

Department of Mathematical Sciences

Examination paper for MA1201/MA6201 Lineær algebra

Academic contact during examination: Steffen Oppermann Phone: 91897712

Examination date: 01. December 2014

Examination time (from-to): 09:00-13:00

Permitted examination support material: No printed or hand-written support material is allowed. A specific basic calculator is allowed.

Other information:

Language: English Number of pages: 3 Number pages enclosed: 0

Checked by:

Problem 1

- a) Find all solutions to the system of linear equations
 - x-2y = -3 x+y-z = 2 2x-y+z = 12x+y+2z = 6
- **b**) Consider the matrix

$$A = \begin{bmatrix} 1 & -2 & 0 \\ 1 & 1 & -1 \\ 2 & -1 & 1 \\ 2 & 1 & 2 \end{bmatrix}.$$

Is A invertible? (Give a reason for your answer.)

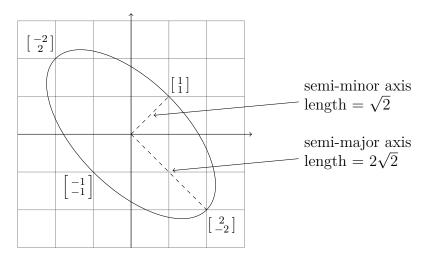
Problem 2 Consider the two vectors $\vec{u} = \begin{bmatrix} 2\\1\\2 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$ in \mathbb{R}^3 .

- a) Show that \vec{u} and \vec{v} are orthogonal. Normalize them to obtain a pair of orthonormal vectors \vec{u}_n and \vec{v}_n .
- b) Find a third vector \vec{w} such that $(\vec{u}_n, \vec{v}_n, \vec{w})$ is an orthonormal basis of \mathbb{R}^3 . (Hint: For \mathbb{R}^3 there is a construction which "creates" a vector orthogonal to two given ones.)
- c) Show in general: two orthogonal non-zero vectors in \mathbb{R}^n are linearly independent.

(Remember: A collection of vectors is called *orthogonal* if the dot product of any two distinct vectors from the collection is zero. It is called *orthonormal* if, in addition, all the vectors have length 1.)

Page 2 of 3

Problem 3 Consider the ellipse



Find the equation describing this ellipse.

(Hint: A strategy might be to first find the equation in a coordinate system that is rotated by a certain angle.)

Problem 4 Let A be a square matrix such that $A^2 + A + I = 0$.

- **a)** Show that A does not have any real eigenvalues.
- **b)** Which two complex numbers can be eigenvalues of A? Write them in polar form.
- c) Find a real 2×2 -matrix A that satisfies the equation above.

Problem 5 Let A be an $m \times n$ -matrix and B be an $n \times m$ -matrix, such that $AB = I_m$. Decide if the following claims are true. If they are, give a proof. If not, give a counter example.

- **a)** If C is an $n \times m$ -matrix such that $CA = I_n$, then C = B.
- **b)** If C is an $n \times m$ -matrix such that $AC = I_m$, then C = B.

Problem 6 Let A be a real 2×2 -matrix with (at least one) real eigenvalue.

Assume there is a real 2×2 -matrix *B* having no real eigenvalues such that AB = BA.

Show that $A = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$ for some $a \in \mathbb{R}$.

(Hint: What can be said about complex eigenvalues and eigenvectors of B? Can something be said about the product of A with these complex vectors?)