LEMMA T{ n =pg (fws J:W
promer), Than $om + 1

Lo

COROLLARY qRf™+!
Chapter 6

o (med n),

i

The RSA Algorithm

W. Trape, {. Wmtu;gm.- "'trwt.omm t Gapleperhy
wA A Cbot(;nJ WJ

6.1 The RSA Algorithm

Alice wants to send a message to Bob, but they have not had previous
contact and they do not want to take the time to send a courier with a
key. Therefore, all information that Alice sends to Bob will potentially be
obtained by the evil observer Eve. However, it is still possible for a message
to be sent in such a way that Bob can read it but Eve cannot,

With all the previously discussed methods, this would be impossible.
Alice would have to send a key, which Eve would intercept. She could then
decrypt all subsequent messages. The possibility of the present scheme,
called a public key cryptosystem, was first publicly suggested by Diffie
and Hellman in their classic paper [Diffie-Hellman|. However, they did not
yet have a practical implementation (although they did present an alterna-
tive key exchange procedure that works over public channels; see Section
13.1). In the next few years, several methods were proposed. The most
successful, based on the idea that factorization of integers into their prime
factors is hard, was proposed by Rivest, Shamir, and Adleman in 1977 and
is known as the RSA algorithm.

It had long been claimed that government cryptographic agencies had
discovered the RSA algorithm several years earlier, but secrecy rules pre-
vented them from releasing any evidence. Finally, in 1997, documents re-

137

138 Chapter 6. The RSA Algorithm

leased by CESG, a British cryptographic agency, showed that in 1970, James
Ellis had discovered public key cryptography, and in 1973, Clifford Cocks
. had written an internal document describing a version of the RSA algorithm
in which the encryption exponent e (see the discussion that follows) was the
same as the modulus n.

Here is how the RSA algorithm works. Bob chooses two distinct large
primes p and ¢ and multiplies them together to form

n = pq.

He also chooses an encryption exponent e such that

ged(e,(p—1)(g - 1)) = 1.

He sends the pair (n,e) to Alice but keeps the values of p and g secret. In
particular, Alice, who could possibly be an enemy of Bob, never needs to
know p and ¢ to send her message to Bob securely. Alice writes her message
as a number m. If m is larger than n, she breaks the message into blocks,
each of which is less than n. However, for simplicity, let’s assume for the
moment that m < n. Alice computes

e

c=m® (mod n)

and sends c to Bob. Since Bob knows p and g, he can compute (p—1)(g~1)
and therefore can find the decryption exponent d with

de=1 (mod (p—1)(g—1)).

As we'll see later,
m=c (mod n),

so Bob can read the message.
We summarize the algorithm in the following table.

The RSA Algorithm

Bob chooses secret primes p and ¢ and computes n = pgq.
Bob chooses ¢ with ged(e, (p— 1)(g— 1)) = 1.

Bob computes d with de = 1 (mod (p — 1)(g — 1)).

Bob makes n and e public, and keeps p, ¢, d secret.

. Alice encrypts m as ¢ = m® (mod n) and sends ¢ to Bob.
- Bob decrypts by computing m = ¢* (mod n).

S o o0 N

6.1. The RSA Algorithm 139

Example. Bob chooses
p = 885320963, g = 238855417.

Then
n=1p-q=211463707796206571.

Let the encryption exponent be
e = 9007.

The values of n and e are sent to Alice.

Alice’s message is cat. We will depart from our earlier practice of num-
bering the letters starting with @ = 0; instead, we start the numbering at
a = 01 and continue through z = 26. In the previous method, if the letter
a appeared at the beginning of a message, it would yield a message number
m starting with 00, so the a would disappear.

The message is therefore

m = 30120.
Alice computes
c=m* = 30120°"" = 113535859035722866 (mod n).

She sends ¢ to Bob.
Since Bob knows p and g, he knows (p— 1)(g— 1). He uses the extended
Fuclidean algorithm (see Section 3.2) to compute d such that

de=1 (mod (p—1)g—1)).

The answer is
d = 116402471153538991.

Bob computes
¢ = 113535859035722866110402471153538991 = 3619 (mod 1),

0 he obtains the original message. |

There are several aspects that need to be explained, but perhaps the
most important is why m = ¢? (mod n). Recall Euler’s theorem (Section
3.6): If ged(a,n) = 1, then a®™ =1 (mod n). In our case, d(n) = ¢{pg) =
(p—1)(g—1). Suppose ged(m,n) = 1. This is very likely the case; since p and

140 Chapter 6. The RSA Algorithm

q are large, m probably has neither as a factor. Since de = 1 (mod @{n)),
we can write de = 1 + ké(n) for some integer k. Therefore

¢ = (m®)? = mItholn) = oy . (MY = m 1% =y (mod n).

We have shown that Bob can recover the message. If ged(m,n) # 1, Bob
still recovers the message. See Exercise 13.

What does Eve do? She intercepts n, e, . She does not know 7 q,d. We
assume that Eve has no way of factoring n. The obvious way of computing
d requires knowing ¢(n). We show later that this is equivalent to knowing
p and g. Is there another way? We will show that if Eve can find d, then
she can probably factor n. Therefore, it is unlikely that Eve finds d.

Since Eve knows ¢ = m® {(mod n), why doesn’t she simply take the eth
root of ¢? This works well if we are not working mod n but is very difficult
in our case. For example, if you know that m3 = 3 {(mod 85), you cannot
calculate the cube root of 3, namely 1.2599. . ., on your calculator and then
reduce mod 85. Of course, a case-by-case search would eventually yield
m =7, but this method is not feasible for large n.

How does Bob choose p and g7 They should be chosen at random,
independently of each other. How large depends on the level of security
needed, but it seems that they should have at least 100 digits. For reasons
that we discuss later, it is perhaps best if they are of slightly different lengths.
When we discuss primality testing, we’ll see that finding such primes can be
done fairly quickly. A few other tests should be done on p and g to make
sure they are not bad. For example, if P — 1 has only small prime factors,
then n is easy to factor by the p — 1 method (see Section 6.4), so p should
be rejected and replaced with another prime.

Why does Bob require ged(e, (p—1)(g— 1)) = 1?7 Recall (see Section 3.3)
that de =1 (mod (p — 1){g ~ 1)) has a solution d if and only if ged(e, (p —
1}{(g — 1)) = 1. Therefore, this condition is needed in order for d to exist.
"The extended Euclidean algorithm can be used to compute d quickly. Since
P —1is even, e = 2 cannot be used; one might be tempted to use ¢ = 3.
However, there are dangers in using small values of e (see Section 6.2 and
Computer Problem 14), so something larger is usually recommended. For
example, one could let e be a moderately large prime. Then there is no
difficulty ensuring that ged(e, (p — 1)(¢ — 1)) = 1.

In the encryption process, Alice calculates me (mod n). Recall that this
can be done fairly quickly and without large memory, for example, by suc-
cessive squaring. This is definitely an advantage of modular arithmetic:
If Alice tried to calculate me first, then reduce mod n, it is possible that
recording m® would overflow her computer's memory. Similarly, the decryp-
tion process of calculating ¢ (mod n) can be done efficiently. Therefore, all
the operations needed for encryption and decryption can be done quickly

6.1. The RSA Algorithm 141

(i.e., in time a power of logn). The security is provided by the assumption
that n cannot be factored.

We made two claims. We justify them here. Recall that the point of
these two claims was that finding #{n) or finding the decryption exponent
d is essentially as hard as factoring n. Therefore, if factoring is hard, then
there should be no fast, clever way of finding d.

Claim 1: Suppose n = pq is the product of two distinct primes. If we
know n and ¢{n), then we can quickly find p and ¢.

Note that

n—¢n)+l=pg—(p-1)(g-1)+1=p+q.
Therefore, we know pg and p + g. The roots of the polynomial
X = (n—¢(n)+ DX +n=X% — (p4q)X +pg = (X - p)(X — o)
are p and g, but they can also be calculated by the quadratic formula:

(n—¢(n) +1) £ /(n — g(n) + 1)2 — 4n
: _

b, g =

This yields p and g.
For example, suppose n = 221 and we know that #(n) = 192. Consider
the quadratic equation
X%~ 30X + 221.

30 £ 302 —4.221
p, q = 2 =

Claim 2: If we know d and e, then we can probably factor n.

In the discussion of factorization methods in Section 6.4, we show that if
we have a universal exponent b > 0 such that ab = 1 (mod n) for all a with
ged{a,n) = 1, then we can probably factor n. Since de — 1 is a multiple of
$(n), say de - 1 = k¢(n), we have

The roots are

13, 17.

a®l = (a?(M)* =1 (mod n)

whenever ged(a,n) = 1. The method for unjversal exponents can now be
applied.

One way the RSA algorithm can be used is when there are several banks,
for example, that want to be able to send financial data to each other. If
there are several thousand banks, then it is impractical for each pair of banks
to have a key for secret communication. A better way is the following. Each
bank chooses integers n and e as before. These are then published in a public

154 Chapter 6. The RSA Algorithm

Year | Number of digits
1964 20

1974 45

1984 71

1994 129

1999 155

Table 6.1: Factorization Records

6.5 The RSA Challenge

When the RSA algorithm was first made public in 1977, the authors made
the following challenge.

Let the RSA modulus be

n =
114881625757888867669235779976146612010218296721242362
62561842935706935245733897830597123563958705058989075
147599290026879543541

and let e = 9007 be the encryption exponent. The ciphertext is

c =
968696137546220614771409222543558829057599911245743198
746951209308162982251457083569314766228839896280133919
80551828945157815154.

Find the message.

The only known way of finding the plaintext is to factor n. In 1977,
it was estimated that the then-current factorization methods would take
4 x 108 years to do this, so the authors felt safe in offering $100 to anyone
who could decipher the message before April 1, 1982. However, techniques
have improved, and in 1994, Atkins, Graff, Lenstra, and Leyland succeeded
in factoring n.

They used 524339 “small” primes, namely those less than 16333610, plus
they allowed factorizations to include up to two “large” primes between
16333610 and 23°. The idea of allowing large primes is the following: If one
large prime ¢ appears in two different relations, these can be multiplied to
produce a relation with ¢ squared. Multiplying by ¢~? (mod n) yields a
relation involving only small primes. In the same way, if there are several

