Pell's Equation

To solve the so-called Pell's Equation

$$
x^{2}-D y^{2}=1
$$

in integers one uses the continued fraction expansion for \sqrt{D}. We assume that $D \geq 2$ is not a square. The expansion

$$
\sqrt{D}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots}}
$$

turns out to be periodic. Indeed, it is of the form

$$
\sqrt{D}=\left[a_{0} ; \overline{a_{1}, a_{2}, \ldots, a_{2}, a_{1}, 2 a_{0}}\right]
$$

where the period $a_{1}, a_{2}, \ldots, a_{2}, a_{1}, 2 a_{0}$ is of length m.
For example

$$
\begin{aligned}
& \sqrt{53}=[7, \overline{3,1,1,3,14}], \quad m=5 \\
& \sqrt{54}=[7 ; \overline{2,1,6,1,2,14}], \quad m=6
\end{aligned}
$$

where $a_{0}=7,2 a_{0}=14$ and $3,1,1,3$ is a palindrome (ABBA, REGNINGER).

We only need to know that it is periodic, which property we do not prove now.
Then we form the sequence

$$
\frac{p_{0}}{q_{0}}, \frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}, \ldots
$$

of convergents, where

$$
\frac{p_{0}}{q_{0}}=a_{0}, \quad \frac{p_{1}}{q_{1}}=a_{0}+\frac{1}{a_{1}}, \quad \frac{p_{2}}{q_{2}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}}}, \quad \ldots
$$

The fundamental formulas

$$
\left\{\begin{aligned}
p_{k+1} & =a_{k+1} p_{k}+p_{k-1} \\
q_{k+1} & =a_{k+1} q_{k}+q_{k-1}
\end{aligned}\right.
$$

are expedient for the calculation.
Teorem 1. If $x=p, y=q$ solves Pell's equation, then p / q is one of the convergents in the expansion of \sqrt{D}.
Bevis. The idea is that p / q approximates \sqrt{D} so accurately that only a convergent is capable of that. Indeed, we estimate

$$
\begin{aligned}
(p-\sqrt{D} q)(p+\sqrt{D} q) & =1 \\
0<\frac{p}{q}-\sqrt{D} & =\frac{1}{q(p+\sqrt{D} q)}<\frac{1}{2 q^{2}}
\end{aligned}
$$

because $p \geq \sqrt{D} q>q$, so that $p+\sqrt{D} q>2 q$.
Now the theorem follows from the following lemma, which we do not prove here.

Lemma 1. If the (irrational) number $x>0$ satisfies

$$
\left|x-\frac{a}{b}\right|<\frac{1}{2 b^{2}}, \quad \text { (a,b natural numbers), }
$$

then a / b must be one of the convergents in the expansion of x in a continued fraction.

The next problem is to figure out which convergents yield an answer. Since $p / q>\sqrt{D}$, they must be of odd orders. In terms of the period length m, the answer is the following:

$$
\begin{aligned}
x=p_{m-1}, & y=q_{m-1}, \quad \text { if } m \text { is even } \\
x=p_{2 m-1}, & y=q_{2 m-1}, \quad \text { if } m \text { is odd. }
\end{aligned}
$$

This yields the smallest solution, say x_{1}, y_{1}. The formula

$$
x_{n}+\sqrt{D} y_{n}=\left(x_{1}+\sqrt{D} y_{1}\right)^{n}, \quad n=1,2, \ldots
$$

then generates all solutions.
Thus, for example,

$$
x_{2}+\sqrt{D} y_{2}=x_{1}^{2}+D y_{1}^{2}+\sqrt{D} \cdot 2 x_{1} y_{1},
$$

so that

$$
x_{2}=x_{1}^{2}+D y_{1}^{2}, \quad y_{2}=2 x_{1} y_{1} .
$$

The proof that we have selected the right convergents and that we obtain all positive solutions is omitted. That the formula generates solutions, if one starts from a solution, follows from

$$
\begin{aligned}
x_{n}^{2}-D y_{n}^{2} & =\left(x_{n}-\sqrt{D} y_{n}\right)\left(x_{n}+\sqrt{D} y_{n}\right) \\
& =\left(x_{1}-\sqrt{D} y_{1}\right)^{n}\left(x_{1}+\sqrt{D} y_{1}\right)^{n} \\
& =\left(x_{1}^{2}-D y_{1}^{2}\right)^{n}=1^{n}=1,
\end{aligned}
$$

where also the property that

$$
x_{n}-\sqrt{D} y_{n}=\left(x_{1}-\sqrt{D} y_{1}\right)^{n}
$$

is needed.
There is also a formula due to Brahmagupta (598-670) that produces solutions from solutions:

$$
\left(x^{2}-D y^{2}\right)\left(u^{2}-D v^{2}\right)=(x u+D y v)^{2}-D(x v+y u)^{2}
$$

In particular,

$$
\left(x^{2}-D y^{2}\right)^{2}=\left(x^{2}+D y^{2}\right)^{2}-D(2 x y)^{2} .
$$

We turn to another example.
Solve the equation $x^{2}-41 y^{2}=1$. In accordance with the procedure outlined above, we find that

\[

\]

Since $p_{5} / q_{5}=2049 / 320$, the solution is given by $x=2049, y=320$.
(In passing, we seize the opportunity to mention that

$$
\left.0<\frac{2049}{320}-\sqrt{41}<\frac{1}{320 \cdot 3969}<\frac{1}{2 \cdot 320^{2}} .\right)
$$

All solutions come from

$$
x_{n}+\sqrt{41} y_{n}=(2049+\sqrt{41} \cdot 320)^{n}, \quad n \geq 1
$$

We have $x_{2}=8396801, y_{2}=1311360$.
For the expansion of the square root the procedure is

$$
\begin{aligned}
\sqrt{41} & =6+\sqrt{41}-6=6+\frac{1}{\frac{1}{\sqrt{41}-6}} \\
\frac{1}{\sqrt{41}-6} & =\frac{\sqrt{41}+6}{5}=\frac{10+\sqrt{41}-4}{5}=2+\frac{\sqrt{41}-4}{5} \\
& =2+\frac{25}{5(\sqrt{41}+4)}=2+\frac{1}{\frac{\sqrt{41}+4}{5}} \\
& =2+\frac{1}{\sqrt{41}+6} \\
\frac{\sqrt{41}+4}{5} & =\frac{10+\sqrt{41}-6}{5}=2+\frac{\sqrt{41}-6}{5}=2+\frac{5}{5(\sqrt{41}+6)} \\
\sqrt{41}+6 & =12+\sqrt{41}-6=12+\frac{1}{\frac{\sqrt{41}+6}{\mathbf{5}}} .
\end{aligned}
$$

Now the pattern repeats itself. We have

$$
\sqrt{41}=6+\frac{1}{2+\frac{1}{2+\frac{1}{12+\frac{1}{\frac{\sqrt{41}+6}{5}}}}}
$$

from which we easily finish.

