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We return now to elaborate on the geometric discussion of solutions of systems of linear

equations initiated in Chapter 1. Because every solution of a homogeneous system of linear

equations is given as a linear combination of vectors, we should view the sets of solutions

geometrically as generalizations of lines, planes, and hyperplanes. Intuitively, lines and

planes differ in that it takes only one free variable (parameter) to describe points on a

line (so a line is “one-dimensional”), but two to describe points on a plane (so a plane is

“two-dimensional”). One of the goals of this chapter is to make algebraically precise the

geometric notion of dimension, so that we may assign a dimension to every subspace of

R’1. Finally, at the end of this chapter, we shall see that these ideas extend far beyond the

realm of R’1 to the notion of an “abstract” vector space.

Sulispaces of R’1

In Chapter 1 we learned to write the general solution of a system of linear equations in

standard form; one consequence of this procedure is that it enables us to express the solution

set of a homogeneous system as the span of a particular set of vectors. The alert reader

will realize she learned one way of reversing this process in Chapter 1, and we will learn

others shortly. However, we should stop to understand that the span of a set of vectors in

R” and the set of solutions of a homogeneous system of linear equations share some salient

properties.

C HAP-TER

VECTORSPACEi

1

Definition. A set V c 1R’ (a subset of W) is called a subspace of W if it satisfies all

the following properties:

1. 0 E V (the zero vector belongs to V).

2. Whenever v E V and c E 1k, we have cv e V (V is closed under scalar multi

plication).

3. Whenever v, w E V, we have v + w e V (V is closed under addition).
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12$ Chapter 3 Vector Spaces

EXAMPLE 1

Let’s begin with some familiar examples.

(a) The trivial subspace consisting of just the zero vector 0 e R’ is a subspace, since

cO = 0 for any scalar c and 0 + 0 = 0.

I (b) R itself is a subspace of R’1.

(c) Any line through the origin in R’ is a subspace of R: If the direction vector of is

Li R’, this means that
£={tu:teR).

To prove that £ is a subspace, we must check that the three criteria hold:

1. Setting t = 0, we see that 0

2. IfvEandcER,thenv=tuforsometER, andsocv=cQu)=(ct)u,

which is again a scalar multiple of u and hence an element of f.

3. If v, w e f, this means that v = su and w = tu for some scalars s and t. Then

v+w=su+tu=(s+t)u,sov+w E £,asneeded.

(d) Similar’y, any plane through the origin in R’ is a subspace of W1. We leave this to the

reader to check, but it is a special case of Proposition 1.2 below.

(e) Let a e R’ be a nonzero vector, and consider the hyperplane passing through the

origin defined by V = {x E RI? : a x = 0]. Recall that a is the normal vector of I

hyperplane. We c’aim that V is a subspace. As expected, we check the three criteria:

1. Since a 0 = 0, we conclude that 0 € V.

2. Supposev Vandc eR. Thena.(cv)=c(av)=cO=0,andsocv e Vas

well.

3. Supposev,w e V. Thena.(v+w)=(a•v)+(aw)=0+0=0,andthere-

fore v + w e V. as we needed to show.

EXAMPLE 2

[Let’s consider next a few subsets of R2 that are not subspaces, as pictured in Figure 1.1.

/

__

(a) (b)

Not subspaces of R2

FIGURE 1.1

As we commented on p. 93, to show that a multi-part definitionfaits, we only nec

find one of the criteria that does not hold.

(c)
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(a) S = {(x,,x7) eR2: x2 2x, + l} is not a subspace. All three criteria fail, but it
suffices to point out 0 S.

(b) S = {(x,, x) JR2 xjx2 = 0] is not a subspace. Each of the vectors v = (1,0) and
ce w = (0, 1) ties in 5, and yet their sum v + w = (1, 1) does not.

(c) S = {(x,, x2) e JR2 : x2 > 0] is not a subspace. The vector v = (0, 1) lies in 5, and
yet any negative scalar multiple of it, e.g., (—2)v = (0, —2), does not. A

We now return to our motivating discussion. First, we consider the solution set of a
homogeneous linear system.

Proposition 1.1. Let A be an in x a matrix, and consider the set of solutions of the
homogeneous system of linear equations Ax = 0, that is, let

V={xeR’HAx=O].

Then V is a subspace of JR”.
‘hen

Proof. The proof is essentially the same as Example 1(e) if we think of the equation Ax = 0

h
-. as being the collection of equations A, . x = A2 . x = = A,,, . x = 0. But we woulde

rather phrase the argument in terms of the linearity properties of matrix multiplication,
discussed in Section 1 of Chapter 2.

i the As usual, we need only check that the three defining criteria all hold.
fthe
teria: 1. To check that 0 e V. we recall that A 0 = 0, as a consequence of either of our ways

of thinking of matrix multiplication.
2. If v e V and c R, then we must show that cv e V. Well, A(cv) = c(Av) =

cO = 0.

3. Ifv,w E V,thenwe must show that v+w E V. Since Av = Aw =0, we have
A(v+w)=Av+Aw=0+0=0,asrequired.

Thus, V is indeed a subspace of JR’.

Next, let v1 Vt be vectors in JR”. In Chapter 1 we defined Span (v, Vk) to be
the set of all linear combinations of v1 Vt; that is,

Span (vi Vk) = {v JR” : v = c1v, + c2v2 + + cv/ for some scalars c1 ck}.

Generalizing what we observed in Examples 1(c) and (U), we have the following proposition.

Proposition 1.2. Let v1 Vk E JR”. Then V = Span (vi vk) is a subspace of JR”.

Proof. We check that all three criteria hold.

1. To see that t) e V, we merely take c1 = c2 = = ct = 0. Then c1v, + c2v2 +
+ ctvt = Ov,+ .. + OVt = O++O O.

2. Suppose v e V and c E JR. By definition, there are scalars c1 ck so that
V = cIV, + c,v2 + .. + ckVt. Thus,

cv = c(c,vi + cv + ... + ctvk) = (cc,)vi + (cci)v2 + + (CCk)Vt.,

which is again a linear combination of v1 Vt, so cv E V, as desired.

3. Suppose v, w E V. This means there are scalars c1 ct and d, dt so that’

v=c,vi+•+ctvt and w=d,v,+...+dtvt;

This might be a good time to review the content of the box following Exercise 1.1.22.
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adding, we obtain

v+w= (cjv1 +“ + CkVk) + (d1v1+ . + dkvk)

= (c1 + d1)v + + (Ck + dk)vk.

which is again a linear combination of v1,..., Vk and hence an element of V.

This completes the verification that V is a subspace of R. C

Remark. Let V c W be a subspace and let v1 Vk E V. Then of course the subspace

Span (v1 Vk) is a subsetof V. We say thatv1 Vk span V ifSpan (v1 Vk) = V.

(The point here is that eveiy vector in V must be a linear combination of the vectors

V Vk.)

EXAMPLE 3

The plane

is the span of the vectors

and v2=[O]

I and is therefore a subspace of 1k3. On the other hand, the plane

1 2

2 0 +S —l +t 0 :s,tER

0 2

is not a subspace. This is most easily verified by checking that 0 P,. Well, 0 E

precisely when we can find values of s and t such that

[]=[]+s[+t[].

This amounts to the system of equations

s+2t=—1

—s = 0

2s+ t= 0,

which we easily see is inconsistent.

A word of warning here: We might have expressed T1 in the form

I 1 2

1 +s —l +t 0 :s,tE1k

—1 2 1
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the presence of the “shifting” term may not prevent the plane from passing through the
origin. A

EXAMPLE 4

Let

and T2=SPan([l][l]).

We wish to find all the vectors contained in both P1 and 2’ i.e., the intersection T1 fl P2.
A vector x lies in both T1 and P2 if and only if we can write x in both the forms

1 0 —l 2

x=a 0 +b 1 and x=c 1 +d 1

0 1 0 2

for some scalars a, b, c, and d. Setting the two expressions for x equal to one another and
moving all the vectors to one side, we obtain the system of equations

1 0 —l 2

—a 0 —b 1 +c 1 +d 1 =0.

0 1 0 2

In other words, we want to find all solutions of the system

1 0 —l 2
—a

0 1 1 1
—b

=0,

0102
c

and so we reduce the matrix

1 0 —1 2

A= 0 1 1 1

0 102

to reduced echelon form

100 1

R= 0 1 0 2

0 0 1 —l

and find that every solution of Ay = 0 is a scalar multiple of the vector

—a —1

—b — —2

c — 1

d 1
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This means that

1 0 —1 2 1

x=l 0 +2 1 =1 1 +1 1 = 2

0 1 0 2 2

spans the intersection of T1 and T2. We expected such a result on geometric grounds, since

the intersection of two distinct planes through the origin in R3 should be a line. A

We ask the reader to show in Exercise 6 that, more generally, the intersection of

subspaces is again always a subspace. We now investigate some other ways to concoct new

subspaces from old.

EXAMPLE 5

Let U and V be subspaces of II. We define their sum to be

U + V = {x : x = u + v for some u e U and v e V].

That is, U + V consists of all vectors that can be obtained by adding some vector in U to

some vector in V, as shown in figure 1.2. Be careful to note that, unless one of U or V is

contained in the other, U + V is much larger than U U V. We check that if U and V are

subspaces, then U + V is again a subspace:

SinceOEUandOE V,wehaveO=O+Oe U+V.

Suppose x U + V and c e R. We are to show that cx U + V. By definition,

x can be written in the form

x u + V for some U e U and v e V.

x=u+v and y=u’+v’

Therefore, we have

forsomeu,u’U and V.v’EV.

x+y=(u+v)+(u’+v’)(u+u’)+(v+y’)E U+V,

noting that u + U’ E U and v + v’ e V since U and V are both closed under ad

dition.

Thus, as required, U + V is a subspace. Indeed, it is the smallest subspace containing both

U and V. (See Exercise 7.)

FIGURE 1.2

U+ 1’

1.

2.

Then we have

3.

cx = cfu + v) = (cu) + (cv) e U + V,

noting that cu U and cv e V since each of U and V is closed under scalar

multiplication.

Suppose x, y U + V. Then

I

I
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Given an in x n matrix A, we can think of the solution set of the homogeneous system

Ax = 0 as the set of all vectors that are orthogonal to each of the row vectors A1, A2 A,,

and, hence, by Exercise 1.2.11, are orthogonal to every vector in V = Span (A1 A,,,).

This leads us to a very important and natural notion.

Definition. Given a subspace V C W’, define

V = (x e W’ x v = 0 forevery v E U}.

V’ (read “V perp”) is called the orthogonal complement of V.2 (See Figure 1.3.)

EXAMPLE 6

Let V = Span ((1,2, 1)) c R3. Then V is by definition the plane W = {x : x1 + 2x2 +

x3 = 0}. And what is Wi-? Clearly, any multiple of (I, 2, 1) must be orthogonal to every

vector in W: but is Span ((1, 2, 1)) all of W’? Common sense suggests that the answer is

yes, but let’s be sure.
We know that the vectors

and []
span W (why?), so we can find W-’- by solving the equations

(—2, 1,0). x = (—1,0, 1). x = 0.

21n fact, both this definition and Proposition 1.3 work just fine for any subci V C IR”.

1
ince

A

)fl of
new

nU to
or V is

FIGURE 1.3

nd V are

Proposition 1.3. v-i- is a subspace of R”.

Proof. We check the requisite three properties.

1. 0eVbecause0v=0foreveryv€V.

2. Suppose x € V and c E ll. We must check that cx e V’. We calculate

(x) . V = c(x . v) = 0

lefinitiOfl,

for all v e V. as required.

3. Supposex,y V1;wemustcheckthatx+y E V-t-. Well.

(x+y)v=(xv)±(yv)=0+0=0

for all v e V, as needed.

der scalt

v,EV.

3d under ad

1ainiflg b

—9

1

0
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By finding the reduced echelon form of the coefficient matrix

t—2 1 ol ti 0 —1
A=I H-I

[—1 0 1] tO 1—2

I we see that, indeed, every vector in W- is a multiple of (1, 2, 1), as we suspected. A

It is extremely important to observe that if c e U-1-, then all the elements of V satisfy
the linear equation c . x = 0. Thus, there is an intimate relation between elements of V-1
and Cartesian equations defining the subspace V. We will explore and exploit this relation
more fully in the next few sections.

It will be useful for us to make the following definition.

Definition. Let V and W be subspaces of R’1. We say V and Ware orthogonal subspacesj
if every element of V is orthogonal to every element of W, i.e., if

v.w =0 foreveryv E V andeveryw W.

Remark. If V = w- or W = V-, then clearly V and W are orthogonal subspaces. On
the other hand, if V and 11 are orthogonal subspaces of R, then certainly W C V- and
V c W. (See Exercise 12.) Of course, W need not be equal to V-1: Consider, for
example, V to be the x1-axis and W to be the x,-axis in JR3. Then V- is the x2x3-plane,
which contains W and more. It is natural, however, to ask the following question: If
W = V1-, must U = W-? We will return to this shortly.

Exercises 3.1

1. Which of the following are subspaces? Justify your answer in each case.
a. {xER2:xj.+x-,=l]

a

b. {x € iR : x = b for some a, b 1k]

a+b

c. {xER3:xi+2xi<0]

d. tXER3.x+x+.t=i]

e. {x1k3:x+x+x=0}
f. {xR3:x+x+x=—11

2 1

g. {xER3:x=s 1 +t 2 forsomes,tER]

h. (x € JR3 : x

= [] + s [] + t [] for some s. t 1k)

i.{x€1k3:x=[4]+s[l]+t[2]forsomestER]
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*2. Decide whether each of the following collections of vectors spans R3.
a. (1,1,l),(1,2,2) c. (1,0,1),(1,—1,1),(3,5,3),(2,3,2)

b. (1, 1, 1), (1,2,2), (1,3,3) d. (1,0, —1), (2, 1, 1), (0, 1,5)
*3• Criticize the following argument: For any vector v, we have Ov = 0. So the first

A criterion for subspaces is, in fact, a consequence of the second criterion and could
therefore be omitted.

4. Let A be an a x a matrix. Verify that
satisfy
ofV1 V={xeR?:Ax=3x}

elation is a subspace of IR’1.

5. Let A and B be ni x a matrices. Show that

V={xeR’HAx=Bx]

‘paces I?is a subspace of R

6. a. Let U and V be subspaces of R1’. Define the intersection of U and V to be

UflV={xER’HxEUandxeV}.

ces. On Show that U fl V is a subspace of R. Give two examples.

V-i- and b. Is U U V {x e W : x eU orx e V} always a subspace ofR? Give a proof or

;ider, for counterexample.

x3-plane, 7. Prove that if U and V are subspaces of R and W is a subspace of W containing all the
stion: If i vectors of U and all the vectors of V (that is, U C W and V C W), then U + V c W.

This means that U + V is the smallest subspace containing both U and V.

8. Let vi vk e W and let v e R’1. Prove that

Span (vi, k) = Span (V1 ,....vk. v) if and only if v Span (v1, . . . , Vi).

9. Determine the intersection of the subspaces P1 and P2 in each case:
*a Pj=Span((l.0,1),(2,l,2)),P2=Span((l,—1.0).(l.3.2))

b. P = Span ((1,2.2), (0, 1, 1)), P2 = Span ((2, 1, 1). (1,0,0))

c.Pi=Span((l,0,—l),(l,2,3)),P2={x:xi—x2+x3=0)

*d. P1 = Span ((1,1,0,1), (0,1, 1,0)), P2 = Span ((0,0,1,1), (1,1,0,0))

e. P1 = Span ((1,0, 1,2), (0, 1,0, —1)), P2 = Span ((1, 1,2, 1), (1, 1,0, u)
*10. Let V C R? be a subspace. Show that V fl V1 {0}.

11. Suppose V and Ware orthogonal subspaces of RI?, i.e.. v w = 0 for every v e V and
every w E W. Prove that V fl W = {0}.

:*12. Suppose V and W are orthogonal subspaces of W, i.e., v . w = 0 for every v E V and
every w W. Prove that V C W’.

13. Let V C R’1 be a subspace. Show that V C (V1). Do you think more is true?

214. Let V and W be subspaces of R’ with the property that V C W. Prove that W1 C V1.

15. Let A be an rn x n matrix. Let V C W and W C R”1 be subspaces.
a. Show that {x RI? : Ax e W) is a subspace of W.

b. Show that {y e : y = Ax for some x e V] is a subspace of W.

16. Suppose A is a symmetric a x a matrix. Let V C W be a subspace with the property

that Ax V for every x e V. Show that Ay E V1 for all y E V1.

17. Use Exercises 13 and 14 to prove that for any subspace V C R, we have V1 =

18. Suppose U and V are subspaces of R”. Prove that (U + V)1 = U1 fl V1.
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2 The Four Fundamental Subspaces

As we have seen, two of the most important constructions we’ve studied in linear algebra—

the span of a collection of vectors and the set of solutions of a homogeneous linear system

of equations—lead to subspaces. Let’s use these notions to define four important subspaces

associated to an in x ii matrix.

The first two are already quite familiar to us from our work in Chapter 1, and we have

seen in Section 1 of this chapter that they are in fact subspaces. Here we will give them

their official names.

Definition (Column Spaced. Let A be an m x n matrix with column vectors a1,..,,

a,, e R”. We define the column space of A to be the subspace of R spanned by the

column vectors:
C(A) = Span (a1,..., a,1) c Rtm

Of course, the nullspace, N(A), is just the set of solutions of the homogeneous linear

system Ax = 0 that we first encountered in Section 4 of Chapter 1. What is less obvious is

that we encountered the column space, C(A), in Section 5 of Chapter 1, as we now see.

Proposition 2.1. Let A be an in x n matrix. Let b e R’11. Then b E C(A) if and only if

b = Ax for some x e W. That is,

C(A) = tb E R” : Ax = b is consistent).

Proof. By definition, C(A) = Span (aj a,,), and so b e C(A) if and only if b isa

linear combination of the vectors a1 a,,; i.e., b = x1a1 + ..• + x,,a for some scalars

x1 x,,. Recalling our crucial observation (*) on p. 53, we conclude that b E C(A) if

and only if b = Ax for some x E R”. The final reformulation is straightforward so long as I

we remember that the system Ax = b is consistent provided it has a solution. U

Remark. If. as in Section 1 of Chapter 2, we think of A as giving a function ISA: W —* ‘

then C(A) c llItm is the set of all the values of the function I’A i.e., the image of PA•

is important to keep track of where each subspace “lives” as you continue through El

chapter: The nulispace N(A) consists of x’s (inputs of and is a subspace of R”; t

column space C(A) consists of b’s (outputs of the function ISA) and is a subspace of

A theme we explored in Chapter 1 was that lines and planes can be described ei

parametrically or by Cartesian equations. This idea should work for general subspaC I

R”. We give a parametric description of a subspace V when we describe V as the span d

vectors v1 vk. Putting these vectors as the columns of a matrix A amounts to Wr

V = C(A). Similarly, giving C’artesian equations for V, once we translate them into Ifl

Definition (Nulispace). Let A be an in x ii matrix. The nulispace of A is the set of

solutions of the homogeneous system Ax = 0:

N(A)={xR” :Ax=0J.
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3bra—
system
spaces

qe have
ie them

set of

i by the

form, is giving V = N(A) for the appropriate matrix A.3 Much of Sections 4 and 5 of
Chapter 1 was devoted to going from one description to the other: In our present language,
by finding the general solution of Ax = 0, we obtain a parametric description of N(A)
and thus obtain vectors that span that subspace. On the other hand, finding the constraint
equations for Ax = b to be consistent provides a set of Cartesian equations for C(A).

EXAMPLE I

Let
1 —1 1 2

A= 1 0 1 1

1 2 1 —1

Of course, we bring A to its reduced echelon form

1 0 1 1

R= 0 1 0 —1

0000

and read off the general solution of Ax = 0:

Xj = —13 — 14

12= 14

13= 13

14 =
ous linear

obvious is

aoW see.

and only if.j

that is,

14,

nly if b is a

some S.-—

b E

rd 5o1ong

Ii —13—14 —1 —l

11 14 0
X - = 13 +14

13 13 1 0

X4 14 0 1

From this we see that the vectors

:R’1 -
igeoftIA*
foUgbtl

1tD
tce of ‘
space of R

—1 —1

0
and v2=

0

0 1

scribed et

a subSPa
as the siil

untS to wt

emiflt0

span N(A).

1 —1 2

On other hand, we know that the vectors 1 , 0 , and I span C(A). To find

1 2 —1

Cartesian equations for C(A), we find the constraint equations for Ax = b to be consistent

3The astute reader may be worried that we have not yet shown that every subspace can be described in either
manner. We will address this matter in Section 4.
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by reducing the augmented matrix

1 —1 1 2 b1 1 —1 1 2 b1

101 1 b20 10—1 b2—b1

1 2 1 —1 b3 0 0 0 0 2b1 —3b2+b3

from which we see that 2b1 — 3b2 + b3 = 0 gives a Cartesian description of C(A). Of

course, we might want to replace b’s with x’s and just write

C(A)= {x ER3 :2x1 —3x?+x3 0).

We can sunmIarize these results by defining new matrices

—1 —1

0 1 r
X= and Y=12 —3 1

10 L

01

and then we have N(A) = C(X) and C(A) = N(Y). One final remark: Note that the

coefficients of the constraint equation(s), i.e., the row(s) of Y, give vectors orthogonal to

C(A), just as the rows of A are orthogonal to N(A) (and hence to the columns of X). AJ

We now move on to discuss the last two of the four subspaces associated to the matrix

A. In the interest of fair play, since we’ve already dedicated a subspace to the columns of

A, it is natural to make the following definition.

Definition (Row Space). Let A be an in x n matrix with row vectors A1 A, € R.

We define the ivw space of A to be the suhspace of R’ spanned by the row vectors

R(A)=Span(A1 A,,1) cW.

It is important to remember that, as vectors in W, the A are still represented by column

vectors with n entries. But we continue our practice of writing vectors in parentheses when

it is typographically more convenient.

Noting that R(A) = C(AT), it is natural then to complete the quartet as follows:

Definition (Left Nulispace). We define the left nulispace of the in x n matrix A to be

(The latter description accounts for the terminology.)

Just as elements of the nulispace of A give us the linear combinations of the cotunm

vectors of A that result in the zero vector, elements of the left nullspace give us the linear

combinations of the row vectors of A that result in zero.

Once again, we pause to remark on the “locations” of the subspaces. N(A) and R(A)

are “neighbors,” both being subspaces of W’ (the domain of the linear map pA). C(A) and

N(AT) are “neighbors” in R, the range of p and the domain of ,UAT. We will Soon

a more complete picture of the situation.

In the discussion leading up to Proposition 1.3 we observed that vectors in the nullspa’

of A are orthogonal to all the row vectors of A—that is, that N(A) and R(A) are orthog0fl

N(AT)={x€Rm:ATx=O}={xeRm:xTA=OT].
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subspaces. In fact, the orthogonality relations among our “neighboring” subspaces will
provide a lot of information about linear maps. We begin with the following proposition.

Proposition 2.2. Let A be an in x n matrix. Then N(A) R(A)1.

Proof. If x e N(A), then xis orthogonal to each row vector A A,, of A. By Exercise
1.2.11, xis orthogonal to every vector in R(A) and is therefore an element of R(A). Thus,

Of N(A) is a subset of R(A)-1-, and so we need only show that R(A)- is a subset of N(A).
(Recall the box on p. 12.) If x e R(A)-’, this means that x is orthogonal to every vector
in R(A), so, in particular, x is orthogonal to each of the row vectors A1 A,,,. But this
means that Ax = 0, so x E N(A), as required. D

Since C(A) = R(AT), when we substitute AT for A the following result is an immediate
consequence of Proposition 2.2.

Proposition 2.3. Let A be an in x ii matrix. Ttien N(AT) = C(A).

Proposition 2.3 has a very pleasant interpretation in terms of the constraint equations
for Ax = b to be consistent—the Cartesian equations for C(A). As we commented in
Section 1, the coefficients of such a Cartesian equation give a vector orthogonal to C(A),

the i.e., an element of C(A)± = N(AT). Thus, a constraint equation gives a linear combination
ii to of the rows that results in the zero vector. But, of course, this is where constraint equations

A come from in the first place. Conversely, any such relation among the row vectors of A
gives an element of N(AT) = C(A)-’-, and hence the coefficients of a constraint equation

atrix that b must satisfy in order for Ax = b to be consistent.

as of

EXAMPLE 2

Let
1 2

1 1

01

1 2
)lumn We find the constraint equations for Ax = b to be consistent by row reducing the augmented
when matrix:

1 2 b1 1 2 b 1 2 b1

1 1 b2 0—1 b2—b1 0 1 b—b2

0 1 b3 0 1 b3 0 0 —b1+b2+b3

1 2 b4 0 0 b4—b1 0 0 —bi+b4

The constraint equations are

—b1 +b2+b3 =0

otumn + b4 = 0.
linear

- Note that the vectors

iR(A)
—1 —l

A) and = 1
and c

= 0

)nhaVe 1 - 0

ylispace
0 1

aogonai are in N(AT) and correspond to linear combinations of the rows yielding 0. A
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Proposition 2.3 tells us that N(AT) = C(A)1-, and so N(AT) and C(A) are orthogonal

subspaces. It is natural, then, to ask whether N(AT)L = C(A), as well.

Proposition 2.4. Let A be an in x n matrix. Then C(A) = N(AT)±.

Proof. Since C(A) and N(AT) are orthogonal subspaces, we infer from Exercise 3.1.12

that C(A) c N(AT)l. On the other hand, from Section 5 of Chapter 1 we know that there

is a system of constraint equations

Cj •b= Ck •b=O

that give necessary and sufficient conditions for b E 1k’” to belong to C(A). Setting V

Span (c1 Ct) c 1k’”, this means that C(A) = V.L. Since each such vector c is an

element of C(A)- = N(AT), we conclude that V C N(AT). It follows from Exercise 3.1.14

that NtAT). C = C(A). Combining the two inclusions, we have C(A) = N(AT)±, as

required. C

Now that we have proved Proposition 2.4, we can complete the circle of ideas. We

have the following result, summarizing the geometric relations of the pairs of the four

fundamental subspaces.

Theorem 2.5. Let A be an in x 11 matrix. Then

1. R(A)--=N(A)

2. N(A)-=R(A)

3. C(A)- = N(AT)

4. N(Ar)1 = C(A)

Proof. All but the second are the contents of Propositions 2.2, 2.3, and 2.4. The second

follows from Proposition 2.4 by substituting AT for A. C

figure 2.1 is a schematic diagram giving a visual representation of these results.

N(A)

/
Remark. Combining these pairs of results, we conclude that for any of the four fundamental

subspaces V = R(A), N(A), C(A), and N(AT), it is the case that (Vl)! = V. If we knew

that every subspace of 1k” could be so written, we would have the result in general; this will

come soon.

I

FIGURE 2.1

C(A)



2 The Four Fundamental Stthspaces 14 1

nal EXAMPLE 3

Let’s look for matrices whose row spaces are the plane in 1R3 spanned by 1 and —

.12 1 —l
iere and satisfy the extra conditions given below. Note, first of all, that these must be in x 3

matrices for some positive integers in.

(a) Suppose we want such a matrix A with 2 in its nulispace. Remember that
san —l
1.14

I
as

N(A) = R(A)-’-. We cannot succeed: Although 2 is orthogonal to —l , it isD
1 —l —l

We not orthogonal to I and hence not orthogonal to every vector in the row space.
four

(b) Suppose we want such a matrix with its column space equal to JR2. Now we win: We
need a 2 x 3 matrix, and we just try

[1 1 1
A=t

[1 —1 —l

econd Then C(A) = Span
([I] [ I])

= JR2 as required.

(c) Suppose we want such a matrix A whose column space is spanned by . This

seems impossible, but here’s an argument to that effect. If we had such a matrix

A, note that C(A) = N(AT) is spanned by
[i],

and so we would have to have

A1 + A = 0. This means that the row space of A is a line.
(d) following this reasoning, let’s look for a matrix A whose column space is spanned

1 0

by 0 and 1 . We note that A now must be a 3 x 3 matrix. As before, note that

I € C(A)-’- = N(AT), and so the third row of A must be the sum of the first two

rows. So now we just try

1 1 1

A= 1 —l —1

200

we knew

this will
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Perhaps it’s not obvious that A really works, but if we add the first and second columns,

21
we get 0 , and if we subtract them we get 2 , so C(A) contains both the desired

2]
2

vectors and hence their span. We leave it to the reader to check that C(A) is not larger

than this span.
A

Exercises 3.2

0

*1. Show that if B is obtained from A by performing one or more row operations, then

R(B) = R(A).

2. What vectors b are in the column space of A in each case? (Give constraint equations.)

Check that the coefficients of the constraint equations give linear combinations of the

rows of A summing to 0.
1 —2 1

3 —l

*a A = 6 —2 *b A = —t 1 2 c. A
3

—1 3 0

[—93 13—5 1 0 —l

3. Given each matrix A, find matrices X and Y so that C(A) = N(X) and N(A) = C(Y).

1 1 1

3—1 1 1 0 1 20

*a. A = 6 —2 b. A = 2 1 1 c. A =
I I I

—93 1—1 2 1 02

I 2 1 1

4. LetA= —1 0 3 4

2 2 —2 —3

a. Give constraint equations for C(A).

b. find vectors spanning N(AT).

1 00 12

L= 2 1 0 and U= 0 0

—l 1 0 0

If A = LU, give vectors that span R(A), C(A), and N(A).

5. Let 1 1

2 —2

00

1 0

6. a. Construct a matrix whose column space contains 1 and 1 and whose

11 0 1 1

contains 0 and 1 , or explain why none can exist.

0 1 0

* b. Construct a matrix whose column space contains I and I

I I 1 1

0 0
contains and

0
, or explain why none can exist.

0
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irns, 1 1 0 1 1 0
7. Let A = 1 1 0 and B —1 —1 0

sired 0 1 1 0 —1 —l
a. Give C(A) and C(B). Are they lines, planes, or all of R3?

axger b. Describe C(A + B) and C(A) + C(B). Compare your answers.
A 8. *a. Construct a 3 x 3 matrix A with C(A) C N(A).

b. Construct a 3 x 3 matrix A with N(A) C C(A).
c. Do you think there can be a 3 x 3 matrix A with N(A) = C(A)? Why or why not?
d. Construct a 4 x 4 matrix A with C(A) = N(A).

*9 Let A be an in x ii matrix and recall that we have the associated function 1tLA: IRE? —

then R defined by ti4tx) = Ax. Show that u,1 is a one-to-one function if and only if
N(A) = to].

lions.) 1O. Let A be an m x n matrix and B be an a x p matrix. Prove that
of the a. N(B) C N(AB).

b. C(AB) C C(A). (Hint: Use Proposition 2.1.)
17 c. N(B) = N(AB) when A is a x a and nonsingular. (Hint: See the box on p. 12.)
3 d. C(AB) = C(A) when B is a x a and nonsingular.
o 11. Let A be an m x a matrix. Prove that N(ATA) N(A). (Hint: Use Exercise 10 and

—l Exercise 2.5.15.)

C(Y) 12. Suppose A and B are in x it matrices. Prove that C(A) and C(3) are orthogonal.

subspaces of R” if and only if ATB = 0.1
13. Suppose A is an a x a matrix with the property that A2 = A.0

a. Prove that C(A) = {x e R” : x = Ax].
I b. ProvethatN(A) = tx e W : x =u— Auforsomeu ER’1].
2 c. Prove that C(A) fl N(A) = {O}.

d. Prove that C(A) + N(A)

Linear Independence and Basis

In view of our discussion in the preceding section, it is natural to ask the following question:

Given vectors v1 Vk e W and v e R”, is v E Span (v1

Of course, we recognize that this is a question of whether there exist scalars ci ck such
that v = Cjvi + C2V2 + . . . + CV/. As we are well aware, this is, in turn, a question of

nullspace whether a certain (inhomogeneous) system of linear equations has a solution. As we saw
in Chapter 1, one is often interested in the allied question: Is that solution unique?

EXAMPLE I
nulls?

Let

1 1 1 1
v1= 1 , v2= —1 , V3 0 , and v= 1

2 0 1 0
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We ask first of all whether v E Span (v1, v2, v3). This is a familiar question when we recast
it in matrix notation: Let

1 1 1

A= 1 —1 0 and b= 1

201 0

Is the system Ax = b consistent? Immediately we write down the appropriate augmented
matrix and reduce to echelon form:

1 1 1 1 1 1 1 1

1—10 l—’0 21 0,

2 0 1 0 0 0 0 —2

so the system is obviously inconsistent. The answer is: No, v is not in Span (v1, v2, v3).
What about

2

w= 3 ?

As the reader can easily check, w = 3v1 — v3, so w E Span (v1, v2, v3). What’s more,
w = 2v1 — v2 + v3, as well. So, obviously, there is no unique expression for w as a linear
combination of v1, v, and v3. But we can conclude more: Setting the two expressions for
w equal, we obtain

3v1—v3=2v1—v2+v3, i.e., vI+v7—2v3=O.

That is, there is a nontrivial relation among the vectors v1, v, and v3, and this is why we
have different ways of expressing w as a linear combination of the three of them. Indeed,
because v1 = —v2 + 2v3, we can see easily that any linear combination of v1, v2, and v3 is
a linear combination ofjust v2 and v3:

C1V1 +C’2V +C3V3 = c1(—v2 + 2v3) + c,v, + cv3 = (c — c1)v + (c3 + 2c1)v3.

The vector v1 was redundant, since

Span (v1, v1. v3) = Span (v2. v3).

We might surmise that the vector w can now be written uniquely as a linear combination 01

v2 and v3. This is easy to check with an augmented matrix:

1 1 2 1 1 2

[A’Iw]= —1 0 3 0 1 5

01 5 000

from the fact that the matrix A’ has rank 2, we infer that the system of equations haS

unique solution.



3 Linear independence and Basis 145

In the language of functions, the question of uniqueness is the question of whetherthe function s: —÷ R3 is one-to-one. Remember that we say f is a one-to-onefunction if

whenever a b, it must be the case that f(a) f(b).
Given some function y = 1(x), we might ask if, for a certain value r, we can solvethe equation 1(x) = r. When r is in the image of the function, there is at least onesolution. Is the solution unique? If f is a one-to-one function, there can be at mostone solution of the equation f(x) = r.

Next we show that the question of uniqueness we raised earlier can be reduced to onebasic question, which will be crucial to all our future work.
Proposition 3.1. Let V1 Vk e R’. Ifthe zero vector has a unique expression as a linearcombination ofvt , that is, if

cIvI+c7v2++ckvk=O ,. C1=c2==ck=O,
then every vector v e Span (VI v) has a unique expression as a linear combinationely1 vk.

Proof. By considering the matrix A whose column vectors are v1 ‘1k we can deduce this immediately from Proposition 5.4 of Chapter 1. However, we prefer to give acoordinate-free proof that is typical of many of the arguments we shall be encountering fora while.
Suppose that for some v e Span (V1 Vt) there are two expressions

V=c1V1 +c2v2++ckvk and
v= d1v1 + ct2v2 + ... +

Since the only way to express the zero vector as a linear combination of v1 Vk iswith every coefficient equal to 0, we conclude that c1 — d1 = c-, —

... c — d =0, which means, of course, that c1 = d1, c2 = d2 ,...,ck = elk. That is, v has a uniqueexpression as a linear combination of v1 ,...,vk.

we recast

wgmented

V2, v3).

hat’s more,
v as a linear
ressions for

- 2c1)V3.

Then, subtracting, we obtain
s is why we
m. Indeed,
v,, and V3 IS

nbinatiofbt’

0 = (c1 — d1)v1 + ... + (c dk)vk.

This discussion leads us to make the following definition.

yatioflS has a

Definition. The (indexed) set of vectors {vj ,...,vkl is called linearly independent if
cIvI+ c,v2 + + cv =0 c1= c2 = .“ = = 0,

that is, if the only way of expressing the zero vector as a linear combination of V1 Vkis the trivial linear combination DVI + + °tThe set of vectors {v1, } is called linearly dependent if it is not linearlyindependent—i.e., if there is some expression
c1v1 + c2v2 + + = 0, where not all the c1’s are 0.
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The language is problematic here. Many mathematicians—including at least one of

the authors of this text—often say things like “the vectors v1, . .. , v are linearly

independent.” But linear independence (or dependence) is a property of the whole

collection of vectors, not of the individual vectors. What’s worse, we really should

refer to an ordered list of vectors rather than to a set of vectors. For example, any

list in which some vector, v, appears twice is obviously giving a linearly dependent

collection, but the set {v, v} is indistinguishable from the set {v}. There seems to be

no ideal route out of this morass! Having said all this, we warn the gentle reader that

we may occasionally say, “the vectors v1 Vk are linearly (in)dependent” where it

would be too clumsy to be more pedantic. Just stay alert!!

EXAMPLE 2

We wish to decide whether the vectors

1 2 1

V1
=

, V2
= I

, and v3
1 7

1 1 0

2 1 —1

form a linearly independent set.

Here is a piece of advice: It is virtually always the case that when you are presented

with a set of vectors {v1 ,...,Vk} that you are to prove linearly independent, you should

write,

“Suppose c1v1 + c2v2 + .. + ckvk = 0. I must show that c1 = ... = ck 0.”

You then use whatever hypotheses you’re given to arrive at that conclusion.

The definition of linear independence is a particularly subtle one, largely because

of the syntax. Suppose we know that (v vk) is linearly independent. As a result,

we know that if it should happen that c1v1 + c2V, +... + Ckvk 0, then it must be

that c = c2 = Ck = 0. But we may never blithely assert that c1v1 + c2v2 +

+ckvk=O.

Suppose c1v1 + cv2 + c3v3 = 0, i.e.,

1 2 1

C1[0]+C2[1]+C3[]=O.

Can we conclude that c1 = c2 = C3 = 0? We recognize this as a homogeneous system of

linear equations:
1 2 1

[E1 =0.

j
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— By now we are old hands at solving such systems. We find that the echelon form of theof
coefficient matrix isny

1 2 1ole
aId 0 1 1

000

that and so our system of equations in fact has infinitely many solutions. For example, we can
re it take c1 = 1, c —1, and c3 = 1. The vectors therefore form a linearly dependent set. A

EXAMPLE 3

Suppose u, v, w e W. We show next that if {u, v, w} is linearly independent, then so is
fu + v, v + w, u + w]. Suppose

I ci(U+v)+C2(V+w)+c3(u+w)

We must show that c1 = c2 = C3 = 0. We use the distributive property to rewrite our
equation as

(c1 + c3)u + (c1 + c2)v + tC2 + C3)W = 0.

Since (u, v, w} is linearly independent, we may infer that the coefficients of u, v, and w
must each be equal to 0. Thus,

Cl +c3=0sented
should C1 + C2 0

C2 + C3 0,
2 0.” and we leave it to the reader to check that the only solution of this system of equations is,

in fact, c1 = c2 = = 0, as desired. A
because
a result,
mustbe

IEXAMPLE 4
- C2V2 +

Any time one has a list of vectors v, ,...,vk in which one of the vectors is the zero vector,
say v1 = 0, then the set of vectors must be linearly dependent, because the equation

lv1=0

is a nontrivial linear combination of the vectors yielding the zero vector. A

EXAMPLE 5

How can two nonzero vectors u and v give rise to a linearly dependent set? By definition,
this means that there is a linear combination

system of
au+bv=0,

where, to start, either a 0 or b 0. But if, say, a = 0, then the equation reduces to
by = 0; since b 0, we must have v = 0, which contradicts the hypothesis that the vectors
are nonzero. Thus, in this case, we must have both a and b 0. We may write u = —v,
so u is a scalar multiple of v. Hence two nonzero linearly dependent vectors are parallel
(and vice versa).
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How can a collection of three nonzero vectors be linearly dependent? As before, there

must be a linear combination
au + by + cw = 0,

where (at least) one of a, b, and c is nonzero. Say a 0. This means that we can solve

u = ——(by + cw)
= (—i)

v + (—) w,

so u e Span(v, w). In particular, Span(u, v, w) is either a line (if all three vectors u, v, w

are parallel) or a plane (when v and w are nonparallel). We leave it to the reader to think

about what must happen when a = 0. A

The appropriate generalization of the last example is the following useful criterion,

depicted in Figure 3.1.

FIGURE 3.1

Proposition 3.2. Suppose v1 e W1 form a linearly independent set, and suppose

V E W. Then {v1 Vk, v} is linearly independent if and only if v 0 Span (v1 Vk).

The contrapositive of the statement

is

“if P, then Q”

“if Q is false, then P is false.”

One of the fundamental points of logic underlying all of mathematics is that these

statements are equivalent: One is true precisely when the other is. (This is quite

reasonable. For instance, if Q must be true whenever P is true and we know that Q

is false, then P must be false as well, for if not, Q would have had to be true.)

It probably is a bit more convincing to consider a couple of examples:

• If we believe the statement “Whenever it is raining, the ground is wet” (or “if

it is raining, then the ground is wet”), we should equally well grant that “If the

ground is dry, then it is not raining.”

• If we believe the statement “If x = 2, then x2 = 4,” then we should believe that -

“if x2 4, then x 2.”

It is important not to confuse the contrapositive of a statement with the

of the statement. The converse of the statement “if F, then Q” is

Iv

I “if Q, then P.”
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there Note that even if we believe our two earlier statements, we do not believe their con-

verses:

“If the ground is wet, then it is raining”—it may have stopped raining a while

ye ago, or someone may have washed a car earlier.

“If x2 = 4, then x 2”—even though this is a common error, it is an error

nevertheless: x might be —2.

thmk
Proof. We will prove the contrapositive: Still supposing that v1 ,...,Vk R’1 form a

linearly independent set,

tenon
{v1 vk, v] is linearly dependent if and only if v Span (v Vt).

Suppose that v e Span (v1 ,...,vk). Then v = c1v1 + c,v2 + . + for some scalars

C1 Ct, 50

Cj V1+ C2Vi + .. + CY + (—l)v = 0,

from which we conclude that {v1 Vt, v} is linearly dependent (since at least one of the

coefficients is nonzero).
Now suppose {vi Vt, v} is linearly dependent. This means that there are scalars

C1 ,...,c, and c, not all 0, such that

C1V1 + CV2 + + CkVk + CV = 0.

Note that we cannot have c = 0: For if c were 0, we’d have c1 v1 + c2v + . . + c = 0,

and linear independence of {v1 ,...,Vt} implies c = = c, = 0, which contradicts our

assumption that (V1 t. v} is linearly dependent. Therefore c 0, and so

1 C1 C7 Ct

suppose v = ——(c1v1 + C2V2 +CkVk)
= (——) v1 + v2 + + (_—) Vt,

which tells us that v E Span (v1, t), as required. D

We now understand that when we have a set of linearly independent vectors, no proper

subset will yield the same span. In other words, we will have an “efficient” set of spanning

vectors (that is, there is no redundancy in the vectors we’ve chosen; no proper subset wilt

do). This motivates the following definition.

Definition. Let V C IR’ be a subspace. The set of vectors {v1 Vt) is called a basis

for V if
t these
is quite (1) V1 ,...,Vt span V, that is, V Span (v1, . . . , Vt), and

that Q (ii) (V1 Vk} is linearly independent.

We comment that the plural of basis is bases.4

(or “if
Ltffthe jEXAMPLE 6

ievethat Lete1 = (1,0 0),e (0, 1,0 0) e, = (0,..., 0, 1) E R. Then{e1 e,,}

is a basis for W, called the standard basis. To check this, we must establish that properties

(i)and(ii) above hold for V = R’1. The first is obvious: If x = (x1 ,...,x) e W, then x =

4Pronounced bas, to rhyme with Macy’s.
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x1e1 + x2e2 +•• + xe,1. The second is not much harder. Suppose c1e1 + c2e2 + +

= 0. This means that (ci, c2 c) = (0,0 0), and so c1 = C2 = = c,1 0.
A

EXAMPLE 7

Consider the plane given by V = {x E R3 — x2 + 2x3 = 0} C R3. Our algothms of

Chapter 1 tell us that the vectors

vi

= [] and v

= []
span V. Since these vectors are not parallel, it follows from Example 5 that they must be

linearly independent.

for the practice, however, we give a direct argument. Suppose

1 —2

C1V1 + C’V2 = C1 1 + C2 0 = 0.

0 1

c1—2c2 0

ci = 0

C2 0

from which we conclude that c1 = c2 = 0, as required. (For future reference, we note

that this information came from the free variable “slots.”) Therefore, {v1, v2] is linearly

independent and gives a basis for V, as required. A

The following observation may prove useful.

Corollary 3.3. Let V C I1 be a subspace, and let v1 ,...,Vk E V. Then (v1 ,...,Vk} isa

basisfor V if and only if evety vector of V can be written uniquely as a linear combination

ofv1 Vk.

Proof. This is immediate from Proposition 3.1.

This result is so important that we introduce a bit of terminology.

Definition. When we write v = c1v1 + c2v2 + + CkVk, we refer to c1 ck as thej j
coordinates of v with respect to the (ordered) basis {v1 Vk}.

Writing out the entries explicitly, we obtain

1EXAMPLE $

Consider the three vectors

1 1 1

V1 2 , v2= 1 , and v3= 0

1 2 2

I
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+ Let’s take a general vector b R3 and ask first of all whether it has a unique expression as
= 0. a linear combination of v1, v2, and v3. Forming the augmented matrix and row reducing.

A wefind

1 1 1 b 1 0 0 2b1—b3

2 1 0 b2 0 1 0 —4b1 +1)2+21)3

1 2 2 b3 0 0 1 3b1 — b2 — b
ms of

It follows from Corollary 3.3 that {v,. V2. v3) is a basis for , because an arbitrary vector
b E can be written in the form

b=(2b1—b3)vi+(—4b1+b2+2b3)v,+(3b1—b2—b3)v3.

C, C2 C]

And, what’s more,
LUSt be

ci=2bj—b3,

C2 = —4b1 + b7 + 21)3, and

C3 = 3b1 — b2 — 1)3

give the coordinates of b with respect to the basis (vi, v2, v3]. A

Our experience in Example 8 leads us to make the following general observation:

Proposition 3.4. Let A be an n x n matrix. Iheii A is nonsingular ifand only if its column
vectors form a basis for W.

Proof. As usual, let’s denote the column vectors of A by a, a2 a. Using Corollary
3.3, we are to prove that A is nonsingular if and only if every vector in R11 can be written

,‘e note uniquely as a linear combination of a1. a2 a. But this is exactly what Proposition 5.5
linearly

A
of Chapter 1 tells us.

Somewhat more generally (see Exercise 12), we have the following result.

Vk sa
bination EXAMPLE 9

Suppose A is a nonsingular ii x ii matrix and {vj v} is a basis for R. Then we wish
to show that {Av1 Av,,} is likewise a basis forW.

First, we show that (Av1 Av} is linearly independent. following our ritual, we
start by supposing that

c1(Avj) + c,(Av2) + . .. + c(Av,,) 0,

and we wish to show that c1 = = c, = 0. By linearity properties we have

0 = ciAvi + c2Av2 + . + c,Av,, = A(c1v1) + A(c2v2) + + A(cv)

= A(cjv, + c2v2 + . + c,,v).

Since A is nonsingular, the only solution of Ax = 0 is x = 0, and so we must have c1v1 +
C2V2 + + c,,v,, = 0. From the linear independence of {v1, ...,v,,} we now conclude
that c1 = c2 = = c 0, as required.

Now, why do these vectors span R11? (The result follows from Exercise 1.5.13, but
we give the argument here.) Given b e W, we know from Proposition 5.5 of Chapter 1
that there is a unique x R” with Ax = b. Since v1 ,...,v,, form a basis for R”, we can
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write x = c1v1 + c2v, + + c,v,, for some scalars c1, . . . , c,. Then, again by linearity

properties, we have

b = Ax = A(civ1 + c2v2 + + c,’.’11) = A(civi) + A(c,v) + + A(c,7v)

= ci(Av1) +c2(Av2) + +c,(Av,1),

as required.

Given a subspace V C W, how do we know there is some basis for it? This is a

consequence of Proposition 3.2 as well.

Theorem 3.5. Any stthspace V C R11 other than the trivial subspace has a basis.

Proof. Because V {Oy, we can choose a nonzero vector v1 V. If v1 spans V, then we

know {v1] will constitute a basis for V. If not, choose v2 Span (v1). from Proposition

3.2 we infer that {vj, v2} is linearly independent. If v1, v span V, then {v1, ‘2] will bea

basis for V. If not, choose v3 Span (v1, v2). Once again, we know that (vi, v2, v3} will

be linearly independent and hence will form a basis for V if the three vectors span V. We

continue in this fashion, and we are guaranteed that the process will terminate in at most a

steps: Once we have n + 1 vectors in RIZ, they must form a linearly dependent set, because

an a x (a ± 1) matrix has rank at most ,t (see Exercise 15). D

From this fact it follows that every subspace V C can be expressed as the row space

(or column space) of a matrix. This settles the issue raised in the footnote on p. 137. As an

application, we can now follow through on the substance of the remark on p. 140.

Proposition 3.6. Let V C R’ be a subspace. Then (Vj± = V.

Proof. Choose a basis {v1 ,...,Vk] for V. and consider the k x a matrix A whose rows

are v1 Vk. By construction, V = R(A). By Theorem 2.5, VL = R(A)- = N(A), and

= R(A), so (Vi-)-’- = v. Q

We conclude this section with the problem of determining bases for each of the four

fundamental subspaces of a matrix.

f EXAMPLE 10

Let
1 1 0 14

1 21 16
Az=

0 1 1 13

220 1 7

Gaussian elimination gives us the reduced echelon form R:

1 0 —1 0 1 1 0 1 4 1 0 —1 0 1

—1 100 121 16 01 102
=

_E
From this information, we wish to find bases for R(A), N(A), C(A), and N(AT).

Since any row of R is a linear combination of rows of A and vice versa, it is easy tO

see that R(A) = R(R) (see Exercise 3.2.1), so we concentrate on the rows of R. We elf

I as well use only the nonzero rows of R; now we need only check that they form a linead

1



3 Linear Independence and Basis 1 53

rity independent set. We keep an eye on the pivot “slots”: Suppose

0

Cl —1 +C2 1 +C3 0 =0.

o o flj
1 2 1

This means that

Cl 0

nwe C2 0

;itiOn —Cl + C2 0
.bea
)will

C3 0

‘We Cl+2C2+C3 0

•iost ‘ and so c = C2 = C3 0, as promised.
cause from the reduced echelon form R, we read off the vectors that span N(A): The general

solution of Ax = 0 is

space 13— X5 1 —1
As an

—x3—2x5 —1 —2

X X3 X3 1 +X5 0

X5 0 —l
eroWS
4),and 0 1

hefo

°

H] and

span N(A). On the other hand, these vectors are linearly independent, because if we take a
linear combination

1 —l

X3[1]+X5EO]0.

we infer (from the free variable slots) that X3 = 15 = 0.
Obviously, C(A) is spanned by the five column vectors of A. But these vectors cannot

be linearly independent—that’s what vectors in the nullspace of A tell us. From our vectors
spanning N(A), we know that

(*) a1 — a + a3 = 0 and —a1 — 2a2 — a4 + a5 = 0.
is easy

We may These equations tell us that a3 and a5 can be written as linear combinations of a1, a2, and

aline. a4. If we can check that {a, a, a4) is linearly independent, we’ll be finished. So we form

I
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a matrix A’ with these columns (easier: cross out the third and fifth columns of A), and

reduce it to echelon form (easier yet: cross out the third and fifth columns of R). Well, we

have
1 1 1 1 00

12 1 010
A= —R’

01 1 001

22 1 000

and so only the trivial linear combination of the columns of A’ will yield the zero vector.

In conclusion, the vectors

ai=[] a2=[] and

give a basis for C(A).

Rentark. The puzzled reader may wonder why, looking at the equations (*), we chose to

use the vectors a1, a-, and a4 and discard the vectors a3 and a5. These are the columns in

which pivots appear in the echelon form; the subsequent reasoning establishes their linear

independence. There might in any specific case be other viable choices for vectors to

discard, but then the proof that the remaining vectors form a linearly independent set may

be less straightforward.

What about the left nulispace? The only row of 0’s in R arises as the linear combination

-A1 — A2 + A3 + A4 =0

of the rows of A, so we expect the vector

—l

to give a basis for N(AT). As a check, we note it is orthogonal to the basis vectors a1, a2,

and a4 for C(A). Could there be any vectors in C(A)1 besides multiples of v? Aj

What is lurking in the background here is a notion of dimension, and we turn to this

important topic in the next section.

Exercises 3.3

1. Let v1 = (1.2,3), v2 = (2,4,5), and v3 = (2,4,6) eR3. Is each of the following

statements correct or incorrect? Explain.

a. The set {v1, v2, v3] is linearly dependent.

b. Each of the vectors VI, v2, and v3 can be written as a linear combination of the

others.
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nd *2. Decide whether each of the following sets of vectors is linearly independent.
we a. {(1,4).(2,9))CR2

b. {(1,4, 0), (2, 9,0)) CR3
c. {(l, 4,0), (2,9,0), (3, —2,0)] C
d. ((1, 1. 1). (2, 3,3), (0, 1,2)) C
e. {(l, 1, 1,3),(l, 1,3, 1),(l,3, 1, 1),(3,1, l,1)} CR4
f. ((l,1,l,_3),(1,l,_3,1),(J,—3,1,1),(—3,l,l,l)ICR4

*3• Decide whether the following sets of vectors give a basis for the indicated space.
a. {(1. 2, 1), (2,4,5), (1,2, 3)): R3
b. {(1,0,1),(l,2,4),(2,2,5)(2,2,—1)};R3
c. {(1,0, 2,3), (0,1,1,1), (1, 1,4, 4)]; R4
d. {(1, 0.2,3), (0. 1, 1. 1). (1, 1,4,4), (2, —2, 1,2)]; R4

4. In each case, check that {v1 v,7] is a basis for W and give the coordinates of the
given vector b W with respect to that basis.

F21 t31 t3
a.v1=I I,v2=I i;b=1

L3] [5] [4

)seto 1 1 fij
ins in *b. v = 0 , V2 = 2 , V3

= I I; b
=

linear 3 2 L2] L2
tmay 11 tl [3

c. V1 = 0 ,V2 I I,v I ;b= 0

1 2] Ll Li
I 1 1 1 2

0 1 1 1 0
tdv1= ,v2= ,v3= ,v4= ;b=

0 0 1 3 1

0 0 1 4

5. following Example 10, for each of the following matrices A, give a basis for each of
the subspaces R(A), C(A), N(A), and N(AT).

1 1

a, a2,
*a. A

= [ 6 _2] *c. A =

A —9 3
1 0 2

1 1 0 r
Ii 2—i 0

b.A= 2 1 1 d.A=’itothiS L2 4 —1 —1

j 1—1 2

*6. Give a basis for the orthogonal complement of the subspace W C K4 spanned by
(1,1, 1, 2) and(l,—1,5, 2).

7. Let V C R5 be spanned by (1,0, 1, 1. 1) and (0. 1, —1,0,2). By finding the left
nullspace of an appropriate matrix, give a homogeneous system of equations having V
as its solution set. Explain how you are using Proposition 3.6.

8. Suppose v, w e R and {v, w} is linearly independent. Prove that {v — w, 2v + w] is
linearly independent as well.

9. Suppose ii. v, w E K’ form a linearly independent set. Prove that u + V. v + 2w, and
—u + v + w likewise form a linearly independent set.
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10. Suppose v1 Vt are nonzero vectors with the property that v.v = 0 whenever

i j. Prove that {vj Vt} is linearly independent. (Hint: “Suppose c1v1 + c2v2 +

+ ctvt = 0.” Start by showing c1 = 0.)

11. Suppose v1 ,...,v, are nonzero, mutually orthogonal vectors in R.

a. Prove that they form a basis for IR’1. (Use Exercise 10.)

b. Given any x E R’1, give an explicit formula for the coordinates of x with respect to

the basis {v1 Vs]. n

c. Deduce from your answer to part b that x = proj x.

12. Give an alternative proof of Example 9 by applying Proposition 3.4 and Exercise 2.1.10.

*13. Prove that if {v1 ,...,vk} is linearly dependent, then every vector v € Span (v1 ,....vt)

can be written as a linear combination of Vj Vk infinitely many ways.

*14. Suppose v1 ,...,Vk E R form a linearly independent set. Show that for any I < (

the set {v1 Vt] is linearly independent as well.

15. Suppose k > n. Prove that any k vectors in R must form a linearly dependent set. (So

what can you conclude if you have k linearly independent vectors in W?)

16. Suppose i Vt € R form a linearly dependent set. Prove that for some j between

1 and k we have vj E Span (v1 ,...,vLi. v1+1 ,...,Vt). That is, one of the vectors

V1 ,...,Y, can be written as a linear combination of the remaining vectors.

17. Suppose v1 e R” form a linearly dependent set. Prove that either v = 0 or

v, e Span (V1 v1_1) for some i = 2,3 k. (Hint: There is a relation c1v1 +

cv, +.. + ckVk = 0 with at least one 0. Consider the largest such j.)

18. Let A be an in x 11 matrix and suppose V1 ,...,Vt € R11. Prove that if {Av1 Avt}

is linearly independent, then {v1 t} must be linearly independent.

19. Let A be an ii x n matrix. Prove that if A is nonsingular and tvi Vt) is linearly

independent, then {Av1, Ày2 Av] is likewise linearly independent. Give an ex

ample to show that the result is false if A is singutar.

20. Suppose U and V are subspaces of R’. Prove that (U fl V).L = U’ + V1. (Hint: Use

Exercise 3.1.18 and Proposition 3.6.)

21. Let A be an in x n matrix of rank ii. Suppose v1 Vt E R11 and tvi ,...,Vt} is lin

early independent. Prove that {AVI Avt] C Rm is likewise linearly independent.

(N.B.: If you did not explicitly make use of the assumption that rank(A) n, your

proof cannot be correct. Why?)

22. Let A be an n x a matrix and suppose v1, v2, v3 € R are nonzero vectors that satisfy

Av1 = v1

Av, = 2v

Av3 = 3v3.

Prove that {v1, v2. v3} is linearly independent. (Hint: Stan by showing that (v1, v2)

must be linearly independent.)

*23. Suppose U and V are subspaces of R’1 with U fl V = {0]. If {u1, ..., uj is a basis for

U and {v1 ,...,VL] is a basis for V, prove that {u1 Ut, V1 ,...,v] is a basis for

U + V.


