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We study the convergence of numerical integrators for ordinary
differential equations (ODEs). The notions of order of convergence
and local errors are particularly important.

Introduction
We assume given the (system of) ordinary differential equation(s) and initial
value

x′ = f(t, x), x(t0) = x0. (1)

In the the following we will also assume that a unique solution x(t) to (1) exists
and that the function f(t, x) is “sufficiently smooth.” Morever, we will assume
that f(t, x) satisfies the ‘Lipschitz’ condition (is “Lipschitz continuous”)

|f(t, x)− f(t, x̃)| ≤ L|x− x̃|, (2)

for all x and x̃. The constant L > 0 does not depend on x and x̃ directly, but
the value of L will in general depend on the specifics of the function f(t, x).

Given step size h we seek approximations {xi}i≥1 to x(t) at the points
{ti}i≥1 according to the rule

xi ≈ x(ti), ti = t0 + ih, i = 1, 2, . . .

This process is illustrated in Figure 1 below.

∗Slightly adapted from an original manuscript by A. Kværnø.

1

x(t)

t0 t1 t2 t3 ti

x0

x1
x2 x3

xi

Figure 1: Numerical approximations to solution of ODE (1)

Definitions
Let T > t0 be some fixed point and assume that we use n steps with our
method to find and approximation to x(T ). The global error is the error

En = x(T )− xn

with step size h = (T − t0)/n. The method is convergent if

lim
n→∞

En = 0 (equivalently h → 0)

for all ODEs (1) satisfying the above assumptions. The method is of order p
if

En = O(hp).

The global error depends on two factors, both of which are depicted in
figure 2 below,

• The local error, di, which is the error made in each step, i.

• The propagation of errors.

Let us illustrate these concepts by the famous Euler method given by

xi+1 = xi + hf(ti, xi), i = 0, 1, 2, . . .

The local truncation error is determined by comparing the numerical solution
to the exact solution after a single step assuming exact initial values, xi = x(ti).
Thus

di+1 = x(ti + h)− (xi + hf(ti, xi))

= x(ti) + hx′(ti) + 1
2h2x′′(ti + ξh)− xi − hf(ti, xi)
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Figure 2: Local truncation errors and error propagation

for some ξ ∈ (0, 1). Using the ODE (1), we then get

di+1 = 1
2h2x′′(ti + ξh)

whence, if x′′(t) is bounded in the region of interest, there exists a constant
C > 0 such that

|di| ≤ C · h2 (3)

for all i = 0, 1, . . . , n− 1.

Convergence of the Euler method
Let Ei = x(ti) − xi be the global error after i steps. From the definitions of
the local error di and the Euler formula, we get

x(ti + h) = x(ti) + hf(ti, x(ti)) + di,

xi+1 = xi + hf(ti, xi)

from which, after subtracting the latter equation from the former, we obtain

Ei+1 = Ei + h
(
f(ti, x(ti))− f(ti, xi)

)
+ di
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for all i. The Lipschitz condition (2) and the local error bound (3) then give

|Ei+1| ≤ (1 + hL)|Ei|+ Ch2,

for all i.
Repeated application of this relation now yields

|E1| ≤ (1 + hL)|E0|+ Ch2

|E2| ≤ (1 + hL)|E1|+ Ch2 = (1 + hL)2|E0|+ (1 + hL + 1)Ch2

...
|En| ≤ (1 + hL)n|E0|+

n−1∑
i=0

(1 + hL)iCh2

= (1 + hL)n|E0|+
(1 + hL)n − 1

hL
· Ch2.

Remember that En is the error x(T ) − xn for the case where n steps of step
size h = (T − t0)/n have been used. Also, as 1 + hL ≤ ehL for all h (since
hL > 0), including in the limit h → 0 (equivalently n →∞), we get

|En| ≤ ehL·n|E0|+
ehL·n − 1

L
· Ch = eL(T−t0)|E0|+

eL(T−t0) − 1
L

· Ch

The first term gives an upper bound for the propagation of any initial error
E0 = x(t0)− x0. If this is zero, which we will usually assume, we see that the
method is of order 1 and thereby convergent.

In general, one step methods like Runge–Kutta methods can be written in
terms of a “step function,” Φ(t, x;h), with h denoting the step size as

xi+1 = xi + hΦ(ti, xi;h), i = 0, 1, 2, . . .

The step function Φ(t, x;h) depends on f(t, x) and the specific numerical
method being analysed. In this case the local truncation error is

di = x(ti+1)− x(ti)− hΦ(ti, x(ti);h).

If Φ satisfies a Lipschitz condition of the form

|Φ(t, x;h)− Φ(t, x̃;h)| ≤ M |x− x̃|

and |di| ≤ Chp+1 for some p > 0, then the above argument can be repeated
to prove that

|En| ≤
eM(T−t0) − 1

M
· Chp

provided E0 = 0.
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Runge–Kutta methods
An s-stage Runge–Kutta (RK) method is defined as

ki = f(t0 + cih, x0 + h

s∑
j=1

aijkj), i = 1, 2, . . . , s

x1 = x0 + h

s∑
i=1

biki.

Particular methods are fully specified by the coefficients ci, aij , and bi which
are often presented in a “Butcher tableau”

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...
cs as1 as2 · · · ass

b1 b2 · · · bs

.

A method is called explicit if aij = 0 for all j ≥ i (on and above the main
diagonal of A = (aij)), otherwise the method is called implicit.

Some example methods are listed below

• Euler’s method
0 0

1

• Heun’s method
0 0 0
1 1 0

1
2

1
2

• Trapezoidal rule (implicit)

0 0 0
1 1

2
1
2

1
2

1
2
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• Kutta’s classical 4th order method (‘RK4’)

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

An RK method is of order p, that is

|x(t0 + h)− x1| ≤ Chp+1,

if ci =
∑s

j=1 aij for all i = 1, 2, . . . , s, and

p = 1
s∑

i=1

bi = 1

p = 2
s∑

i=1

bici = 1
2

p = 3
s∑

i=1

bic
2
i = 1

3 ,

s∑
i,j=1

biaijcj = 1
6

p = 4
s∑

i=1

bic
3
i = 1

4 ,

s∑
i,j=1

biciaijcj = 1
8

s∑
i,j=1

biaijc
2
j = 1

12 ,

s∑
i,j,k=1

biaijajkck = 1
24

These “order conditions” constitute (non-linear) constraints on the method
coefficients which must be satisfied if the method’s local error is to be provably
bounded by Chp+1. For higher order methods (i.e. larger values of p), the
number of additional conditions grows quickly as shown in table 1. In other
words, a method of order 10 must satisfy a total number of 1205 conditions.
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p 5 6 7 8 9 10
add. cond. 9 20 48 115 286 719

Table 1: Number of additional conditions for higher order methods
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