
Pell's Equation

To solve the so-called Pell's Equation

x2 − Dy2 = 1

in integers one uses the continued fraction expansion for
√

D. We assume that
D ≥ 2 is not a square. The expansion

√
D = a0 +

1

a1 +
1

a2 + · · ·

turns out to be periodic. Indeed, it is of the form
√

D = [a0; a1, a2, . . . , a2, a1, 2a0]

where the period a1, a2, . . . , a2, a1, 2a0 is of length m.
For example

√
53 = [7, 3, 1, 1, 3, 14], m = 5

√
54 = [7; 2, 1, 6, 1, 2, 14], m = 6

where a0 = 7, 2a0 = 14 and 3, 1, 1, 3 is a palindrome (ABBA, REG-
NINGER).

We only need to know that it is periodic, which property we do not prove now.
Then we form the sequence

p0

q0

,
p1

q1

,
p2

q2

, . . .

of convergents, where

p0

q0

= a0,
p1

q1

= a0 +
1

a1

,
p2

q2

= a0 +
1

a1 +
1

a2

, . . . .

The fundamental formulas
{

pk+1 = ak+1pk + pk−1

qk+1 = ak+1qk + qk−1

are expedient for the calculation.
Teorem 1. If x = p, y = q solves Pell's equation, then p/q is one of the
convergents in the expansion of

√
D.

Bevis. The idea is that p/q approximates
√

D so accurately that only a conver-
gent is capable of that. Indeed, we estimate

(p −
√

Dq)(p +
√

Dq) = 1

0 <
p

q
−
√

D =
1

q(p +
√

Dq)
<

1

2q2



because p ≥
√

Dq > q, so that p +
√

Dq > 2q.
Now the theorem follows from the following lemma, which we do not prove

here.
Lemma 1. If the (irrational) number x > 0 satis�es

∣

∣

∣
x −

a

b

∣

∣

∣
<

1

2b2
, (a,b natural numbers),

then a/b must be one of the convergents in the expansion of x in a continued
fraction.

The next problem is to �gure out which convergents yield an answer. Since
p/q >

√
D, they must be of odd orders. In terms of the period length m, the

answer is the following :

x = pm−1, y = qm−1, if m is even
x = p2m−1, y = q2m−1, if m is odd.

This yields the smallest solution, say x1,y1. The formula

xn +
√

Dyn = (x1 +
√

Dy1)
n, n = 1, 2, . . .

then generates all solutions.

Thus, for example,

x2 +
√

Dy2 = x2
1 + Dy2

1 +
√

D · 2x1y1,

so that
x2 = x2

1 + Dy2
1 , y2 = 2x1y1.

The proof that we have selected the right convergents and that we obtain all
positive solutions is omitted. That the formula generates solutions, if one starts
from a solution, follows from

x2
n
− Dy2

n
= (xn −

√
Dyn)(xn +

√
Dyn)

= (x1 −
√

Dy1)
n(x1 +

√
Dy1)

n

= (x2
1 − Dy2

1)n = 1n = 1,

where also the property that

xn −
√

Dyn = (x1 −
√

Dy1)
n

is needed.

There is also a formula due to Brahmagupta (598-670) that produces
solutions from solutions:

(x2 − Dy2)(u2 − Dv2) = (xu + Dyv)2 − D(xv + yu)2.

In particular,

(x2 − Dy2)2 = (x2 + Dy2)2 − D(2xy)2.



We turn to another example.

Solve the equation x2 − 41y2 = 1. In accordance with the procedure out-
lined above, we �nd that

√
41 = [6; 2, 2, 12], m = 3; 2m − 1 = 5.

k 0 1 2 3 4 5 6

ak 6 2 2 12 2 2 12
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1

13
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32

5

397

62

826
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2049

320

25414

3969
.

Since p5/q5 = 2049/320, the solution is given by x = 2049, y = 320.
(In passing, we seize the opportunity to mention that

0 <
2049

320
−

√
41 <

1

320 · 3969
<

1

2 · 3202
.)

All solutions come from

xn +
√

41yn = (2049 +
√

41 · 320)n, n ≥ 1.

We have x2 = 8396801, y2 = 1311360.
For the expansion of the square root the procedure is

√
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√
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1
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√
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5
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5
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√
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.

Now the pattern repeats itself. We have

√
41 = 6 +

1

2 +
1

2 +
1

12 +
1

√

41+6

5

from which we easily �nish.


