a geometric
nature.

[1 Vectors

1.1 Vectors in R?

Throughout our work the symbol R denotes the set of real numbers. We define a vector! in
R? to be an ordered pair of real numbers, X = (x1, X2). This is the algebraic representation
of the vector x. Thanks to Descartes, we can identify the ordered pair (x1, x2) with a point
in the Cartesian plane, R2. The relationship of this point to the origin (0, 0) gives rise to the
geometric interpretation of the vector x—namely, the arrow pointing from (0, 0) to (x1, x2),
as illustrated in Figure 1.1.

The vector x has length and direction. The length of x is denoted ||x]| and is given by

Ixll = y/x7 + %3,

whereas its direction can be specified, say, by the angle the arrow makes with the positive
x,-axis. We denote the zero vector (0, 0) by 0 and agree that it has no direction. We say
two vectors are equal if they have the same coordinates, or, equivalently, if they have the
same length and direction.

More generally, any two points A and B in the plane determine a directed line segment

—>
from A to B, denoted AB. This can be visualized as an arrow wiih) A as its “tail” and B
as its “head.” If A = (ay, az) and B = (by, by), then the arrow AB has the same length

The word derives from the Latin vector, “carrier,” from vectus, the past participle of vehere, “to carry. 1
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and direction as the vector v = (b; — a,, b — a,). For algebraic purposes, a vector should
always have its tail at the origin, but for geometric and physical applications, it is important
to be able to “translate” it—to move it parallel to itself so that its tail is elsewhere. Thus, at
least geometrically, we think of the arrow AB as the same thing as the vector v. In thi)same
vein, if C = (cy, ¢2) and D = (dy, d»), then, as indicated in Figure 1.2, the vectors AB and

CD areequal if (b) —ay, b2 —a2) = (d), —c1,da — ¢2).> This is often a bit confusing at
first, so for a while we shall use dotted lines in our diagrams to denote the vectors whose
tails are not at the origin.

Scalar multiplication

If ¢ is a real number and x = (x,, x») is a vector, then we define ¢x to be the vector with
coordinates (cxy, cx2). Now the length of cx is

llexll = V(ex1)? + (cx2)? = {/c2(x? + x3) = |cly/x} + x3 = [c]lIx].

When ¢ # 0, the direction of ¢x is either exactly the same as or exactly opposite that of x,
depending on the sign of ¢. Thus multiplication by the real number ¢ simply stretches (or
shrinks) the vector by a factor of |c| and reverses its direction when c is negative, as shown
in Figure 1.3. Because this is a geometric “change of scale,” we refer to the real number ¢
as a scalar and to the multiplication cx as scalar multiplication.

2x

=X

FIGURE 1.3

Definition. A vector X is called a unit vector if it has length 1, i.e., if |[x]| = 1.

2The sophisticated reader may recognize that we have defined an equivalence relation on the collection of directed
line segments. A vector can then officially be interpreted as an equivalence class of directed line segments.

Y S = T e

1 Vectors 3

Note that whenever x # 0, we can find a unit vector with the same direction by taking

X 1
—_ = —X,
=l fxdl

as shown in Figure 1.4.

X
Il

The unit circle

FIGURE 1.4
'EXAMPLE 1
The vector x = (1, —2) has length ||x|| = /12 + (=2)? = /5. Thus, the vector

X 1

U= — = —(1,-2)
Ixll /5
2 /a2
is a unit vector in the same direction as x. As a check, [ul|> = (%) + (7%) =i+3=1
A

Given a nonzero vector X, any scalar multiple cx lies on the line that passes through
the origin and the head of the vector x. For this reason, we make the following definition.

Definition. We say two nonzero vectors X and y are parallel if one vector is a scalar
multiple of the other, i.e., if there is a scalar ¢ such that y = cx. We say two nonzero
vectors are nonparallel if they are not parallel. (Notice that when one of the vectors is
0, they are not considered to be either parallel or nonparallel.)

Vector addition
If x = (x1, x2) and y = (y1, y2), then we define

x+y=(+y,x+y2)

Because addition of real numbers is commutative, it follows immediately that vector addi-
tion is commutative:

X+y=y+x
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(See Exercise 28 for an exhaustive list of the properties of vector addition and scalar
multiplication.) To understand this geometrically, we move the vector y so that its tail is
at the head of x and draw the arrow from the origin to the head of the shifted vector y, as
shown in Figure 1.5. This is called the parallelogram law for vector addition, for, as we
see in Figure 1.5, x +y is the “long” diagonal of the parallelogram spanned by x and y.
The symmetry of the parallelogram illustrates the commutative law x +y =y + X.

FIGURE 1.5

This would be a good place for the diligent student to grab paper and pencil and
make up some numerical examples. Pick a few vectors x and y, calculate their sums
algebraically, and then verify your answers by making sketches to scale.

Remark. We emphasize here that the notions of vector addition and scalar multiplication
make sense geometncally for vectors that do not necessanly have their tails at the origin. If

we wish to add C D to AB we simply re_cill that C D is equal to any vector with the same
length and direction, so we just translate C D so that o and B coincide; then the arrow from
A to the point D in its new position is the sum AB + C D.

Vector subtraction

Subtraction of one vector from another is also easy to define algebraically. If x = (x;, x2)
and y = (y1, y2), then we set

X—y=(x1 —yi,x2—y).

As is the case with real numbers, we have the following important interpretation of the
difference: x — y is the vector we must add to y in order to obtain x; that is,

x-y+y=x

From this interpretation we can understand x — y geometrically. The arrow representing
it has its tail at (the head of) y and its head at (the head of) x; when we add the resulting
vector to y, we do in fact get x. As shown in Figure 1.6, this results in the other diagonal
of the parallelogram determined by x and y. Of course, we can also think of x — y as the
sum x + (—y) = x + (—1)y, as pictured in Figure 1. 7 Note that 1f A and B are pomts in

the plane and O denotes the origin, then setting x = OB andy = OA givesx —y = AB

e s it
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X-y -y
FIGURE 1.6 FIGURE 1.7

'EXAMPLE 2

Let A and B be points in the plane. The mzdpomt M of the line segment AB is the umque
point in the plane w1th the property that AM M B. Since AB =AM + MB = 2AM
we infer that AM = —AB (See Figure 1.8.) What’s more, we can find the vector v = OM
whose tall is at the ongm and whose head i 1s at M, as follows. As above, we set X = OB
andy = OA, SO AB =x —yand AM = %AB = 2(x—y) Then we have

—_— = =

OM = 0A+ AM

In particular, the vector OM is the average of the vectors b—A and O_B

A=(a;, a)

b
.
’
0

M=(3(a, + b)), 3(az + b))
1 T
2+

-~
.

B=(b, by)
X

FIGURE 1.8

In coordinates, if A = (a;, @) and B = (by, b3), then the coordinates of M are the
average of the respective coordinates of A and B:

= L((a1, @) + (b1, b)) = (3@ +b1), Laz +b2)).

See Exercise 18 for a generalization to three vectors. A
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We now use the result of Example 2 to derive one of the classic results from high school
geometry.

Proposition 1.1. The diagonals of a parallelogram bisect one another.

B

FIGURE 1.9

Proof. The strategy is this: We will find vector expressions for the midpoint of each diagonal
and deduce from these expressions that these two midpoints coincide. We may assume one
vertex of the parallelogram is at the origig,_) 0, and we Egel the remaining veanes A B,
and C, as shown in Figure 19. Letx=0Aandy = OC, ar_lg_l_et M be the mld;?mnt of
diagonal AC. (In the picture, we do not place M on diagonal O B, even though ultimately
we will show that it is on ‘0 B.) We have shown in Example 2 that

oM = Lx+y).

Next, note that _O—g' = X + y by our earlier discussion of vector addition, and so

—_—

—
ON =10B=1@x+y) =0M.

This implies that M = N, and so the point M is the midpoint of both diagonals. That is,
the two diagonals bisect one another. O

- . 2
Here is some basic advice in using vectors to prove a geometric statement in R*. Setup
an appropriate diagram and pick two convenient nonparallel vectors that arise nfiturally
in the diagram; call these x and y, and then express all other relevant quantities in terms

of only x and y.

It should now be evident that vector methods provide a great tool for translating theo-
rems from Euclidean geometry into simple algebraic statements. Here is anther gxample.
Recall that a median of a triangle is a line segment from a vertex to the midpoint of the

opposite side.
Proposition 1.2. The medians of a triangle intersect at a point that is two-thirds of the way
from each vertex to the opposite side.

Proof. We may put one of the vertices of the tr_igr)lgle at the origin, O, so that the pictur®

—_—> i
is as shown at the left in Figure 1.10: Letx = OA,y=OB,andlet L, M, and N be the

midpoints of OA, AB, and OB, respectively. The battle plan is the fpllowing: We let P
denote the point two-thirds of the way from B to L, O the point two-thirds ,Of t}'1e way froml
O to M, and R the point two-thirds of the way from A to N. Although we’ve indicated P,

SR e
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FIGURE .10 ©

0, and R as distinct points at the right in Figure 1.10, our goal is to prove that P = @ = R;

. . _é -_) -—-» . .
we do this by expresgl)g all tlE/ectors OP,0Q,and OR interms of x and y. For instance,

ince OB = —10A=1 Bl =1
since OB =yand OL = ;0A = 3x, we get BL = 3x —y, and so

Similarly,

)) = }(x +y); and
AN =x+ % (3y —x) = ix+3y.

— = 2
We conclude that, as desired, 0P = OQ = OR, and so P = Q = R. That is, if we go
two-thirds of the way down any of the medians, we end up at the same point; this is, of
course, the point of intersection of the three medians.

The astute reader might notice that we could have been more economical in the last
proof. Suppose we merely check that the points two-thirds of the way down two of the
medians (say, P and Q) agree. It would then follow (say, by relabeling the triangle slightly)
that the same is true of a different pair of medians (say, P and R). But since any two pairs
must have this point in common, we may now conclude that all three points are equal.

1.2 Lines

With these algebraic tools in hand, we now study lines® in R2. A line £y through the origin
with a given nonzero direction vector v consists of all points of the form x = tv for some
scalar t. The line £ parallel to £ and passing through the point P is obtained by translating
£ by the vector xg = O_f’; that is, the line £ through P with direction v consists of all points
of the form

X =Xg+?tv

as ¢ varies over the real numbers. (It is important to remember that, geometrically, points
of the line are the heads of the vectors x.) It is compelling to think of ¢ as a time parameter,
initially (i.e., at time ¢ = 0), the point starts at Xo and moves in the direction of v as time
increases. For this reason, this is often called the parametric equation of the line.

To describe the line determined by two distinct points P and Q, we pick Xp = -0_; as

—
before and set yo = O Q; we obtain a direction vector by taking
—_— —> =

v=PQ=00-0P=y)—X.

3Note: In mathematics, the word line is reserved for “straight” lines, and the curvy ones are usually called curves.
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Thus, as indicated in Figure 1.11, any point on the line through P and Q can be expressed
in the form

X =Xo+1v=2xXy+1(yo — Xo) = (1 — t)Xg + tyo.
x=(-1,D+12,3)
As a check, when t+ = 0 and t = 1, we recover the points P and Q, respectively.

FIGURE 1.11 3
|
? FIGURE 1.12
 EXAMPLE 3 |
Consider the line
X2 =3x+1 Mathematics is built around sets and relations among them. Although the precise

definition of a set is surprisingly subtle, we will adopt the naive approach that sets
are just collections of objects (mathematical or not). The sets with which we shall be
concerned in this text consist of vectors. In general, the objects belonging to a set are

(the usual Cartesian equation from high school algebra). We wish to write it in parametric
form. Well, any point (x|, x3) lying on the line is of the form

X =(x, x2) = (x1, 3%+ 1) = (0, 1) + (x1,3x1) = (0, 1) + x1(1, 3). called its elements or members. If X is a set and x is an element of X, we write this as

Since x; can have any real value, we may rename it ¢, and then, rewriting the equation as xeX.
x=(0,1)+¢(1,3), We might also read the phrase “x, y € R"” as “x and y are vectors in R"” or “x and y
we recognize this as the equation of the line through the point P = (0, 1) with direction belong to R".”
vector v = (1, 3). We think of a line in R? as the set of points (or vectors) with a certain property.
Notice that we might have given alternative parametric equations for this line. The The official notation for the parametric representation is
equations £={xeR?:x=(3,0) +1(—2,1) for some scalar t}.
x=(0,1)+s5(2,6) and x=(,4)+u(l,3)

Or we might describe £ by its Cartesian equation:
also describe this same line. Why? A & s e

L={xeR?:x +2x; =3).

In words, this says that “£ is the set of points x in R? such that x| + 2x; = 3.”
The “Why?” is a sign that, once again, the reader should take pencil in hand and check Often in the text we are sloppy and speak of the line
that our assertion is correct.

() x1+2x =3

rather than using the set notation or saying, more properly, the line whose equation
EXAMPLE 4 is ().
Consider the line £ given in parametric form by
x=(-1,1)+:2,3)

and pictured in Figure 1.12. We wish to find a Cartesian equation of the line. Note that

1.3 Onto R”

¢ passes through the point (—1, 1) and has direction vector (2, 3). The direction vector The generalizations to R? and R” are now quite straightforward. A vectorx € R3 is defined
determines the slope of the line: to be an ordered triple of numbers (x;, Xz, x3), which in turn has a geometric interpretation
rise 3 B as an arrow from the origin to the point in three-dimensional space with those Cartesian

un 2’ : coordinates. Although our geometric intuition becomes hazy when we move to R" with

50, using the point-slope form of the equation of a line, we find : n > 3, we may still use the algebraic description of a point in n-space as an ordered n-tuple of
real numbers (xy, X3, ..., X,). Thus, we write X = (x, X3, ..., X,) for a vector in n-space.

x2—1 = ?.; e, x»= Exl + é ' We define R” to be the collection of all vectors (xy, x2, ..., X,) as Xy, X2, ..., X, vary over

o+l 2 C2 2 R. As we did in R?, given two points A = (ay,...,a,) and B = (b}, ..., b,) € R", we

- . . . . é
Of course, we can rewrite this as 3x; — 2x, = —5. A associate to the directed line segment from A to B the vector AB = (by — ay, ..., by — an).
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Remark. The beginning linear algebra student may wonder why anyone would care about R”
with n > 3. We hope that the rich structure we’re going to study in this text will eventually
be satisfying in and of itself. But some will be happier to know that “real-world applications”
force the issue, because many applied problems require understanding the interactions of
a large number of variables. For instance, to model the motion of a single particle in R3,
we must know the three variables describing its position and the three variables describing
its velocity, for a total of six variables. Other examples arise in economic models of a
large number of industries, each of which has a supply-demand equation involving large
numbers of variables, and in population models describing the interaction of large numbers
of different species. In these multivariable problems, each variable accounts for one copy
of R, and so an n-variable problem naturally leads to linear (and nonlinear) problems inR".

Length, scalar multiplication, and vector addition are defined algebraically in an anal-
ogous fashion: Ifx,y e R" and c € R, we define

L fxll = \/xf+x§+-~+x3;
2. cx=(cx1,¢x2,...,CXp);
3‘ x+y=(xl+}’l,x2+)’2,--uxn+)’n)-

As before, scalar multiplication stretches (or shrinks or reverses) vectors, and vector addition
is given by the parallelogram law. Our notion of length in R” is consistent with applying
the Pythagorean Theorem (or distance formula); for example, as Figure 1.13 shows, we
find the length of x = (x;, x2, x3) € IR3 by first finding the length of the hypotenuse in the
x1x2-plane and then using that hypotenuse as one leg of the right triangle with hypotenuse x:

2
Ix? = (,/xl2 +x2 ) +x2=x+x3 +x3.

x = (x}, X3, X3)

&

CERCREI L e SR SR

/ oy
FIGURE 1.13

The parametric description of a line £ in R is exactly the same as in R% Ifxo € R”
is a point on the line and the nonzero vector v € R" is the direction vector of the line, then
points on the line are given by

x=xo+1tv, teR.
More formally, we write this as
£ ={xeR":x=xo+tvforsomet € R}.

As we’ve already seen, two points determine a line; three or more points in R” are called
collinear if they lie on some line; they are called noncollinear if they do not lie on any line.

o e

1 Vectors 11

EXAMPLE 5

Consider the line determined by the points P = (1,2,3) and @ = (2,1,5) in R3. The
direction vector ofih)e line is v = P_Q) =(2,1,5—(,2,3) = (1, -1, 2), and we get an
initial point xo = O P, just as we did in R%, We now visualize Figure 1.11 as being in R?
and see that the general point on this line is x = xp + tv = (1,2, 3) +1(1, -1, 2). A

The definition of parallel and nonparallel vectors in R" is identical to that in R2. Two
nonparallel vectors u and v in R? determine a plane, Py, through the origin, as follows. Po
consists of all points of the form

X =su+tv

as s and ¢ vary over R. Note that for fixed s, as ¢ varies, the point moves along a line with
direction vector v; changing s gives a family of parallel lines. On the other hand, a general
plane is determined by one point Xg and two nonparallel direction vectors u and v. The
plane P spanned by u and v and passing through the point xo consists of all points X € R}
of the form

X = Xg + su+tv

as s and 1 vary over R, as pictured in Figure 1.14. We can obtain the plane P by translating
P, the plane parallel to P and passing through the origin, by the vector xo. (Note that this
parametric description of a plane in R? makes perfect sense in n-space for any n > 3.)

FIGURE 1.14

Before doing some examples, we define two terms that will play a crucial role through-
out our study of linear algebra.

Definition. Let vy, ..., v € R". If ¢y, ..., ¢k € R, the vector

vV=C1Vi+CVa+ -+ GV

is called a linear combination of vy, . .., v. (See Figure 1.15.)

Y + Vs

FIGURE 1.15
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Definition. Let vi, ..., vy € R*. The set of all linear combinations of vy, ..., Vg is
called their span, denoted Span (v, ..., v¢). That s,

Span(vy, ..., V) =

(veR":v=cv)+cyva + -+ + ¢ vy for some scalars ¢y, . ..., ¢k}

In terms of our new language, then, the span of two nonparallel vectors u, v € R" is a plane
through the origin. (What happens if u and v are parallel? We will return to such questions
in greater generality later in the text.)

EXAMPLE 6
Consider the points x € R? that satisfy the Cartesian equation
§)) x;—2x = 3.

The set of points (x|, x2) € R? satisfying this equation forms a line £ in R?; since x3 is
allowed to vary arbitrarily, we obtain a vertical plane—a fence standing upon the line ¢£.
Let’s write it in parametric form: Any x satisfying this equation is of the form

X = (x1, X2, x3) = (5 4 2x2, x2, x3) = (5,0,0) 4+ x2(2, 1, 0) + x3(0, 0, 1).

Since x; and x3 can be arbitrary, we rename them s and t, respectively, obtaining the
equation

(*) x=(50,0)4+5s(2,1,0)+1(0,0,1),

which we recognize as a parametric equation of the plane spanned by (2, 1, 0) and (0, 0, 1)
and passing through (5,0, 0). Moreover, note that any x of this form can be written as
x = (5+2s,s,1),andsox; — 2x, = (5 + 2s5) — 25 = 5, from which we see that x is indeed
a solution of the equation (). A

This may be an appropriate time to emphasize a basic technique in mathematics: How
do we decide when two sets are equal? First of all, we say that X is a subset of Y,
written

Xcy,

if every element of X is an element of Y. Thatis, X C Y means that wheneverx € X,
it must also be the case that x € Y. (Some authors write X C Y to remind us that the
sets X and Y may be equal.)

To prove that two sets X and Y are equal (i.e., that every element of X is an
element of Y and every element of ¥ is an element of X), it is often easiest to show
that X C ¥ and Y C X. We ask the diligent reader to check how we’ve done this
explicitly in Example 6: Identify the two sets X and Y, and decide what justifies each
of the statements X C Yand Y C X.
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EXRMPLE 1

As was the case for lines, a given plane has many different parametric representations. For
example,

(*%) x=(7,1,-5)+u2,1,2) + v(2, 1, 3)

is another description of the plane given in Example 6, as we now proceed to check. First,
we ask whether every point of (**) can be expressed in the form of () for some values of
s and ¢; that is, fixing u and v, we must find 5 and ¢ so that

(5,0,0) +5(2,1,00 +1(0,0, 1) = (7,1, =5) +u(2,1,2) + v(2, 1, 3).

This gives us the system of equations

2s =2u+2v+42
s =utv+l
t = 2u+3v-75,
whose solution is obviously s = u + v+ 1 and t = 2u 4+ 3v — 5. Indeed, we check the
algebra:
5,0,0)+5(2,1,0) 40,0, ) =5,0,0) + (u+v+ 1)(2,1,0)
+ Qu+3v-5)(0,0,1)
= ((5, 0,0) +(2,1,0) - 5(0,0, 1))
+ u((2, 1,0) +2(0,0, ) + v((2, 1,0) + 3(0, 0, 1))
=(1,1,-54+u2,1,2)+v(2,1,3).
In conclusion, every point of (#*) does in fact lie in the plane ().
Reversing the process is a bit trickier. Given a point of the form (x) for some fixed
values of s and ¢, we need to solve the equations for # and v. We will address this sort
of problem in Section 4, but for now, we’ll just notice that if we take u = 3s —t — 8 and

v = —2s + ¢ + 7 in the equation (%), we get the point (). Thus, every point of the plane
(*) lies in the plane (*%). This means the two planes are, in fact, identical. A

'EXAMPLE 8

Consider the points x € R that satisfy the equation
X1 —2x3+x3=5.
Any x satisfying this equation is of the form
X =(xy,x2,Xx3) = (54 2x —x3,x2,x3) = (5,0,0) + x2(2, 1, 0) + x3(—1,0, 1).

So this equation describes a plane P spanned by (2, 1, 0) and (—1, 0, 1) and passing through
(5,0, 0). We leave it to the reader to check the converse—that every point in the plane P
satisfies the original Cartesian equation. A

In the preceding examples, we started with a Cartesian equation of a plane in R* and
derived a parametric formulation. Of course, planes can be described in different ways.
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EXAMPLE 9

We wish to find a parametric equation of the plane that contains the points P = (1,_2), 1)
and Q = (2, 4, 0) and is parallel to the vector (1, 1, 3). Wetakexo = (1,2, 1),u=PQ =
(1,2, =1),and v = (1, 1, 3), so the plane consists of all points of the form

x=(1,2,)+s(1,2,-D+1(1,1,3), s,teR. A

Finally, note that three noncollinear points P, Q, R € R3 determine a plane. 3)) geta
— —

parametric equation of this plane, we simply take Xo = OP,u= PQ,and v= PR. We

should observe that if P, Q, and R are noncollinear, then u and v are nonparallel (why?).
It is also a reasonable question to ask whether a specific point lies on a given plane.

EXAMPLE 10

Letu=(l,1,0,—1) and v = (2,0, 1, 1). We ask whether the vector x = (1,3, -1, —2)
is a linear combination of u and v. That is, are there scalars s and ¢ so that su 4 tv =x,
ie.,

s(1,1,0, -1 +1(2,0,1,1) = (1,3, -1, =2)?
Expanding, we have
(s +2t,s,t,—s+1)=(1,3,-1,-2),

which leads to the system of equations

s+ 2t = 1
s = 3
t = -1
-5 + t =-2.
From the second and third equations we infer that s = 3 and ¢t = —1. These values also

satisfy the first equation, but not the fourth, and so the system of equations has no solution;
that is, there are no values of s and ¢ for which all the equations hold. Thus, x is not a
linear combination of u and v. Geometrically, this means that the vector x does not lie in
the plane spanned by u and v and passing through the origin. We will learn a systematic
way of solving such systems of linear equations in Section 4. A

EXAMPLE 11

Suppose that the nonzero vectors u, v, and w are given in R3 and, moreover, that v and w
are nonparallel. Consider the line £ given parametrically by x = Xo + ru (r € R) and the

Bt

plane P given parametrically by x = X, + sv + 1w (s, 1, € R). Under what conditions do | '

£ and P intersect?

It is a good habit to begin by drawing a sketch to develop some intuition for what
the problem is about (see Figure 1.16). We must start by translating the hypothesis
that the line and plane have (at least) one point in common into a precise statement
involving the parametric equations of the line and plane; our sentence should begin
with something like “For some particular values of the real numbers r, s, and , we
have the equation ....”

l Exercises 1.1
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FIGURE 1.16

For £ and P to have (at least) one point x* in common, that point must be represented in
the form x* = xp + ru for some value of r and, likewise, in the form x* = x; + sv 4+ tw
for some values of s and 7. Setting these two expressions for x* equal, we have

Xg + ru = X; + sv+tw for some values of r, s, and ¢,
which holds if and only if

Xg — X} = —ru+sv+tw for some values of r, 5, and ¢.

The latter condition can be rephrased by saying that xo — x; lies in Span (u, v, w).

Now, there are two ways this can happen. If Span (u, v, w) = Span (v, w), then xo — X,
lies in Span (u, v, w) if and only if xo — x; = sv - rw for some values of s and ¢, and this
occurs if and only if X = X + sV + tw, i.e., Xo € P. (Geometrically speaking, in this case
the line is parallel to the plane, and they intersect if and only if the line is a subset of the
plane.) On the other hand, if Span (u, v, w) = R3, then £ is not parallel to P, and they
always intersect. A

1. Given x = (2,3) and y = (—1, 1), calculate the following algebraically and sketch a
picture to show the geometric interpretation.
a x+vy c. X+ 2y e. y—X g. x|l
b. x—y d. %x-i—%y f.2x —y h.ﬁ

2. For each of the following pairs of vectors x and y, compute X +y,x—y,and y — x.
Also, provide sketches.
a x=(1,1),y=(2,3)
b. x=(2,-2),y=1(0,2)

*3. Three vertices of a parallelogram are (1, 2, 1), (2,4, 3), and (3, 1, 5). What are all the
possible positions of the fourth vertex? Give your reasoning.*

4. letA=(1,-1,-1),B=(-1,1,-1),C=(—1,-1,1),and D = (1, 1, 1). Check
that the four triangles formed by these points are all equilateral.

*5. Let £ be the line given parametrically by x = (1, 3) + 1(—2, 1), t € R. Which of the
following points lie on £? Give your reasoning.
a x=(-1,4) b. x =(7,0)

C. X= (1127—1)?)’ = (21 2y 2)

c. x=(6,2)

*For exercises marked with an asterisk (*) we have provided either numerical answers or solutions at the back of
the book.
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6. Find a parametric equation of each of the following lines:
a. 3x;+4x =6
*b. the line with slope 1/3 that passes through A = (-1, 2)
c. the line with slope 2/5 that passes through A = (3, 1)
d. the line through A = (-2, 1) parallel tox = (1,4) +1(3,5)
e. the line through A = (=2, 1) perpendicular to x = (1,4) + (3, 5)
*f, the line through A = (1,2, 1) and B = (2, 1, 0)
g. the line through A = (1, =2, 1)and B = (2,1, -1)
*h. the line through (1, 1,0, —1) paralleltox = (2 41,1 —2¢,31,4 —1)
7. Suppose X = Xg + tvand y = yo + sw are two parametric representations of the same
line £ in R".
a. Show that there is a scalar tg so that yp = Xg + foV.
b. Show that v and w are parallel.
*8. Decide whether each of the following vectors is a linear combination of u = (1,0, 1)
andv = (-2, 1,0).
a. x=(1,0,0) b. x=(3,-1,1) c. x=1(0,1,2)
9. Let P be the plane in R3 spanned by u = (1,1,0) and v = (1, -1, 1) and passing
through the point (3, 0, —2). Which of the following points lie on P?
a x=(¢,-1,-1) c.x=(7,-2,1)
b. x=(1,-1,1) d x=(5,2,0)
10. Find a parametric equation of each of the following planes:
a. the plane containing the point (—1, 0, 1) and the linex = (1, 1, 1) + (1, 7, -1)

*b. the plane parallel to the vector (1,3, 1) and containing the points (1, I, I) and

(-2,1,2)
c. the plane containing the points (1, 1, 2), (2, 3,4), and (0, —1,2)
d. the plane in R* containing the points (1,1, =1, 2), (2,3,0, 1), and (1,2,2,3)
11. The origin is at the center of a regular m-sided polygon.
a. What is the sum of the vectors from the origin to each of the vertices of the polygon?
(The case m = 7 is illustrated in Figure 1.17.) Give your reasoning. (Hint: What
happens if you rotate the vectors by 2w /m?)

FIGURE .17

b. What is the sum of the vectors from one fixed vertex to each of the remaining |

vertices? (Hint: You should use an algebraic approach along with your answer 0
part a.)

*12. Which of the following are parametric equations of the same plane?
P (1L, 1,0 +5(1,0,1) +£(=2,1,0)

Py (1,1, ) +5(0,1,2) +1¢(2,-1,0)

P3: (2,0,0) +5(4, -1,2) +1(0,1,2)

Py (0,2, D) +s(1, =1L, - +:3, -1, 1

B o T
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13. Given AABC, let M and N be the midpoints of AB and AC, respectively. Prove that

!

—

BC.

=

N =

14. Let ABCD be an arbitrary quadrilateral. Let P, O, R, and S be the midpoints of

AB, BC, CD, and DA, respectively. Use Exercise 13 to prove that PQRS is a
parallelogram.

*15. In AABC, shown in Figure 1.18, |AD| = §;|A_é|| and |CE| = §||E'z§||. Let Q

denote the midpoint of CD. Show that A_Q> = cAE for some scalar ¢, and determine
— —>
the ratioc = |[AQ||/I|AE]l.

C
E P
> e
B
A D
FIGURE 1.18 FIGURE 1.19
. — 152 — 32
16. Consider parallelogram ABCD. Suppose AE = 3AB and DP = ;DE. Show that

17

18

19.

P lies on the diagonal AC. (See Figure 1.19.)

. Given AABC, suppose that the point D is 3/4 of the way from A to B and that E is
the midpoint of BC. Use vector methods to show that the point P that is 4/7 of the
way from C to D is the intersection point of CD and AE.

. - —_— —_—
. Let A, B, and C be vertices of a triangle in R3. Letx = OA, y=0B,andz= OC.
Show that the head of the vector v = _%(x + y + z) lies on each median of AABC (and
thus is the point of intersection of the three medians). This point is called the centroid
of the triangle ABC.

a. Letu, v € R2. Describe the vectors x = su + rv, wheres + f = 1. What particular
subset of such x’s is described by s > 0? By r > 0? By s, t > 07
b. Let u, v, w € R3. Describe the vectors x = ru + sv + tw, where r + 5+t = 1.

What subsets of such x’s are described by the conditions » > 0? s > 0? ¢ > 0?
r.s,t>0?

20. Assume that u and v are parallel vectors in R". Prove that Span (u, v) is a line.

21. Suppose v, w € R” and ¢ is a scalar. Prove that Span (v 4+ ¢w, w) = Span (v, w). (See
the blue box on p. 12.)

22, Suppose the vectors v and w are both linear combinations of vy, ..., v;.
a. Prove that for any scalar ¢, ¢v is a linear combination of v, ..., v4.
b. Prove that v + w is a linear combination of vy, ..., v.

When you are asked to “show” or “prove” something, you should make it a point to
write down clearly the information you are given and what it is you are to show. One
word of warning regarding part b: To say that v is a linear combination of v, ..., v;
is to say that v = ¢|v| + c2va + - - - + ¢ v for some scalars ¢y, . . ., ¢x. These scalars
will surely be different when you express a different vector w as a linear combination
of vy, ..., v, so be sure you give the scalars for w different names.

*23. Consider the line £: x =xg+ rv (r € ) and the plane P: x =su+1tv (s,t € R).
Show that if ¢ and P intersect, then xo € P.
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24. Consider the lines £: X = Xg + tv and m: x = x| + su. Show that £ and m intersect
if and only if xg — x; lies in Span (u, v).
25. Suppose x,y € R”" are nonparallel vectors. (Recall the definition on p. 3.)
a. Provethatifsx + ty = 0,thens =t = 0. (Hint: Show that neithers % Onort # 0
is possible.)
b. Prove that if ax + by = cx + dy,thena =cand b = d.

Two important points emerge in this exercise. First is the appearance of proof by
contradiction. Although it seems impossible to prove the result of part a directly, it is
equivalent to prove that if we assume the hypotheses and the failure of the conclusion,
then we arrive at a contradiction. In this case, if you assume sx +ty =0and s # 0
(or ¢ # 0), you should be able to see rather easily that x and y are parallel. In sum,
the desired result must be true because it cannot be false.
Next, it is a common (and powerful) technique to prove a result (for example,
| part b of Exercise 25) by first proving a special case (part a) and then using it to derive
the general case. (Another instance you may have seen in a calculus course is the
proof of the Mean Value Theorem by reducing to Rolle’s Theorem.)

26. “Discover” the fraction 2/3 that appears in Proposition 1.2 by finding the intersection
of two medians. (Parametrize the line through O and M and the line through A and N,
and solve for their point of intersection. You will need to use the result of Exercise 25.)

27. Given AABC, which triangles with vertices on the edges of the original triangle have
the same centroid? (See Exercises 18 and 19. At some point, the result of Exercise 25
may be needed, as well.)

28. Verify algebraically that the following properties of vector arithmetic hold. (Do so for
n = 2 if the general case is too intimidating.) Give the geometric interpretation of each
property.

a. Forallx,ye R, x4+y=y-+xXx.

Forallx,y,ze R, (x+y)+z=x+(y +12).

0+x=xforallx e R".

For each x € R”, there is a vector —x so that x + (—x) = 0.

Foralle,d € Rand x € R”, c(dx) = (cd)x.

Forallce Randx,y € R", c(x +y) = cx+cy.

Forallc,d € Rand x € R", (¢ + d)x = cx + dx.

Forallx e R?, Ix =x.

P T om0 A0 T

29.

Exercise 28.)

b. Using the result of part a, prove that (—1)x = —x. (Be sure that you didn’t use this

fact in your proof of part a!)

2 Dot Product } .'

We discuss next one of the crucial constructions in linear algebra, the dot product x - ¥ of
two vectors X,y € R*. By way of motivation, let’s recall some basic results from plane
geometry. Let P = (xy, x2) and Q@ = (31, y2) be points in the plane, as shown in Figure
2.1. We observe that when ZP O Q is a right angle, AOAP is similar to AOBQ, and SO,
x2/x1 = —y1/y2, whence x;y; + x2y2 = 0.

Using only the properties listed in Exercise 28, prove that for any x € R", we have -
0x = 0. (It often surprises students that this is a consequence of the properties in |
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FIGURE 2.1

This leads us to make the following definition.

Definition. Given vectors X, y € R?, define their dot product
Xy =Xy + Xx2)2.
More generally, given vectors X, y € R”, define their dot product

X-y=xiy1 +xay2+ -+ Xp¥n-

Remark. The dot product of two vectors is a scalar. For this reason, the dot product is also
called the scalar product, but it should not be confused with the multiplication of a vector
by a scalar, the result of which is a vector. The dot product is also an example of an inner
product, which we will study in Section 6 of Chapter 3.

We know that when the vectors x and y € R? are perpendicular, their dot product is 0.
By starting with the algebraic properties of the dot product, we are able to get a great deal
of geometry out of it.

Proposition 2.1. The dot product has the following properties:

1. x-y=y-xforallx,y € R" (the commutative property);

2. x-x=|x|>?=>0andx-x=0ifandonly if x = 0;

3. (ex)-y=c(x-y)forallx,y e R"andc e R;

4, x-(y+z)=x-y+x-zforallx,y,z € R" (the distributive property).

Proof. In order to simplify the notation, we give the proof with n = 2; the general argument
would include all n terms with the obligatory . ... Because multiplication of real numbers
is commutative, we have

X y=xyy1+txy=nxitypx=y-X

The square of a real number is nonnegative and the sum of nonnegative numbers is non-
negative, so X - X = xl2 + .\:22 > 0 and is equal to 0 only when x| = x; = 0.

The next property follows from the associative and distributive properties of real num-
bers:

(ex) -y = (cxp)y1 + (cx2)y2 = c{x1y1) + c(x2y2)
= c(x1y; + x2y2) = c(x-y).

The last result follows from the commutative, associative, and distributive properties of
real numbers:

x-(y+z)=x10n +21) +x2002 + 22) =13 + 121+ X2y2 + 02
=Xy +x3y2) + (x1z1 + x222) =Xy +x-2 O
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Corollary 2.2. X + y|? = [Ix|* +2x - y + [ly|*
Proof. Using the properties of Proposition 2.1 repeatedly, we have
Ix+yl> = &+y) - x+y)
=X-X+X'y+y - X+y-y
= [x|?+2x-y + [yl
as desired. O

Although we use coordinates to define the dot product and to derive its algebraic
properties in Proposition 2.1, from this point on we should try to use the properties
themselves to prove results (e.g., Corollary 2.2). This will tend to avoid an algebraic
mess and emphasize the geometry.

The geometric meaning of this result comes from the Pythagorean Theorem: eren
x and y are perpendicular vectors in R2, as shown in Figure 2.2, we have |x + ¥/~ =
Ix]I> + llyll%, and so, by Corollary 2.2, it must be the case thatx - y = 0. (And the converse
follows, too, from the converse of the Pythagorean Theorem, which follows from the Law
of Cosines. See Exercise 14.) That is, two vectors in R* are perpendicular if and only if
their dot product is 0.

FIGURE 2.2

Motivated by this, we use the algebraic definition of the dot product of vectors in R

to bring in the geometry.

Definition. We say vectors x and y € R" are orthogonal® ifx -y = 0.

Orthogonal and perpendicular are synonyms, but we shall stick to the former, because that | ;

is the common terminology in linear algebra texts.

'EXRMPLE 1

To illustrate the power of the algebraic properties of the dot product, we prove that the |
diagonals of a parallelogram are orthogonal if and only if the parallelogram is arhombus (that ¢
is, all sides have equal length). As usual, we place one vertex at the origin (see Figure 2.3), |

. - — . Gos 3 ”
5This word derives from the Greek orthos, meaning “straight,” “right.” or “true,” and gonia, meaning ‘angle.”
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FIGURE 2.3

—> —
and we let x = OA and y = OC be vectors representing adjacent sides emanating from

the origin. We have the diagonals OB = x4y and CA=x- Yy, so the diagonals are
orthogonal if and only if

x+y) - x—y)=0.
Using the properties of dot product to expand this expression, we obtain
x+y) - X—y=x-x+y-x—x-y—-y-y= x|’ = lyl’,

so the diagonals are orthogonal if and only if ||x[|> = ||y|I*>. Since the length of a vector

is nonnegative, this occurs if and only if |jx|| = ||y, which means that all the sides of the
parallelogram have equal length. A

In general, when you are asked to prove a statement of the form P if and only if O,
this means that you must prove two statements: If P is true, then Q is also true (“only
if”); and if Q is true, then P is also true (“if’). In this example, we gave the two
arguments simultaneously, because they relied essentially only on algebraic identities.

A useful shorthand for writing proofs is the implication symbol, =—>. The sentence

P = 0
can be read in numerous ways:
* “if P, then Q”
* “P implies Q”
o “Ponlyif Q”
¢ “Q whenever P”
* “P is sufficient for Q" (because when P is true, then Q is true as well)
s “Q is necessary for P” (because P can’t be true unless Q is true)

The “reverse implication” symbol, <=, occurs less frequently, because we ordinarily
write “P <= Q" as“Q = P.” This is called the converse of the original impli-
- cation. To convince yourself that a proposition and its converse are logically distinct,
consider the sentence “If students major in mathematics, then they take a linear algebra
course.” The converse is “If students take a linear algebra course, then they major in
. mathematics.” How many of the students in this class are mathematics majors??
' We often use the symbol <= to denote “if and only if’: P <= ( means
“P = Q and Q == P.” This is often read “P is necessary and sufficient
- for Q”; here necessity corresponds to “Q = P” and sufficiency corresponds to
| “P = Q.
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Armed with the definition of orthogonal vectors, we proceed to a construction that
will be important in much of our future work. Starting with two vectors X,y € R", where
y # 0, Figure 2.4 suggests that we should be able to write X as the sum of a vector, X/
(read “x-parallel”), that is a scalar multiple of y and a vector, x* (read “x-perp”), that is
orthogonal to y. Let’s suppose we have such an equation:

x =x! +x*, where
x! is a scalar multiple of y and x* is orthogonal to y.
To say that x! is a scalar multiple of y means that we can write X! = cy for some scalar c.

Now, assuming such an expression exists, we can determine ¢ by taking the dot product of
both sides of the equation with y:

== Sl e

xy=+xH) y=&"y+at-p=x"y=(y- y=clyl
This means that
X-y
lyn?

The vector x! is called the projection of x onto 'y, written projX.

Xy I
¢c=-—>, andso X' = y.
iyl

FIGURE 2.4

The fastidious reader may be puzzled by the logic here. We have apparently assumed
that we can write x = x! + x* in order to prove that we can do so. Of course, as it stands,
this is no fair. Here’s how we fix it. We now define !

Obviously, x! + x* = x and x/ is a scalar multiple of y. All we need to check is that xtis :

in fact orthogonal to y. Well,
L Xy )
XTy=(xX-— -y
( Iyl

XYy
=X-y——=Yy-y
llyll?
X-y By
=x-y- iyl
llyll?
=x-y—-x-y=0,

as required. Note that by finding a formula for ¢ above, we have shown that x/' is the uniqué;
multiple of y that satisfies the equation (x —x!) .y = 0. -
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The pattern of reasoning we’ve just been through is really not that foreign. When we

“solve” the equation
Vx+2=2,

we assume x satisfies this equation and proceed to find candidates for x. At the end of
the process, we must check to see which of our answers work. In this case, of course,
we assume x satisfies the equation, square both sides, and conclude that x = 2. (That
is, if //x +2 =2, then x must equal 2.) But we check the converse: If x = 2, then

Vit2=VA=2

It is a bit more interesting if we try solving
Vx+2=x.
Now, squaring both sides leads to the equation

P=x=2=(x—-2(x+1)=0,

and so we conclude that if x satisfies the given equation, then x =2 or x = —1. As
before, x = 2 is a fine solution, but x = —1 is not.
EXRMPLE 2

Letx = (2,3, )andy = (-1, 1, 1). Then
| X‘y _(2v3s1)(_11111)

x| = = (-1,1, D) =2(=1,1,1) and
TR TS WA E 3
x*=@2,3,0-3-11.D=(}133)
To double-check, we compute x* -y = (%, %, 1) (=1,1,1) = 0, as it should be. A

Suppose X,y € R2. We shall see next that the formula for the projection of x onto y
enables us to calculate the angle between the vectors x and y. Consider the right triangle
in Figure 2.5; let 6 denote the angle between the vectors x and y. Remembering that the

FIGURE 2.5

cosine of an angle is the ratio of the signed length of the adjacent side to the length of the
hypotenuse, we see that

X-y
o signed length of x'  cllyll [yl iyl Xy
c = - _ _ .
tength of x I~ xl iy
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'EXAMPLE 3

This, then, is the geometric interpretation of the dot product:
[x-y = Ixllllyllcosd. |

Note that if the angle 8 is obtuse, i.e., /2 < |0| < 7, then ¢ < 0 (the signed length of x!
is negative) and x - y is negative.
Will this formula still make sense even when x,y € R"? Geometrically, we simply

restrict our attention to the plane spanned by x and y and measure the angle 6 in that plane, ,\

and so we blithely make the following definition.

Definition. Let x and y be nonzero vectors in R". We define the angle between them to
be the unique 8 satisfying 0 < § < 7 so that

Xy
Ixllyl”

cosf =

i

§e_£A =(,-1,-1),B=(—1,1,-1),and C = (-1, -1, D). ThenA_é = (-2,2,0)and
AC =(-2,0,2),s0

4 |

—_—

AC _
wacy  @var 2
We conclude that ZBAC = m/3. A

cos LBAC =

Since our geometric intuition may be misleading in R", we should check algebraically
that this definition makes sense. Since |cos@| < 1, the following result gives us what is
needed.

Proposition 2.3 (Cauchy-Schwarz Inequality). Ifx,y € R", then
Ix -yl < IIxtyll.

Moreover, equality holds if and only if one of the vectors is a scalar multiple of the other. ;

A
Proof. If one of the vectors is the zero vector, the result is immediate, so we assume both |
vectors are nonzero. Suppose first that both x and y are unit vectors. Each of the vec-

tors X + y and x — y (which we can picture as the diagonals of the parallelogram spanned '- '

by x and y when the vectors are nonparallel, as shown in Figure 2.6) has nonnegative length.!

FIGURE 2.6

Exei__ccises 1.2
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Using Corollary 2.2, we have
lIx+ylI? = I+ 2%y + yl* =2(x -y + 1)
Ix —yI* = IxII> = 2x -y + Iy I* = 2(=x -y + D).
Since ||x + y|* > Oand ||x — yli? = 0, weseethatx -y + 1 > Oand —x -y + 1 > 0. Thus,
—l<x-y<l, andso |x-y|=<1l

Note that equality holds if and only if either x +y =0orx—y = 0, i.e., if and only if
X = %y.
In general, since x/|[x|| and y/|ly|l are unit vectors, we have

X y
X Y 1oy andso Ix-yl < Ixiiyl,
Il ||yn’

X :I:L' that is, equality holds if and only

as required. Equality holds if and only if = ;
: I~y -

if x and y are parallel.

Remark. The dot product also arises in situations removed from geometry. The economist
introduces the commodity vector, whose entries are the quantities of various commodities
that happen to be of interest. For example, we might consider x = (x1, X2, X3, X4, xs) € RS,
where x, represents the number of pounds of flour, x> the number of dozens of eggs, x3
the number of pounds of chocolate chips, x4 the number of pounds of walnuts, and x5 the
number of pounds of butter needed to produce a certain massive quantity of chocolate chip
cookies. The economist next introduces the price vector p = (pi, p2. P3, P4, Ps) € R’,
where p; is the price (in dollars) of a unit of the { th commodity (for example, p is the price
of a dozen eggs). Then it follows that

P X = pixi + paxa + p3x3 + paxs + psxs

is the total cost of producing the massive quantity of cookies. (To be realistic, we might
also want to include xg as the number of hours of labor, with corresponding hourly wage
ps.) We will return to this interpretation in Section 5 of Chapter 2.

The gambler uses the dot product to compute the expected value of a lottery that has
multiple payoffs with various probabilities. If the possible payoffs for a given lottery
are given by w = (w), ..., w,) and the probabilities of winning the respective payoffs
are given by p = (p1, ..., pu), With py+---+p, =1, then the expected value of the
lottery is p - w = pyw; + - - - + pyw,. For example, if the possible prizes, in dollars, for a
particular lottery are given by the payoff vectorw = (0, 1, 5, 100) and the probability vector
is p = (0.5,0.4,0.09, 0.01), then the expected value is p-w = 0.4+0454+1=1.85.
Thus, if the lottery ticket costs more than $1.85, the gambler should expect to lose money
in the long run.

1. For each of the following pairs of vectors x and y, calculate x -y and the angle 6
between the vectors.

a x=1(2,9),y=(-52)
b.x=2,),y=(11
. x=(1,8),y=(07,-4
d. x=(,4,-3),y=(5,1,3)

e. x=(1,-1,6),y=1(53,2)
*f. x=3,-4,9),y=(-1,0,1)
g x=(,1,1,1),y=(1,-3,-15)
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*2. For each pair of vectors in Exercise 1, calculate proj,x and proj,y.

3. A methane molecule has four hydrogen (H) atoms at the points indicated in Figure 2.7
and a carbon (C) atom at the origin. Find the H — C — H bond angle. (Because of the
result of Exercise 1.1.4, this configuration is called a regular tetrahedron.)

16.
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FIGURE 2.8 FIGURE 2.9

a. Lety e R". If x -y = O forall x € R", then prove thaty = 0.

H
FIGURE 2.7 (,-1,-1

When you know some equation holds for all values of X, you should often choose
some strategic, particular value(s) for x.

*4, Find the angle between the long diagonal of a cube and a face diagonal.

5. Find the angle that the long diagonal of a 3 x 4 x 5 rectangular box makes with the
longest edge.
*6. Suppose x,y € R", [Ix[l =3, |lyll =2, and the angle 6 between x and y is 6 =
arccos(—1/6). Show that the vectors x + 2y and x — y are orthogonal.

7. Supposex,y € R”, x| = v/2, liyll = 1, and the angle between x and y is 3 /4. Show
that the vectors 2x + 3y and x — y are orthogonal.

8. Suppose X, y, z € R? are unit vectors satisfying x +y + z = 0. Determine the angles
between each pair of vectors.

9. Lete; = (1,0,0),es = (0, 1,0),and e3 = (0, 0, 1) be the so-called standard basis for
R3. Let x € R3 be a nonzero vector. Fori = 1, 2, 3, let §; denote the angle between x
and e;. Compute cos?® 6 + cos? 6, + cos? 63.

Letx=(1,1,1,...,)eR"andy = (1,2,3,...,n) € R". Let 8, be the angle be-
tween x and y in R”. Find lim 6,. (The formulas 1 +2+---4+n =n(n + 1)/2 and

n—oo

12422 +...4n? =n + 1)(2n + 1)/6 may be useful.)

. Supposex, vy, ..., v; € R" and xis orthogonal to each of the vectors vy, ..
that x is orthogonal to any linear combination ¢ vy + c2vy + - - + i Vi

*10.

., V¢. Show

12. Use vector methods to prove that a parallelogram is a rectangle if and only if its

diagonals have the same length.

13. Use the algebraic properties of the dot product to show that

x+yI2 4+ lix = y1I* = 2 (I + fyl?) -
Interpret the result geometrically.

*14. Use the dot product to prove the law of cosines: As shown in Figure 2.8,

¢* = a® + b* — 2abcos¥.
Use vector methods to prove that a triangle that is inscribed in a circle and has a diameter

as one of its sides must be a right triangle. (Hint: See Figure 2.9. Express the vectors |
u and v in terms of x and y.)

23.

15.

6The symbol 2 indicates that the result of this problem will be used later.

FIGURE 2.10

17.

18.

19.

20.

6 : 21.

22.

b. Supposey,z € R" andx -y = x - z for all x € R". What can you conclude? (Hint:
Apply the result of part a.)

Ifx = (x1, x2) € R, set p(x) = (—x2, x1).

a. Check that p(x) is orthogonal to x. (Indeed, p(x) is obtained by rotating X an angle
7 /2 counterclockwise.)

b. Givenx,y € R?, show that x - p(y) = —p(x) - y. Interpret this statement geomet-
rically.

Prove the triangle inequality: For any vectorsx, y € B", [[x +y|l < 1%l + lyll. (Hint:

Use the dot product to calculate ||x + yl2)

a. Give an alternative proof of the Cauchy-Schwarz Inequality by minimizing the
quadratic function Q(t) = ||x — ty|l*. Note that Q(¢) > O for all ¢.

b. If Q(t) < Q(t) forall ¢, how is oy related to x'? What does this say about projyx?

Use the Cauchy-Schwarz inequality to solve the following max/min problem: If the
(long) diagonal of a rectangular box has length c, what is the greatest that the sum of
the length, width, and height of the box can be? For what shape box does the maximum
occur?

a. Letx andy be vectors with ||x|| = ||y||. Prove that the vector X +y bisects the angle
between x and y. (Hint: Because x + y lies in the plane spanned by x and y, one
has only to check that the angle between x and X +y equals the angle between y
andx +y.)

b. More generally, if x and y are arbitrary nonzero vectors, leta = ||x|} and b = |y}
Prove that the vector bx + ay bisects the angle between x and y.

Use vector methods to prove that the diagonals of a parallelogram bisect the vertex

angles if and only if the parallelogram is a rhombus. (Hint: Use Exercise 21.)

Given AABC with D on BC, as shown in Figure 2.10, prove that if A D bisects ZBAC,

— — — — . —_
then |BD||/WC DI = IIABI/WAC|. (Hint: Use part b of Exercise 21. Letx = AB

C
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and y = A_C)’; express 1_4_1)> in two ways as a linear combination of x and y and use
Exercise 1.1.25.)
24. Use vector methods to show that the angle bisectors of a triangle have a common point.
X — — — — —
(Hint: Given AOAB,letx = OA,y = OB,a = |0OA|,b=||0B|,andc = IAB].
—
If we define the point P by OP = L_(hx + ay), use part b of Exercise 21 to show

. . a+b+c
that P lies on all three angle bisectors.)

25. Use vector methods to show that the altitudes of a triangle have a common point. Recall
that altitudes of a triangle are the lines passing through a vertex and perpendicular to
the line through the remaining vertices. (Hint: See Figure 2.11. Let C be the point of
inteiriection of the altitude from B and the altitude from A. Show that O_C)' is orthogonal
to AB.)

9]
-

FIGURE 2.11

26. Use vector methods to show that the perpendicular bisectors of the sides of a triangle
intersect in aio;mt, as foll(zﬁ)s. Assume the triangle O A B has one vertex at the origin,
and let x = OA and y = O B. Let z be the point of intersection of the perpendicular
bisectors of O A and O B. Show that z lies on the perpendicular bisector of AB. (Hint:
What is the dot product of z — %(x +y) withx —y?)

We emphasized earlier a parametric description of lines in R2 and planes in R?. Let’s begin |
by revisiting the Cartesian equation of a line passing through the origin in R?, e.g., -

2x; +x=0.

We recognize that the left-hand side of this equation is the dot product of the vectora = 2,1y
with x = (x}. x»). Thatis, the vector X satisfies this equation precisely when it is orthogonal’
to the vector a, as indicated in Figure 3.1, and we have described the line as the set of vectors
in the plane orthogonal to the given vector a = (2, 1):

(*) a-x=0.

It is customary to say thata is a normal’ vector to the line. (Note that any nonzero scalar’
multiple of a will do just as well, but we often abuse language by referring to “the” normal
vector.)

TThis is the first of several occurrences of the word normal—evidence of mathematicians’ propensity to use:
word repeatedly with ditferent meanings. Here the meaning derives from the Latin norma, “carpenter’s square. =
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a-x=r(x \a-(x—x0)=0

FIGURE 3.1 FIGURE 3.2

It is easy to see that specifying a normal vector to a line through the origin is equivalent
to specifying its slope. Specifically, if the normal vector is (a, b), then the line has slope
—a/b. What is the effect of varying the constant on the right-hand side of the equation
(¥)? We get different lines parallel to the one with which we started. In particular, consider
a parallel line passing through the point xo, as shown in Figure 3.2. If x is on the line,
then x — Xo will be orthogonal to a, and hence the Cartesian equation of the line is

a-(x—x0) =0,
which we can rewrite in the form
a-x=a-Xg
or
a-x=c,

where c is the fixed real number a - xo.8 (Why is this quantity the same for every point Xg
on the line?)

EXAMPLE 1

Consider the line £y through the origin in R with direction vector v = (1, —3). The points
on this line are all of the form

=1(l,=-3), tek

Because (3, 1) - (1, =3) = 0, we may take a = (3, 1) to be the normal vector to the line,
and the Cartesian equation of £ is

a-x=23x +x2=0

(As a check, suppose we start with 3x +x2 = 0. Then we can write x| = —%.\'2, and so
the solutions consist of vectors of the form

X = (v, 0) = (—§%2. %) = —1a(,-3), xnekR

Letting t = —%xa, we recover the original parametric equation.)

8The sophisticated reader should compare this to the study of level curves of functions in multivariable calculus.
Here our function is f(x) =a-X.
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Now consider the line £ passing through xo = (2, 1) with direction vector v = (1, —3).
Then the points on £ are all of the form

x=xp+tv=02,1)+1(1,-3), tek
As promised, we take the same vector a = (3, 1) and compute that
3x;+x=a-Xx=a-(xp+tv)=a-x+t@vy=a-%=060-C1H="7

This is the Cartesian equation of £. A

We can give a geometric interpretation of the constant ¢ on the right-hand side of the

equation a - x = ¢. Recall that

i x-a
0j,X = —> a,
Proj, NE

and so, as indicated in Figure 3.3, the line consists of all vectors whose projection onto the
normal vector a is the constant vector

c
W a.
In particular, since the hypotenuse of a right triangle is longer than either leg,
c
||a_||5 a

is the point on the line closest to the origin, and we say that the distance from the origin to
the line is

. a“ €l _ Jprojaol
= — = ||proj,xp
llall? |all :
for any point xp on the line.
X
a-xXx=c¢
proj, X a

FIGURE 3.3 \

We now move on to see that planes in R* can also be described by using normal vectors.

Consider the plane P passing through the origin spanned by u = (1, 0, ) and v = (2, 1,1).
as indicated schematically in Figure 3.4. Ourintuition suggests that there is aline orthogonal.
to Py, so we look for a vector a = (a,, a2, a3) that is orthogonal to both u and v. It must
satisfy the equations '

ap +a3 =0
2a; + ax + a3 = 0.
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v
"\.,_\\
u
FIGURE 3.4
Substituting a3 = —a, into the second equation, we obtain a; + a2 = 0, so a, = —a, as

well. Thus, any candidate for a must be a scalar multiple of the vector (1, — 1, —1),and so
we take a = (1, —1, —1) and try the equation

a_x__:(l,_l,_]).x:xl—.\‘2—.\‘3=0

for Py. Now, we know thata-u=a.v= 0. Does it follow that a is orthogonal to every
linear combination of u and v? We just compute: If x = su +tv, then

a-x=a-(su+1v)

=s(a-u)+t(@a-vy=0,

as desired.
As before, if we want the equation of the plane P parallel to Po and passing through

xp = (2,3, —2), we take

xl—xg—x3=a-x=a~(x0+su+tv)
=a-xg+s(@-uw+t@-v)
=a-xp=(,-1,-1-(2,3,-2)=1 A

As this example suggests, a point X and a normal vector a give rise to the Cartesian
equation of a plane in R?:

a-(x—xp) =0, orequivalently, a-x=a-Xo.
Thus, every plane in R? has an equation of the form
ax; + axxa + azx3 =c,

where a = (ay, a2, a3) is the normal vector and ¢ € R.

'EXAMPLE 3
Consider the set of points x = (¥}, X2, x3) defined by the equation
x; —2x; +5x3 =3.

Let's verify that this is, in fact, a plane in R3 according to our original parametric definition.
If x satisfies this equation, then x; = 3 + 2x — 5x3 and so we may write

x = (x1, X2, x3) = (3 + 2x2 — 5x3, X2, X3)
= (31 01 0) +x2(21 11 0) +x3(_51 Ov 1)

So, if weletxg = (3,0,0),u=(2,1,0),and v = (=5, 0, 1), we see that X = X + x2u +
x3v, where x; and x3 are arbitrary scalars. This is in accordance with our original definition
of a plane in R3. A
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As in the case of lines in R?, the distance from the origin to the (closest point on the) plane

a-x=cis
lc|

lall”
Again, note that the point on the plane closest to the origin is
c
—a,
all?
which is the point where the line through the origin with direction vector a intersects the

plane, as shown in Figure 3.5. (Indeed, the origin, this point, and any other point b on the '
plane form a right triangle, and the hypotenuse of that right triangle has length |[b||.)

FIGURE 3.5

Finally, generalizing to n dimensions, if a € R" is a nonzero vector and ¢ € R, then
the equation
a-Xx=¢

defines a hyperplane in R". As we shall see in Chapter 3, this means that the solution set
has “dimension” n — 1, i.e., 1 less than the dimension of the ambient space R". Let’s write
an explicit formula for the general vector x satisfying this equation: If a = (ay, a2, ..., a,)
and a; # 0, then we rewrite the equation

apxy+axy+ - +agx, =c¢
to solve for x;:

xp=—(c—axxy— - —apXy),
a

and so the general solution is of the form

1
X=(x1,...,x) = <a_ (c—ayxs— .- -—a,,x,,),xz,...,x,,>

c
_ <—,0,.‘.,O)+xz (—9,1,0,...,O)+x3 (—9,0,1,...,0)
a a a
ay
4+t x, (——,O,...,O, l).
a,

(We leave it to the reader to write down the formula in the event that a; = 0.)

EXAMPLE 4

Consider the hyperplane
+xa—x3+2x4+x5=2

in R. Then a parametric description of the general solution of this equation can be written
as follows: :

X = (—x2+x3 — 2x4 — X5 + 2, X2, X3, X4, X5)
=(2,0,0,0,0) + x2(-1,1,0,0,0) + x3(1,0,1,0,0)
+x4(=2,0,0,1,0) + x5(—1,0,0,0, 1). A
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To close this section, let’s consider the set of simultaneous solutions of two linear
equations in R?, i.e., the intersection of two planes:

a-x=ax; +axxa+ax3=c¢
b-x=>bix| + baxz + bix3 = d.

If a vector x satisfies both equations, then the point (x;, x2, x3) must lie on both the
planes; i.e., it lies in the intersection of the planes. Geometrically, we see that there are
three possibilities, as illustrated in Figure 3.6:

1. A plane: In this case, both equations describe the same plane.

2. The empty set: In this case, the equations describe parallel planes.

3. A line: This is the expected situation.

e

\\

FIGURE 3.6

Notice that if the two planes are identical or parallel, then the normal vectors will be the
same (up to a scalar multiple). That is, there will be a nonzero real number r so thatra = b;
if we multiply the equation

a-X=a x| +mx+ax;=c

by r, we get
b-x=ra-x=bux +bx2+bxs=rc

If a point (xy, x2, x3) satisfying this equation is also to satisfy the equation
b-x=byx; +bxs+ byxz=d,

then we must have d = rc; i.e., the two planes coincide. On the other hand, if d # rc, then
there is no solution of the pair of equations, and the two planes are parallel.

More interestingly, if the normal vectors a and b are nonparallel, then the planes
intersect in a line, and that line is described as the set of solutions of the simultaneous
equations. Geometrically, the direction vector of the line must be orthogonal to both a
and b.

EXAMPLE 5
We give a parametric description of the line of intersection of the planes
X+ 26 — x3 =2
X1 — X2+ 2x3 = 5.
Subtracting the first equation from the second yields
—3x;+3x3=3, or
—x;+x3=1.

Adding twice the latter equation to the first equation in the original system yields

X +x3= 4.
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Thus, we can determine both x; and x» in terms of x3: ; g. The hyperplane in R* spannedby (1, =1, 1, —=1), (1, 1, =1, —1), and (1, —1,-1,1)
and passing through (2, 1,0, 1)

. Find parametric equations of the line of intersection of the given planes in R3.
X2 = =1 + x3. a xi+x+x3=12x+x+2x3=1
b xyy—x2=1,x 4+ x34+2x3=15
*6. a. Give the general solution of the equation x; + 5x2 — 2x3 = 0 in R? (as a linear
combination of two vectors, as in the text).

n= 4-x ' 5

Then the general solution is of the form

X= (xlvx21x3) = (4 — X3, -1 +X3,X3) = (4» _lv O) +X3(—'1, 1, 1)

Indeed, as we mentioned earlier, the direction vector (—1, 1, 1) is orthogonal to a = | b. Find a specific solution of the equation x; + 5x3 — 2x3 = 3 in R?; give the general
(1,2,—-Dandb=(1,-1,2). A | solution.
k c. Give the general solution of the equation x| + 5x2 — 2x3 +x3 =0in R*. Now give

the general solution of the equation x; + S5x2 —2x3+ x4 =3.
Much of the remainder of this course will be devoted to understanding higher-dimen-

sional analogues of lines and planes in R3. In particular, we will be concerned with the
relation between their parametric description and their description as the set of solutions of
a system of linear equations (geometrically, the intersection of a collection of hyperplanes).

*7. The equation 2x, — 3x; = 5 defines a line in R.
a. Give a normal vector a to the line.

b. Find the distance from the origin to the line by using projection.

The first step toward this goal will be to develop techniques and notation for solving systems c. Find the point on the line closest to the origin by using the parametric equation of
of m linear equations in n variables (as in Example 5, where we solved a system of two the line through 0 with direction vector a. Double-check your answer to part b.
linear equations in three variables). This is the subject of the next section. d. Find the distance from the point w = (3, 1) to the line by using projection.
e. Find the point on the line closest to w by using the parametric equation of the line
» through w with direction vector a. Double-check your answer to part d.

. 8. The equation 2x; — 3x; — 6x3 = —4 defines a plane in R3.
Exercises 1.3 : a. Give its normal vector a.

. . . . b. Find the distance from the origin to the plane by using projection.
1. Give Cartesian equations of the given hyperplanes:

a x=(-1,2)+13,2)
*b. The plane passing through (1,2,2) and orthogonal to the line x = (5, 1, -1+

c. Find the point on the plane closest to the origin by using the parametric equation of
the line through 0 with direction vector a. Double-check your answer to part b.

d. Find the distance from the point w = (3, —3, —5) to the plane by using projection.

t(—=1,1,-1)

. . . Find the point on the plane closest to w by using the parametric equation of the line
. The pl through (2 =2, - ©
¢ t(le ; zjlg)passmg ough (2,0, 1) and orthogonal to the line x = (2, =1, 3) through w with direction vector a. Double-check your answer to part d.

9. The equation 2x; + 2x; — 3x3 + 8x4 = 6 defines a hyperplane in R*.

*d. The plane spanned by (1, 1, 1) and (2, 1, 0) and passing through (1, 1, 2) 2. Give a normal vector a to the hyperplane

e. The plane spanned by (1, 0, 1) and (1, 2, 2) and passing through (-1, 1, 1)

*f The hyperplane in R* through the origin spanned by (1, —1, 1, =1), (1, 1, =1, =1),;.
and (1y p_rlp —1, 1) £ gin span y( ). ( ) | c. Find the point on the hyperplane closest to the origin by using the parametric equation
+ ' 1 . |

of the line through 0 with direction vector a. Double-check your answer to part b.
. . ) ! d. Find the distance from the point w = (1, 1, 1, 1) to the hyperplane using dot prod-
3. Find the general solution of each of the following equations (presented, as in the text, i ucts.

as a combination of an appropriate number of vectors). '

b. Find the distance from the origin to the hyperplane using projection.

*2. Redo Exercise 1.1.12 by finding Cartesian equations of the respective planes.

e. Find the point on the hyperplane closest to w by using the parametric equation of

— — : 3 * _ _ : 4
: -2+ 35 7_ N (1n0]R2. )]R 4 d-xi —2x+ 3% = 4'(1n I[f‘ ) the line through w with direction vector a. Double-check your answer to part d.
. AR AN = (Tn 4) e xp+x3 =35 =2(nR" 10.*a. The equations x; =0 and x; = 0 describe planes in R3 that contain the x3-axis.
4 C'. XX - x4 2n =3 (”} R . . _ Write down the Cartesian equation of a general such plane.
. Find a normal vector to the given hyperplane and use it to find the distance from the e b. The equations x; — x; = 0 and x; — x3 = 0 describe planes in R? that contain the

origin to the hyperplane.

a x=(-1,2)+1(3,2)

b. The plane in R? given by the equation 2x; +x2 —x3 =5
*c. The plane passing through (1,2,2) and orthogonal to the line x = (3, 1, -+

line through the origin with direction vector (1, 1, 1). Write down the Cartesian
equation of a general such plane.

11. a. Assume b and c are nonparallel vectors in R3?. Generalizing the result of Exercise
10, show that the plane a - x = 0 contains the intersection of the planes b - x = 0

t(-1,1,-1) _ and ¢ - x = Oif and only if a = sb + tc for some 5, ¢ € R, not both 0. Describe this
d. The plane passing through (2, —1, 1) and orthogonal to the line x = 3,1, 3 : result geometrically.
. 1(=1,2,1) . ' b. Assume b and ¢ are nonparallel vectors in R”. Formulate a conjecture about which
e. The plane spanned by (1, 1,4) and (2, 1, 0) and passing through (1, 1,2) ' - hyperplanes a - x = 0 in R” contain the intersection of the hyperplanes b - x = 0

f. The plane spanned by (1, 1, 1) and (2, 1, 0) and passing through (3, 0, 2) : N and ¢ - x = 0. Prove as much of your conjecture as you can.
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12. Suppose a # 0 and P C R? is the plane through the origin with normal vector a. |

Suppose P is spanned by u and v.
a. Suppose u - v = 0. Show that for every x € P, we have

X = proj,X -+ proj,x.
b. Suppose u- v = 0. Show that for every x € 23, we have
X = proj,X -+ proj,x -+ proj,x.

(Hint: Apply part « to the vector X ~ proj,x.)

—EERerTes—

c. Give anexample to show the result of part a is false when u and v are not orthogonal. §

13. Consider the line ¢ in R? given parametrically by x = Xo + fa. Let Py denote the plane

through the origin with normal vector a (so it is orthogonal to £).
a. Show that £ and Py intersect in the point Xy — proj,Xo.

b. Conclude that the distance from the origin to € is ||xo — proj,xoll.

4 Systems of Linear Equations and Gaussian
Elimination R

In this section we give an explicit algorithm for solving a system of m linear equations
in 1 variables. Unfortunately, this is a little bit like giving the technical description of tying
a shoe—it is much easier to do it than to read how to do it. For that reason. before embarking
on the technicalities of the process, we will present here a few examples and introduce the
notation of matrices. On the other hand, once the technique is mastered, it will be important
for us to understand why it yields all solutions of the system of equations. For this reason,
it is is essential to understand Theorem 4.1. '

form
axy Farxs 4o+ aux, = b,

where the coefficients a;, i = 1, ... n, are fixed real numbers and b is a fixed real numbet ¢

Notice that if we leta = (ay, ....a,) and X = (xy, ..., x,), then we can write this equatios
in vector notation as '
a-x=»>.

precisely when the point x lies on that hyperplane.
A system of mt linear equations in 1 variables consists of i such equations:
anxy + apxy + oo+ apx, = b
anxy + anxa 4+ o0+ auX, = b2
miX1 + amaXa + o0+ QuaXy = by

The notation appears cumbersome, but we have to live with it. A pair of subscripts is nect
on the coefficient a;; to indicate in which equation it appears (the first index, i) and to whick

To begin with, a linear equation in the n variables vy, xa, ... .. v, is an equation of the
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variable it is associated (the second index, j). A solution X = (xy,...,.x,) is an n-tuple
of real numbers that satisfies all m of the equations. Thus, a solution gives a point in the
intersection of the m hyperplanes.

To solve asystem of linear equations, we want to give acomplete parametric description
of the solutions, as we did for hyperplanes and for the intersection of two planes in Example 5
in the preceding section. We will call this the general solution of the system. Some systems
are relatively simple to solve. For example, the system

X1 = 1
* X = 2
X3 = — 1

has exactly one solution, namely x = (1, 2, —1). This is the only point common to the three
planes described by the three equations. A slightly more complicated example is

X - x3 =1
X 4+ 2x3 = 2.

These equations enable us to determine x; and x; in terms of x3; in particular, we can write
x; = 1 + x3and x; = 2 — 2x3, where x3 is free to take on any real value. Thus, any solution
of this system is of the form

x=(1+42-2t,t)=(1,2,00+1(1,=2,1) forsomet e R.

It is easily checked that every vector of this form is in fact a solution, as (1 4+-1) — ¢ = 1
and (2 — 21) + 21 = 2 for every t € R. Thus, we see that the intersection of the two given
planes is the line in R* passing through (1, 2, 0) with direction vector (1, -2, 1).

One should note that in the preceding example, we chose to solve for x; and .v; in terms
of x3. We could just as well have solved, say, for x, and x3 in terms of x| by first writing
x3 = x; — | and then substituting to obtain x» = 4 — 2x;. Then we would end up writing

x=(s,4—2s,—1+5)=(0,4,-1)+s(1,-2,1) forsomes € R.

We will soon give an algorithm for solving systems of linear equations that will eliminate
the ambiguity in deciding which variables should be taken as parameters. The variables
that are allowed to vary freely (as parameters) are called free variables, and the remaining
variables, which can be expressed in terms of the free variables, are called pivot variables.
Broadly speaking, if there are m equations, whenever possible we will try to solve for the
first m variables (assuming there are that many) in terms of the remaining variables. This
is not always possible (for example, the first variable may not even appear in any of the
equations), so we will need to specify a general procedure to select which will be pivot
variables and which will be free.

When we are solving a system of equations, there are three basic algebraic operations
we can perform that will not affect the solution set. They are the following elementary
operations:

(i) Interchange any pair of equations.
(ii) Multiply any equation by a nonzero real number.
(iii) Replace any equation by its sum with a multiple of any other equation.

The first two are probably so obvious that it seems silly to write them down; however, soon
you will see their importance. It is not obvious that the third operation does not change
the solution set; we will address this in Theorem 4.1. First, let’s consider an example of
solving a system of linear equations using these operations.
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We can simplify our notation somewhat by writing the equations in vector notation:

EXAMPLE 1 |

Consider the system of linear equations Aj-x=b
Ay -x= b,
3x; — 2x3 + 2x3 4+ 9xy = 4
2% + 2x3 — 2x3 — 4xy = 6. _ :
) . . | An -x=b
We can use operation (i) to replace this system with m ms
where A; = (a1, @iz, ..., ain) €R", i =1,2,..., m. To simplify the notation further, we

2x) + 2x; — 2x3 — 4dxy = 6
3x; — 2% + 2x3 + Oxy = 4;

introduce the m x n (read “m by n”) matrix®

. .. C . . it ag; ... @
then we use operation (ii), multiplying the first equation by 1/2,to get | "
( az Qa2
X+ x— x3— 2x4 =3 A=
3x; — 2x3 + 2x3 + 9xy = 4;
. . . . Am1 -+ Qmn
now we use operation (iii), adding —3 times the first equation to the second:
and the column vectors'®
X+ x - x3— 2x3= 3
x
— S5x3 + S5x3 + 15x4 = —3. ! b
. .. . C . . X2 b
Next we use operation (ii) again, multiplying the second equation by —1/5, to obtain X = ‘7 eR" and b= '2 cR",
Xp + X2 —x3—2x4 =3
X b
X3 — x3 — 3x4 = 1 n m
finally, we use operation (iii), adding —1 times the second equation to the first: and write our equations as 4 b
x=b,
; =2 N Sy
o T where the multiplication on the left-hand side is defined to be
XQ_—X3—3X4=1.
. . A -x anxy + -+ amx
From this we see that x; and x, are determined by x3 and x4, both of which are free to take ! A tn-tn
on any values. Thus, we read off the general solution of the system of equations: : Ax — A;-x | + o+ amxy
Xy = 2 — X4
X =14+ x3 + 3x Ap - X A1 X+ - QupXn
x3 = X3 We will discuss the algebraic and geometric properties of matrices a bit later, but for now we
Xy = X4 simply use them as convenient shorthand notation for systems of equations. We emphasize

that an m x n matrix has m rows and n columns. The coefficient a;; appearing in the i th
In vector form, the general solution is { row and the j™ column is called the ij-entry of A. We say that two matrices are equal if
' they have the same shape (that is, if they have equal numbers of rows and equal numbers of
X = (x1, 22, 33,23) = (2,1,0,0) +x3(0, 1, 1, 0) +x4(=1,3,0, 1), F columns) and their corresponding entries are equal. As we did above, we will customarily

which is the parametric representation of a plane in R*. ! 8 denote the row vectors of the matrix A by Ay, ..., A, € R".
: We reiterate that a solution x of the system of equations Ax = b is a vector having the

. . . . . y requisite dot products with the row vectors A;:
Before describing the algorithm for solving a general system of linear equations, welg

want to introduce some notation to make the calculations less cumbersome to write out A;-x=0b foralli=12,...,m.

We begin with a system of m equations in n unknowns: That is, the system of equations describes the intersection of the m hyperplanes with normal

vectors A; and at (signed) distance b;/||A;|| from the origin. To give the general solution,
we must find a parametric representation of this intersection.

anx; + apx2 + - 4+ awxs = b

ayxy + anxi + oo+ aux, = b

9The word matrix derives from the Latin matrix, “womb” (originally, “pregnant animal”), from mater, “mother.”
amXx) + amaX2 + -+ + AuaXan = bm.

10We shall henceforth try to write vectors as columns, unless doing so might cause undue typographical hardship.
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| |
Notice that the first two types of elementary operations do not change this col.lection i
of hyperplanes, so it is no surprise that these operations do not affect the solutlon‘ set H
of the system of equations. On the other hand, the third type actually changes one of the |
hyperplanes without changing the intersection. To see why, suppose a and b are nonparallel i'
and consider the pairs of equations
a-x=0 (a+ch)-x=0
and

b-x=0 b-x=0.
Suppose x satisfies the first set of equations, soa-x=0and b-x= 0; then x satisfies
the second set as well, since (a +cb) -x = (a-x)+c(b-x) =0+c0=0andb-x=0
remains true. Conversely, if x satisfies the second set of equations, we have b-x =0
anda-x=@+ch) - x—cb-x)=0-c0= 0, so x also satisfies the first set. Thus t}}e
solution sets are identical. Geometrically, as shown in Figure 4.1, taking a bit of poetic
license, we can think of the hyperplanes a - x = 0 and b - x = 0 as the covers of a book,
and the solutions x will form the “spine” of the book. The typical equation (a + cb) - X = 0
describes one of the pages of the book, and that page intersects either of the covers precisely
in the same spine. This follows from the fact that the spine consists of all vectors orthogonal
to the plane spanned by a and b; this is identical to the plane spanned by a + cb and b

(or a).

% a
a+ch H

|
d@a+ch)-x=0 ‘

FIGURE 4.1

The general result is the following:

Theorem 4.1. If a system of equations AX = Db is changed into the new system CX = db
elementary operations, then the systems have the same set of solutions.

Proof. We need to show that every solution of Ax =b is also a solution of Cx = d,
vice versa. Start with a solution u of Ax = b. Denoting the rows of A by Ay, ..., Ay, WE

have
Al'u=b1
Az‘ll=b2
A, -u=by

If we apply an elementary operation of type (i), u still satisfies prf.:cise?ly the S?hme
equations. If we apply an elementary operation of type (i), say le'luplymg the k eqb
by r # 0, we note that if u satisfies Ay - u = by, then it must satisfy (rAy) -u =0k
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for an elementary operation of type (iii), suppose we add r times the k'™ equation to the et
since A; - u = by and A, - u = by, it follows that

(rA; +A) -u= (A -w) + (A -u) =rb + by

and so u satisfies the * new” € equation.

To prove conversely that if u satisfies Cx = d, then it satisfies AX = b, we merely note
that each argument we’ve given can be reversed: in particular, the inverse of an elementary
operation is again an elementary operation. Note that it is important here that r # 0 for
an operation of type (ii). O

We introduce one further piece of shorthand notation. the augmented matrix

-
ayg ... ay, b
a) e oy, bg
[Alb]=
Uy s mp bm

Notice that the augmented matrix contains all of the information of the original system of
equations, because we can recover the latter by filling in the x;’s, +’s, and =’s as needed.

The elementary operations on a system of equations become operations on the rows of
the augmented matrix; in this setting, we refer to them as elementary row operations of the
corresponding three types:

(i) Interchange any pair of rows.
(if) Multiply all the entries of any row by a nonzero real number.
(iii) Replace any row by its sum with a multiple of any other row.

Since we have established that elementary operations do not affect the solution set of a
system of equations, we can freely perform elementary row operations on the augmented
matrix of a system of equations with the goal of finding an “equivalent” augmented matrix
from which we can easily read off the general solution.

EXARMPLE 2
We revisit Example | in the notation of augmented matrices. To solve
3y — 2v3 4 2v3 4+ 9y = 4
2v) + 2v2 — 2v3 — 4y =6
we begin by forming the appropriate augmented matrix
3 -2 2 9|4
2 2 -2 41606

We denote the process of performing row operations by the symbol ~~ and (in this example)
we indicate above it the type of operation we are performing:

3]

2 =2 41 6lm|l 1 -1 =2} 3
22 9| 4 3 =2 2 9|4

3 -2 2 94]g
2 02 -2 -4 |6

(V)
|
)
]
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From the final augmented matrix we are able to recover the simpler form of the equations, |
|

Xy 4+ x3 =2

Xy — x3 — 3x4 = 1,

&

and read off the general solution just as before. Al

Remark. 1t is important to distinguish between the symbols = and ~»; when we convert
one matrix to another by performing one or more row operations, we do not have equal
matrices.

To recap, we have discussed the elementary operations that can be pf:rfonned ona
system of linear equations without changing the solution set, and we have introduced the
shorthand notation of augmented matrices. To proceed, we need to discuss the final form our
system should have in order for us to be able to read off the solutions easily. To understand
this goal, let’s consider a few more examples.

EXRMPLE 3

(a) Consider the system
X1 + 2."2 - X4 = 1
x3 + 2x4 = 2.
We see that using the second equation, we can determine x3 in terms of x, and thal

using the first, we can determine X, in terms of x, and x4. In particular, the generd
solution is

X1 | =2x24+ xa 1 -2 1

. 0 1 0
== i = |+x + x4

X3 2 —2x4 2 0 =2

X4 Xy 0 0 1

(b) The system
Xy + 2x + x3 + x3 =3
x3 + 2X4 =2
requires some algebraic manipulation before we can read off the solution. Altho '!_'_'
the second equation determines x3 in terms of x4, the first describes x in terms f)f_
x3, and x4; but x2, x3, and x4 are not all allowed to vary arbitrarily: We would like

modify the first equation by removing x3. Indeed, if we subtract the second equati
from the first, we will recover the system in (a).

(¢) The system
x1 + 2x; =3
x) —x3 =12

involves similar difficulties. The value of x| seems to be determined, on the oné
by x; and, on the other, by x3; this is problematic (try x; = 1 and x; = 3). Indeet;
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recognize that this system of equations describes the intersection of two planes in R3
(that are distinct and not parallel); this should be a line, whose parametric expression
should depend on only one variable. The point is that we cannot choose both x and
x3 to be free variables. We first need to manipulate the system of equations so that we
can determine one of them in terms of the other (for example, we might subtract the
first equation from the second). A

The point of this discussion is to use elementary row operations to manipulate systems of
linear equations like those in Examples 3(b) and (c) above into equivalent systems from
which the solutions can be easily recognized, as in Example 3(a). But what distinguishes
Example 3(a)?

[ e
Definition. We call the first nonzero entry of a row (reading left to right) its leading
entry. A matrix is in echelon'! form if
1. The leading entries move to the right in successive rows.
2. The entries of the column below each leading entry are all 0.'2
3. All rows of 0’s are at the bottom of the matrix.

A matrix is in reduced echelon form if it is in echelon form and, in addition,
4. Every leading entry is 1.
5. Al the entries of the column above each leading entry are 0 as well.

If a matrix is in echelon form, we call the leading entry of any (nonzero) row a
pivot. We refer to the columns in which a pivot appears as pivot columns and to the
corresponding variables (in the original system of equations) as pivot variables. The
remaining variables are called free variables.

What do we learn from the respective augmented matrices for our earlier examples?

1 2 o=ttt} Tt 2 1 1|3 (1 2 o0]3
o o 1 212" lo o 1 21| |t 0 -1]2

Of the augmented matrices from Example 3, (a) is in reduced echelon form, (b) is in echelon
form, and (c) is in neither. The key point is this: When the matrix is in reduced echelon
form, we are able to determine the general solution by expressing each of the pivor variables
in terms of the free variables.

1'The word echelon derives from the French échelle, “ladder.” Although we don’t usually draw the rungs of the

1 2 3 4
ladder, they are there: | 0 0 | 1 2 |. OK, perhaps it looks more like a staircase.
0 0 013

2Condition 2 is actually a consequence of 1, but we state it anyway for clarity.
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Here are a few further examples.

EXAMPLE 4

The matrix
0o 2 1 1 4

0 0 3 0
0 0 0 -1 1

is in echelon form. The pivot variables are x3, X3, and x,; the free variables are x| and xs.
However, the matrix

1 2 -1
0 0 O
0 0 3

is not in echelon form, because the row of 0’s is not at the bottom; the matrix

1 2 1 1 4
o 0 3 0 2
o o 1 -1 1

is not in echelon form, since the entry below the leading entry of the second row is nonzero.

And the matrix
0 1 1
1 2 3

in also not in echelon form, because the leading entries do not move to the right. A

EXAMPLE 5

The augmented matrix
1 2 0 0 4|1

0 0 1 0 -2]2
0o 0 o0 o 1|1

e

i

is in reduced echelon form. The corresponding system of equations is i

Xy + 2x; 4+ 4x5 = 1
X3 - 2x5 =2
X4 + X5 = 1.

Notice that the pivot variables, xy, x3, and x4, are completely determined by the free variables
x, and xs. As usual, we can write the general solution in terms of the free variables only:

Tx ] [1=20—4xs| |1 [—2] [—4]
X X 0 1 0
x=|xu|=|2 +2s|=|2[+x| 0|+xs]| 2
X4 ! — X5 1 0 -1
x| L 5] o] Lol [ 1
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We stop for a moment to formalize the manner in which we have expressed the para-
metric form of the general solution of a system of linear equations once it’s been put in
reduced echelon form.

Definition. We say that we've written the general solution in standard form when it is
expressed as the sum of a particular solution—obtained by setting all the free variables
equal to 0—and a linear combination of vectors, one for each free variable—obtained
by setting that free variable equal to 1 and the remaining free variables equal to 0 and
ignoring the particular solution. '3

Our strategy now is to transform the augmented matrix of any system of linear equations
into echelon form by performing a sequence of elementary row operations. The algorithm
goes by the name of Gaussian elimination. The first step is to identify the first column
(starting at the left) that does not consist only of 0s; usually this is the first column, but
it may not be. Pick a row whose entry in this column is nonzero—usually the uppermost
such row, but you may choose another if it helps with the arithmetic—and interchange this
with the first row; now the first entry of the first nonzero column is nonzero. This will be
our first pivot. Next, we add the appropriate multiple of the top row to all the remaining
rows to make all the entries below the pivot equal to 0. For example, if we begin with the
matrix

3 -1 2 7
A=12 1 3 3],
2 2 4 2

then we can switch the first and third rows of A (to avoid fractions) and clear out the first
pivot column to obtain
@ 2 4 2

A=10 -1 -1 1
0 -4 -4 4

We have circled the pivot for emphasis. (If we are headed for the reduced echelon form,
we might replace the first row of A’ by (1, 1,2, 1), but this can wait.)

The next step is to find the first column (again, starting at the left) in the new matrix
having a nonzero entry below the first row. Pick a row below the first that has a nonzero
entry in this column, and, if necessary, interchange it with the second row. Now the second
entry of this column is nonzero; this is our second pivot. (Once again, if we’re calculating
the reduced echelon form, we multiply by the reciprocal of this entry to make the pivot 1.)
We then add appropriate multiples of the second row to the rows beneath it to make all the

131n other words, if x; is a free variable, the corresponding vector in the general solution has j th coordinate equal

to 1 and ™ coordinate equal to O for all the other free variables .x;. Concentrate on the circled entries in the
vectors from Example 5:

-2 —4
@ ©
X2 0| +xs 2 1.
0 -1
© @
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e

entries beneath the pivot equal to 0. Continuing with our example, we obtain
@ 2 4 2
=loCh -1 1

0 0 0 O

—

S

AII

Do — =

At this point, A” is in echelon form; note that the zero row is at the bottom and that the |
pivots move toward the right and down.

In general, the process continues until we can find no more pivots—either because we
have a pivot in each row or because we're left with nothing but rows of zeroes. At this
stage, if we are interested in finding the reduced echelon form, we clear out the entries in
the pivot columns above the pivots and then make all the pivots equal to 1. (A few words
of advice here: If we start at the right and work our way up and to the left, we in general
minimize the amount of arithmetic that must be done. Also, we always do our best to avoid
fractions.) Continuing with our example, we find that the reduced echelon form of A is

@ 2 4 2 O 1 2 1 O o 1 2
a=loC) -1 1|=]o @ 1t -1|=10 @O 1 -11=R

0 0 0 O 0 0 0 O 0 0 0 O

It should be evident that there are many choices involved in the process of Gaussian
elimination. For example, at the outset, we chose to interchange the first and third rows
of A. We might just as well have used either the first or the second row to obtain our first
pivot, but we chose the third because we noticed that it would simplify the arithmetic to
do so. This lack of specificity in our algorithm is perhaps disconcerting at first, because
we are afraid that we might make the “wrong” choice. But so long as we choose a 1oy’
with a nonzero entry in the appropriate column, we can proceed. It’s just a matter of
making the arithmetic more or less convenient, and—as in our experience with techniques :
of integration—practice brings the ability to make more advantageous choices. '

Given all the choices we make along the way, we might wonder whether we always'
arrive at the same answer. Evidently, the echelon form may well depend on the choices. &
But despite the fact that a matrix may have lots of different echelon forms, they all mustge
have the same number of nonzero rows; that number is called the rank of the matrix. | §

Proposition 4.2. All echelon forms ofanm x n matrix A have the same number of nonzen @
rows.

Proof. Suppose B and C are two echelon forms of A, and suppose C has (at least) one
more row of zeroes than B. Because there is a pivot in each nonzero row, there is (at least
one pivot variable for B thatis a free variable for C, say x;. Since x; is a free variable fof
C, there is a vector v = (ai, a2, a3, ..., dj-1, 1,0,...,0) that satisfies Cv = 0. We obtz
this vector by setting x; = 1 and the other free variables (for C) equal to 0, and then solvig
for the remaining (pivot) variables.!*

On the other hand, x; is a pivot variable for B; assume that it is the pivot in the £ ro8
That is, the first nonzero entry of the £ row of B occurs in the j* column. Then the @

14T see why v has this form, we must understand why the k™ entry of v is O wheneverk > j. So suppose k2
If xx is a free variable, then by construction the k™ entry of v is 0. On the other hand, if x; is a pivot vat¥
then the value of x; is determined only by the values of the pivot variables x; with £ > &; since, by consti
these are all 0, once again, the A" entry of v is 0.
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entry of Bv is 1. This contradicts Theorem 4.1, for if Cv = 0, then Av = 0, and so By =0
as well. a

In fact, it is not difficult to see that more is true, as we ask the ambitious reader to check in
Exercise 16:

Theorem 4.3. Each matrix has a unique reduced echelon form.

We conclude with a few examples illustrating Gaussian elimination and its applications.

EXARMPLE 6
Give the general solution of the following system of linear equations:
X1 + x2 4+ 3x3 — xa = 0
—x; + x4+ x3 o+ xg + 2xs = —4
X2 + 2x3 + 2x4 — x5 = 0

2x1 — x2 4+ x3y — 6xs = 9.
We begin with the augmented matrix of coefficients and put it in reduced echelon form:
1 1 3 -1 0 0 1 1 3 -1 0 0
-1 1 1 1 2| —4 0 2 4 0 2| —4
1 2 2 -1 0 - 0 1 2 2 -1 0
-1 0 1 -6 9 0 -3 -6 3 -6 9
1 1 3 -1 0 0 11 3 - 0 0
. 0 1 2 0 14} =2 0 1 2 0 1} -2
0 0 0 2 -2 2 - {0 0 0 -
0 0 O -3 3 0 0 0 0 O 0
I 0 1 0 =2 3
" o 1 2 0 1| -2
0 0 0 1 -1 1
0 0 0 0 O 0

Thus, the system of equations is given in reduced echelon form by

X1 + X3 —2xs = 3
X2 + 2."3 + x5 = -2
X4 — X5 = | y

from which we read off

3= 3 — x3+4+ 2x5
Xy = -2 — 2X3 - X5
X3 = X3

xy = 1 + X5

X5 = X5,
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and so the general solution is

W] [ 31 [ T2

X 2 -2 -1 |
x=|x | = 0| +x 1 1+xs| O

X4 1 0 I L

] Lo Loy L1l Al

EXAMPLE 1

We wish to find a normal vector to the hyperplane in R* spanned by the vectors v; =
(1,0,1,0), v, = (0,1,0, 1), and v3 = (1, 2, 3,4). That is, we want a vector X € R* satis-
fying the system of equations v - X = V2 - X = V3 - X = 0. Such a vector x must satisfy the
system of equations

X + X3 =0
X3 4+ x4 =0
xp + 2x3 + 333 4+ 4dxy = 0.

Putting the augmented matrix in reduced echelon form, we find

1 0 1 01]0 1 0 1 010 1 0 0 -1
o 1 0 1|lo{~|0o t o 1]0|~|0 1 O 1]O
1 2 3 4]0 0 0 2 2160 0 0 1 1
From this we read off
Xy = X
X2 = —X4
X3 = —X4
Xs= Xa
and so the general solution is i
X 1
X2 -1
X= = X4 ;
X3 -1
X4 1

that is, a normal vector to the plane is (any nonzero scalar multiple of) (1, -1, =1, 1). be
reader should check that this vector actually is orthogonal to the three given vectors.

Recalling that solving the system of linear equations
A1~X=b1, Ag-x=b2, Ceey Am-X=bm

amounts to finding a parametric represerttation of the intersection of these m hyperpla®
we consider one last example.

I_Exercises 1.4
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EXAMPLE 8

We seek a parametric description of the intersection of the three hyperplanes in R* given
by

X] — X2 4+ 2x3 4+ 3x4 =2

2xp + x2 + X3 =1

x4+ 2x3 — x3 = 3x4 =7

Again, we start with the augmented matrix and put it in echelon form:

-1 2 312 1 -1 2 3 2 1 -1 2 3 2
2 1 1 o0|1l|~|0 3-3-6]|-3{~{0 3 -3 -6 -3
1 2 -1 =317 0 3 -3 -6 5 0 0 0 0 8

Without even continuing to reduced echelon form, we see that the new augmented matrix
gives the system of equations

X — x4+ 2x3 + 3 = 2
3x2 - 3X3 — 6.’(4 = -3
0 = 8. N

The last equation, 0 = 8, is, of course, absurd. What happened? There can be no values of
X1, X2, X3, and x, that make this system of equations hold: The three hyperplanes described
by our equations have no point in common. A system of linear equations may not have any
solutions; in this case it is called inconsistent. We study this notion carefully in the next
section. A

1. Use elementary operations to find the general solution of each of the following systems
of equations. Use the method of Example 1 as a prototype.

a X + x =1
X+ 2604+ x3=1 3 6 6
c. x; — 6xy — x 4 =
X+ 203 = 1 X1 2 3+ Xy

—x; + 2x2 + 2x3 + 3x4 =3
*b. x; + 2x2 + 3x3 =1

2x1 + 4dxy; + Sx3 =1
xy + 2xy 4+ 2x3 = 0

*2. Decide which of the following matrices are in echelon form, which are in reduced
echelon form, and which are neither. Justify your answers.

]
w

4y, — 8xy — 3x3 — 2x4

(=]
[w=]
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5 1 1 -1 0 -2
- B 2 0 4 1 -1 10
£ 0 1 2 0 =2 2 -3
o 0 ¢ 1 4
0o 0 0 1 0 1 -1 2 4 7
5. For the following matrices A, give the general solution of the equation AXx = x in
3. For each of the following matrices A, determine its reduced echelon form and give the | standard form. (Hint: Rewrite this as Bx = 0 for an appropriate matrix B.)
general solution of Ax = 0in standard form. i : o 6 1 0 0 0 -1 0
1 0—1-‘ e A 1 -2 1 0 | a.A=[18 11] . A=|-2 1 2 c. A=1]0 0 -I
e. A= | -
a, A=|-2 3 - 2 -4 3 -1 | 2 0 3 1 0 o
L 3 -3 0] 1 2 0 -l —1-‘ 6. For the following matrices A, give the general solution of the equation AX = 2x in
- 1 -3 1 2 standard form.
2 -2 4 £ A= 0 . 3 16 —15
*h. A=| -1 1 =2 1 -1 3 1 1 a.A=|:2 1] b.A=[1 12 -9
| 3 -3 6] L2 -3 7 3 4l 116 —13
1 2 -1 T 1 -1 1 1 0] . . ) )
Lo 7. One might need to find solutions of Ax = b for several different b’s, say by, ..., b;.
A= 13 1 Yo A= t o 2 In this event, one can augment the matrix A with all the b’s simultaneously, forming
€ A= 2 4 3 o 2 2 2 0 the “multi-augmented” matrix [ A | by by - -+ br]. One can then read off the various
1 1 6 -1 1 -1 0 —i] solutions from the reduced echelon form of the multi-augmented matrix. Use this
- - method to solve Ax = by for the given matrices A and vectors b.
(ro1 11 1 1 0 5 0 -1 3
1 2 1 2 o 1 1 3 -2 0 1 0 -1 -1] 1
d A=} 5 45 4 A=V 2 3 4 1 -6 aA=| 2 1 -1|, by=| 1|, ba=|3
1 2 2 3 \_ 0 4 4 12 -1 -7 L—l 2 2 5] 2
1 2 -1 0 1 0
bA=2 3 ], b = ,b2=|::|
4. Give the general solution of the equation Ax = b in standard form. 5 2 1 -_0_
m o |1 3 | 1 1 1 0 0
o A= 1 2 ) b= 0 c. A=10 1 1,b1=0,b2=1,b3—0
' o1 2 3 R 0] 0 1
_ *8. Find all the unit vectors x € R3 that make an angle of /3 with each of the vectors
2 -1 —4 (1,0,—1)and (0, 1, 1).
b.A=]| 2 1|, b=} 0 9, Find all the unit vectors x € R3 that make an angle of /4 with (1,0, 1) and an angle
L"l 1 3 of /3 with (0, 1, 0).
Y 1 ﬂ - 4'\ _ 10. Find a normal vector to the hyperplane in R* spanned by
B b 0 | *a- (1,1,1,1),(1,2, 112)’and(1y31214);
* —_ =
c. A=|2 1 3} B _-_ b. (1, 1,1,1),(2,2,1,2),and (1,3,2,3).
REER Y - | B 11. Find all vectors x € R* that are orthogonal to both
Ty 1 1] s 1'\ *a. (1,0,1,1)and (0, 1, =1, 2);
dAa=2 1 3|, b=]|-1 b. (1,1,1,—-1)and (1,2, =1, 1).
Ll 1 2 L_l ® 12. Find all the unit vectors in R* that make an angle of /3 with (1, 1, 1, 1) and an angle
- - - i of m/4 with both (1, 1,0,0) and (1,0, 0, 1).
e A= (O b= 6 y *13. Let A be an m x n matrix, let x, y € R”, and let ¢ be a scalar. Show that
‘ 3 3 2 of 17 - a. A(cx) = c(Ax)

b. A(x+y) = Ax+ Ay
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14. Let A be anm x n matrix, and letb € R™.

a. Show thatif u and v € R” are both solutions of Ax = b, then u — v is a solution of |

Ax = 0.

b. Suppose u is a solution of Ax = 0 and p is a solution of Ax = b. Show thatu +p |
I

is a solution of Ax = b.
Hint: Use Exercise 13.

15. a. Prove or give a counterexample: If A is an m x n matrix and x € R" satisfies

Ax = 0. then either every entry of AisOorx = 0.

b. Prove or give a counterexample: If A is an m x n matrix and Ax = 0 for every
vector X € 2", then every entry of A is 0.

Although an example does not constitute a proof, a counterexample is a fine disproof:
A counterexample is merely an explicit example illustrating that the statement is false.

Here, the evil authors are asking you first to decide whether the statement is true

or false. It is important to try examples to develop your intuition. In a problem like

. this that contains arbitrary positive integers m and n, it is often good to start with small
! values. Of course, if we take i = n = 1, we get the statement

1f @ is a real number and ax = 0 for every real number x, thena = 0.

Here you might say, “Well, if a # 0, then I can divide both sides of the equation by a.
' and obtain x = 0. Since the equation must hold for a/l real numbers x, we must have

« = 0.” But this doesn’t give us any insight into the general case, as we can’t divide
| by vectors or matrices.

. of x that will shed light on the situation. For example, if we take x = I, then we | |

you wanted to show that a particular entry, say as, of the matrix A was 0, could you__.'

pick the vector x appropriately? -

! There’s another way to pick a particular value of x that leads to mformatlon.
Since the only given object in the problem is the real number «, we might try lettmg

. x =a and see what happens. Here we get ax = a? = 0, from which we conclude

| immediately that « = 0. How does this idea help us with the general case? Rememberw

' that the entries of the vector AX are the dot products A -x. Lookmg back at part a of' "-

C are reduced echelon forms of a given nonzero /m x n matrix A.

a. Deduce from the proof of Proposition 4.2 that B and C have the same pivot variable$

b. Explain why the pivots of B and C are in the identical positions. (This is true
without the assumption that the matrices are in reduced echelon form.)

c. By considering the solutions in standard form of Bx = 0 and Cx = 0, deduce b
B=C. :

17. In rating the efficiency of different computer algorithms for solving a system of equ&

tions, it is usually considered sufficient to compare the naumber of multiplications

quired to carry out the algorithm.

a. Show that

QM) =) (K -

k=1

nn—0D+w—-D0-2)+

What are some alternative approaches? You might try picking a particular value §

immediately get ¢« = 0. How might you use this idea to handle the general case? If §
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multiplications are required to bring a general n x n matrix to echelon form by
(forward) Gaussian elimination.

n
b. Show that Y (k* —k) = %(113 —n). (Hint: For some appropriate formulas, see

k=1
Exercise 1.2.10.)
c. Now show that it takes n 4+ (n — 1)+ (n — 2) + - -- + 1 = n(n + 1)/2 multipli-
cations to bring the matrix to reduced echelon form by clearing out the columns
above the pivots, working right to left. Show that it therefore takes a total of

%113 + %”2 + %n multiplications to put A in reduced echelon form.

d. Gauss-Jordan elimination is a slightly different algorithm used to bring a matrix to
reduced echelon form: Here each column is cleared out, both below and above the
pivot, before moving on to the next column. Show that in general this procedure
requires n>(n — 1)/2 multiplications. For large n, which method is preferred?

®

We developed Gaussian elimination as a technique for finding a parametric description
of the solutions of a system of linear Cartesian equations. Now we shall see that this
same technique allows us to proceed in the opposite direction. That is, given vectors
Vi,..., v € R*, we would like to find a set of Cartesian equations whose solution is
precisely Span (vy, ..., vi). In addition, we will rephrase in somewhat more general terms
the observations we have already made about solutions of systems of linear equations.

5.1 Existence, Constraint Equations, and Rank

Suppose A isanm x n matrix. There are two equally important ways to interpret the system
of equations Ax = b. In the preceding section, we concentrated on the row vectors of A:
IfAq,..., A, denote the row vectors of A, then the vector ¢ is a solution of Ax = b if and
only if

Ai-c=by, Ary-e=by, ..., A,-c=by,.

Geometrically, c is a solution precisely when it lies in the intersection of all the hyperplanes
defined by the system of equations.
On the other hand, we can define the column vectors of the m x n matrix A as follows:
aj

aj
aj=| . |[eR", j=12....n

iy j

We now make an observation that will be crucial in our future work: The matrix product
Ax can also be written as

apxy + -+ apy apy ap ayy

az x| 4 -+ QupXy az) an Qop
(*¥) Ax = = + 1 4. tox,

g1 X1 + - -+ Aun Xy A Am2 Amn

=xja; + xa; + -+ X,
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Thus, a solution ¢ = (¢y, ..., cy) of the linear system Ax = b provides scalars ¢y, ..., ¢,
so that
b= cia;+--- + cpa,.

This is our second geometric interpretation of the system of linear equations: A solution
c gives a representation of the vector b as a linear combination, c;a; + - - - + ¢,a,, of the
column vectors of A.

_EXHMPLE 1
Consider the four vectors
4 1 1 2
3 0 1 1
b= , V= , V3= , and vi=
1 1 1 1
2 2 1 2

Suppose we want to express the vector b as a linear combination of the vectors vy, V2, and
v3. Writing out the expression

1 1 2 4
0 1 1 3
X1Vl + Xx2V2 + X3V3 = X) . + x> . + x3 . = i s
2 1 2 2
we obtain the system of equations
X1 + x + 2x3 = 4
X2+ x3 =3
X+ 0+ xa=1

2x; 4+ x2 + 2x3 = 2. »
In matrix notation, we must solve Ax = b, where the columns of A are vy, v3, and vs:
i 2
1

l
1

N —= O —
[ I

So we take the augmented matrix to reduced echelon form:

1 1 2| 4 1 L2 4}

0 1 113 0 1 1 3
[Alb]l= -

1 1 1|1 0 0 —11| -3

2 1 2|2 0 -1 =2 | -6

- _ —_ 1
o O O -
O O =
S = =N

IO W W
o o o =
o O - O
o - o O

(=]

P
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This tells us that the solution is

-2
X = 0!, so b= —-2v;+0vy+43vs,
3
which, as the reader can check, works. A

Now we modify the preceding example slightly.

'EXARMPLE 2

We would like to express the vector

[ e

as a linear combination of the same vectors vy, V2, and v3. This then leads analogously to
the system of equations

xp + x2 + 2x3 =1

X2+ xy=1
X1+ x4+ x3=0
2x) + x2 + 2x3 =1

and to the augmented matrix

1 2 1
0 1 1 1

1 1{0]|
12 1 2 1]

whose echelon form is

11 2 | 1]
0 1 1 1
0 0 1] 1]
0 0 0 1

The last row of the augmented matrix corresponds to the equation
Ox; +0x; 4+ 0x3 =1,

which obviously has no solution. Thus, the original system of equations has no solu-
tion; The vector b’ in this example cannot be written as a linear combination of v;, v3,
and vs. A

These examples lead us to make the following definition.

Definition. If the system of equations Ax = b has no solutions, the system is said to be
inconsistent: if it has at least one solution, then it is said to be consistent.
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1
A system of equations is consistent precisely when a solution exists. We see that the,{['
system of equations in Example 2 is inconsistent and the system of equations in Example 1 |
is consistent. It is easy to recognize an inconsistent system of equations from the echelonf
form of its augmented matrix: The system is inconsistent precisely when there is an equation |
that reads |

Ox;4+0xy4+---4+0x,=c

ST T

for some nonzero scalar c, i.e., when there is a row in the echelon form of the augmented
matrix all of whose entries are 0 except for the rightmost.

Turning this around a bit, let [ U | ¢ ] denote an echelon form of the augmented matrix
[A | b]. The system Ax = b is consistent if and only if any zero row in U corresponds to
a zero entry in the vector c.

There are two geometric interpretations of consistency. From the standpoint of row
vectors, the system Ax = b is consistent precisely when the intersection of the hyperplanes

Ap-x=b, ... Ay -x=by

is nonempty. From the point of view of column vectors, the system Ax = b is consistent
precisely when the vector b can be written as a linear combination of the column vectors
ay,...,a, of A; in other words, it is consistent when b € Span (a,, ..., a,).

In the next example, we characterize those vectors b € R* that can be expressed asa
linear combination of the three vectors v, v,, and v3 from Examples 1 and 2.

'EXAMPLE 3 N
For what vectors
by
b= | 22
b3
by

will the system of equations

X + x2 + 2x3 = by

X2+ x3=b
X+ x2 4+ x3 = bs
20 4+ x2 + 2v = by

have a solution? We form the augmented matrix [ A | b] and put it in echelon form:

11 2| p 11 2| p
0 1 1 |m| o | b
L1 1| bs| [0 0 -1 |b—b
2 1 2| 6] L0 -1 =2 | by-2p

o1 2| b

0 L 1| b

“lo o 1| bi-bs
0 0 0| —by+b—bs+bs
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We deduce that the original system of equations will have a solution if and only if
(%) —by+br— b3+ by =0.

That is, the vector b belongs to Span (vy, va, v3) precisely when b satisfies the constraint
equation (x+). Changing letters slightly, we infer that a Cartesian equation of the hyperplane
spanned by vy, v2, and v3 in R* is —v; +x2 —x3 + x4 =0.

|EXRMPLE 4

As a further example, we take

—_—
—
—_—

3002 -l
A=
I 4 =3
3 -3 3

and we look for constraint equations that describe the vectors b € R* for which Ax = b is
consistent, i.e., all vectors b that can be expressed as a linear combination of the columns
of A.

As before, we consider the augmented matrix [ A | b] and determine an echelon form
[U | ¢]. In order for the system to be consistent, every entry of ¢ corresponding to a row
of 0’s in U must be 0 as well:

1 —1 | by I —1 1 by
32 =1 b 0 5 -4 b> — 3b)
[Alb]= o
1 4 =3 1§ by 0 5 —4 | by—0b
3 -3 3 by 0 0 | bhs—3b
1 -1 | by
o 5 4| b3
“lo o by — by + 20y
0 0 0| by—3b

Here we have two rows of 0’s in U, so we conclude that Ax = b is consistent if and only
if b satisfies the two constraint equations

2by — by +b3=0 and —3b+ by =0.

These equations describe the intersection of two hyperplanes through the origin in R* with
respective normal vectors (2, —1, 1,0)and (—3.0,0, 1).

Notice that in the last two examples. we have reversed the process of Sections 3 and 4.
There we expressed the general solution of a system of linear equations as a linear combi-
nation of certain vectors, just as we described lines. planes. and hyperplanes parametrically
earlier. Here, starting with the column vectors of the matrix A. we have found the constraint
equations that a vector b must satisty in order to be a linear combination of them (that is,
to be in their span). This is the process of determining Cartesian equations of a space that
is defined parametrically.

Remark. 1t is worth noting that since A has ditferent echelon forms, one can arrive at
different constraint equations. We will investigate this more deeply in Chapter 3.
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EXAMPLE 5
Find a Cartesian equation of the plane in R® given parametrically by ,
1 1 2 i
x=|2|[+s|0|+]|1]. ]
1 1 1

We ask which vectors b = (b, b3, b3) can be written in the form

1 1 2 by
2l4sjol+ef1 =0
1 1 1 by

This system of equations can be rewritten as

1 2 by —1

s
0 1 [i|= by—-21,

t e
1 1 by —1

and so we want to know when this system of equations is consistent. Reducing the aug-
mented matrix to echelon form, we have

1 2| -1 T 2| b—1
0 1 b2—2 ~ {0 1 b2—2
1 1 b; —1 0 0 by—b +by—2

Thus, the constraint equation is —b; + by + b3 — 2 = 0. A Cartesian equation of the given'
plane is x| — x; —x3 = —2. A

In general, given an m x n matrix, we might wonder how many conditions a vector f§
b € R™ must satisfy in order to be a linear combination of the columns of A. From the
procedure we’ve just followed, the answer is quite clear: Each row of 0’s in the echelos
form of A contributes one constraint. This leads us to our next definition. |

Definition. The rank of a matrix A is the number of nonzero rows (the number of pivots)|
in any echelon form of A. It is usually denoted by .

Then the number of rows of 0’s in the echelon form is m — r, and b must satisfy m =&
constraint equations. Note that it is a consequence of Proposition 4.2 that the rank of
matrix is well-defined, i.e., independent of the choice of echelon form.

Now, given a system of m linear equations in n variables, let A denote its coefficie
matrix and r the rank of A. We summarize the above remarks as follows.

Proposition 5.1. The linear system AX = Db is consistent if and only if the rank of
augmented matrix [ A | b] equals the rank of A. In particular, when the rank of A
m, the system AXx = b will be consistent for all vectors b € R™.

Proof. Let [U | ¢] denote the echelon form of the augmented matrix [A | b]. We knd
that Ax = b is consistent if and only if any zero row in U corresponds to a zero entry int8
vector ¢, which occurs if and only if the number of nonzero rows in the augmented maff

|
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[U | €] equals the number of nonzero rows in U, i.e., the rank of A. When r = m, there is
no row of 0’s in U and hence no possibility of inconsistency.

5.2 Uniqueness and Nonuniqueness of Solutions

We now turn our attention to the question of how many solutions a given consistent system
of equations has. Our experience with solving systems of equations in Sections 3 and 4
suggests that the solutions of a consistent linear system Ax = b are intimately related to
the solutions of the system Ax = 0.

Definition. A system Ax = b of linear equations is called inhomogeneous whenb # 0;
the corresponding equation Ax = 0 is called the associated homogeneous system.

Torelate the solutions of the inhomogeneous system Ax = b and those of the associated
homogeneous system Ax = 0, we need the following fundamental algebraic observation.

Proposition 5.2. Let A be an m x n matrix and letx,y € R"*. Then
A(x +y) = Ax + Ay.
(This is called the distributive property of matrix multiplication. )

Proof. Recall that, by definition, the i'" entry of the product Ax is equal to the dot product
A, - x. The distributive property of dot product (the last property listed in Proposition 2.1)
dictates that

A -(x+y)=A - x+A; -y,

and so the i™ entry of A(x +y) equals the i th entry of Ax + Ay. Since this holds for all
i =1,..., m, the vectors are equal. O

This argument establishes the first part of the following theorem.

Theorem 5.3. Assume the system AX = b is consistent, and letu, be a particular solution.P
Then all the solutions are of the form

u=u +v
for some solution v of the associated homogeneous system Ax = 0.

Proof. First we observe that any such vector u is a solution of Ax = b. Using Proposition
5.2, we have

Au=A(u; +v) =Auy + Av=>b+0=D.

Conversely, every solution of Ax = b can be written in this form, for if u is an arbitrary
solution of Ax = b, then, by distributivity again,

Au—u)=Au—Au;=b—-b=0,

so v = u — u, is a solution of the associated homogeneous system; now we just solve for
u, obtaining u = u, + v, as required.

Remark. As Figure 5.1 suggests, when the inhomogeneous system Ax = b is consistent,
its solutions are obtained by translating the set of solutions of the associated homogeneous

I5This is classical terminology for any single solution of the inhomogeneous system. There need not be anything
special about it. In Example 5 on p. 44, we saw a way to pick a particular particular solution.
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Q(ions of Ax=b
Solutions ofo\=0/<

FIGURE 5.1

?}’itelm by a particular solution u,. Since u; lies on each of the hyperplanes A, - x = b.-
»-«+» M, We can translate each of the hyperplanes A; - x = 0, which pass tl;roug;tb::'i

ongin, by the vector uy. Thus, tlanslatmg the Intersection of the hypel planes A -x =1F
{

i=1,...,m, by the vector u; gi i
' »eoesm, by 1 gives us the intersection of i
i=1,...,m,as indicated in Figure 5.2. e hyperplanes 4, -x =4

L

TR T

7]
=X
(=1
=
5]
=3
w
=}
o)
»
1]
1}

Solutions of Ax = 0 ~
A] - X =bl
A] -x=0

A, -x=bh,
Ay-x=0 : =

FIGURE 5.2

Of .
X=0 iSCZTVZS:,Sa hOI;]qgeneous system is always consistent, because the trivial solutian,
variat;les and )31 ars ?’r:::u\)/rz;r? fb?x - 0}; Now, if the rank of A is r, then there will be r pival

= ables in the general i = . .
then x = 0 is the only solution of Ax =%) solution of Ax = 0. In particular, if r = { 1

Th
iy o omOSENEQLS SYSLem Ax = 0 has a unigue solution when 7 = n and infd
be more pivots than cony r: ost? tl.lat 1t 1s impossible to have r > n, since there canm
matrix, 0 it folloms that ;s. imilarly, tl‘lere cannot be more pivots than rows in ".
the homogeneous system ‘Xxeie(\)’e; lplzs t>h;rzl éli.lel.é [gie;'e are more variables than equations
From - X ) ely many solutions.
then its Soigz‘::z:igé k(liu;w that if the inhomogeneous system Ax = b is consistet
system AX = 0 b ained by tre.lnslatmg the solutions of the associated homogeneod
y a particular solution. So we have the following proposition

Proposition 5.4
- Suppose the system AXx = b is consistent, Then it has a unique solutions

a”d Oﬂl_)/ lflhe associat 1 - 0 as onty } e trivi 01“”0"‘
ed /‘lomoge)leous Syst
em
) ) AX h S Ot l /] al kY
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We conclude this discussion with an important special case. It is natural to ask when
the inhomogeneous system AX = b has a unique solution for every b € R™. From Propo-
sition 5.1 we infer that for the system always to be consistent, we must have r = m; from
Proposition 5.4 we infer that for solutions to be unique, we must have r = n. And so we

see that we can have both conditions only when r = m = n.

Definition. An n x n matrix of rank r = n is called nonsingular. Ann xn matrix of
rank r < n is called singular.

We observe that an # x n matrix is nonsingular if and only if there is a pivot in each row,
hence in each column, of its echelon form. Thus, its reduced echelon form must be the

n X n matrix _
1 |

r 0
0

L _
1t seems silly to remark that when m = n, if r = n, then r = m, and conversely. But

the following result, which will be extremely important in the next few chapters, is an
immediate consequence of this observation.

Proposition 5.5. Let A be an n x n matrix. The following are equivalent:

1. A is nonsingular.
2. Ax = 0 has only the trivial solution.
3. For every beR", the equation Ax=D>b has a solution (indeed, a unique

solution).
*1. By solvingasystem of equations, find the linear combination of the vectorsvy = | 0 |,
0 2 3 _1
va= |1}, va=|1 that gives b = 0

Lz 1 -2

*3. For each of the following vectors b € R?*, decide whether b is a linear combination of

! 0 1
0 -1 -2
vy = . , V) = 0 ,and vy =
L2 1

1 |
a. b= X . !




32 Chapter 1 Vectors and Matrices | 5 The Theory of Linear Systems 63
|

3. Find constraint equations (if any) that b must satisfy in order for Ax = bto be consistent, 1
_ i 0
~ 1 L2 ¢. The rows of A are orthogonal to , and for some nonzero vector b € R2 both
3 -1 . A=(2 -1 2 1 1 1
a. A=| 6 -2 R 0 1 0
- the vectors and are solutions of the equation Ax = b.
|9 3 12 1 1 1
11 a| © 1 0 1 1 2
o A=1-1 1 2 A= 3 4 *d. For some vectors by, by € R? both the vectors | 0 | and | 1 | are solutions of the
1 3 4 -2 -1 1 1 I
[0 1 1 111 1 1
e A=11 2 1 11 1 equation Ax = by, and both the vectors | 0 | and | 1 | are solutions of the equation
f. A= AXx = b?_. 0 1
| 2 1 -1 1 1 -1
1 2 3 8. LetA=| |
a 3o

4. Find constraint equations that b must satisfy in order to be an element of
a. V =Span((-1,2,1),(2, -4, -2))
b. V =Span((1,0,1,1),(0,1,1,2). (1, 1,1,0)
c. V.=Span((1,0,1,1),(0,1,1,2), 2,-1,1,0)
d. V = Span((1,2,3),(-1,0,-2), (1, =2, 1))

a. For which numbers o will A be singular?

b. For all numbers o not on your list in part a, we can solve Ax =b for every vector
b € R2. For each of the numbers « on your list, give the vectors b for which we
can solve Ax = b.

l o o
5. By finding appropriate constraint equations, give a Cartesian equation of each of the 9
. . 3 . Let A = a 2 1
following planes in R~.
a o 1

a. x=s(1,-2,-2)+1t2,0,-1),s,r € R
b. x=(1,2,3) +s(1,-2,-2) +1(2,0,-1),5,t € R
c. x=(4,2,1)+s(1,0,1)+1(1,2,-1),5,1 €R

6. Suppose A is a3 x 4 matrix satisfying the equations

a. For which numbers o will A be singular?

b. For all numbers & not on your list in part a, we can solve AX = b for every vector
b € 3. For each of the numbers ¢ on your list, give the vectors b for which we
can solve Ax = b.

10. Let A be an m x n matrix. Prove or give a counterexample: If Ax = 0 has only the

] 0 i trivial solution x = 0, then Ax = b always has a unique solution.
2 11. Let A and B bem x n matrices. Prove or give acounterexample: If Ax = 0and Bx =0
A 1 =12 and A =11 have the same solutions, then the set of vectors b such that Ax = b is consistent is the
3 1 same as the set of the vectors b such that Bx = b is consistent.
4 - -2 . e . .
12. In each case, give positive integers m and n and an example of an m x n matrix A with
- the stated property, or explain why none can exist.
i . 0 ) ) ) A ; *a. Ax = b is inconsistent for every b € R™.
Find avectorx € R*suchthat Ax = | 1 {. Give yourreasoning. (Hint: Look careful o ' : *b Ax — b has one solution for every b € R™.
] ) L2 ) c. Ax = b has no solutions for some b € R™ and one solution for every otherb € R™.
at the vectors on the right-hand side of the equations.) d. Ax — b has infinitely many solutions for every b € R™.
7. Find a matrix A with the given property or explain why none can exist. 1 *e. Ax = bisinconsistent for some b € R and has infinitely many solutions whenever

it is consistent.
f. There are vectors by, bs, b3 so that Ax = by has no solution, Ax = b, has exactly
one solution, and Ax = bs has infinitely many solutions.

a. One of the rows of A is (1,0, 1), and for some b € R2 both the vectors | 0 | &
2 1
1 | are solutions of the equation Ax = b.

1 £13. Suppose A is an m x n matrix with rank m and v, ..., Vi € R" are vectors with
) o Span (vy, ..., v;) = R". Prove that Span (Avy, ..., Av) = R™.
*b. The rows of A are linear combinations of (0, 1,0, 1) and (0, 0, 1, 1), and fors¢ o
14. Let A be an m x n matrix with row vectors Ay, ..., A, € R".

l T *a. Suppose A} + -+ A, =0. Deduce that rank(A) < m. (Hint: Why must there
b € R2 both the vectors | | and are solution of the equation Ax = b.2 be a row of 0's in the echelon form of A?)
1 0 b. More generally, suppose there is some linear combination cjA; + -+ + CmAm =0,

where some ¢; # 0. Show that rank(A) < m.

™
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15. Let A be an /m x n matrix with column vectors a;, ..., a, € R™.

a. Suppose a; + - - - + a, = 0. Prove that rank(A) < n. (Hint: Consider solutions of |

Ax =0.)
b. More generally, suppose there is some linear combination ¢ja; + --- + ¢,a, = 0,
where some ¢; # 0. Prove that rank(A) < »n.

6 Some Applications

We whet the reader’s appetite with a few simple applications of systems of linear equations.
In later chapters, when we begin to think of matrices as representing functions, we will find
further applications of linear algebra.

6.1 Curve Fitting

The first application is to fitting data points to a certain class of curves.

'EXAMPLE 1

We want to find the equation of the line passing through the points (1, 1), (2,5), and
(=2, —11). Of course, none of us needs any linear algebra to solve this problem—the
point-slope formula will do; but let’s proceed anyhow.

We hope to find an equation of the form

y=mx+b

that is satisfied by each of the three points. (See Figure 6.1.) That gives us a system of "f ;.

FIGURE 6.1

the equation:

Im + b = 1
2m + b = 5
—2m + b = —11.

It is easy enough to solve this system of equations using Gaussian elimination:

11 1 I 1 1 1 1 1 1 0 4
2 1 S5{~ |0 -1 3f~|0 1| -=3|~|0 1|3
-2 1] -l 0 31| -9 0 O 0 0 0 0f

and so the line we sought is y = 4x — 3. The reader should check that all three '..'
indeed lie on this line. ;
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Of course, with three data points, we would expect this system of equations to be
inconsistent. In Chapter 4 we will see a beautiful application of dot products and projection
to find the line of regression (“least squares line”) giving the best fit to the data points in

that situation.
Given three points, it is plausible that if they are not collinear, then we should be able

to fit a parabola
y = ax’> +bx+c

to them (provided no two lie on a vertical line). You are asked to prove this in Exercise 7,
but let’s do a numerical example here.

EXRAMPLE 2

Given the points (0, 3), (2, —5), and (7, 10), we wish to find the parabola y = ax?+bx+c
passing through them. (See Figure 6.2.) Now we write down the system of equations in

[R5]
o
(=]

FIGURE 6.2 =5

the variables a, b, and ¢:
0Oa +0b +c= 3
4a + 2b + ¢ = =5
49a 4+ Tb + ¢ = 10.

We're supposed to solve this system by Gaussian elimination, but we can’t resist the temp-
tation to use the fact that ¢ = 3 and then rewrite the remaining equations as

2a + b = —4

Ta + b= 1,
which we can solve easily to obtain @ =1 and b = —6. Thus, our desired parabola is
y = 12 — 6x + 3; once again, the reader should check that each of the three data points lies

on this curve. A

The curious reader might wonder whether, given n + 1 points in the plane (no two with
the same x-coordinate), there is a polynomial P (x) of degree at most 1 so that alln+1
points lie on the graph y = P(x). The answer is yes, as we will prove with the Lagrange
interpolation formula in Chapter 3. It is widely used in numerical applications.



