
MA2501 Numerical methods

Mandatory problem set 2

Practical information
• Handout: Monday the 24th of April

• Deadline: Friday the 12th of May, no later than 6pm.

• Guidance:

– The lecturer will be in office 1354 of “Sentralbygg II” during regular
lecture hours and scheduled exercise guidance hours. Additionally,
from 2.15pm to 4pm every day apart from Wednesday the 26th of
April. Questions may be sent by email to <bardsk@math.ntnu.no>
and will be answered as far as the questions are reasonable.

– The exercise assistant’s schedule will be listed on the course home-
page.

All email sent to the course staff must be marked ‘MA2501’.

• Size of groups: At most three students may constitute a group.

Introduction
A plate made from a material of homogeneous heat conduction properties is
exposed to a uniformly distributed external heat source while the edges of the
plate are kept at 0◦ C. The heat source has been switched on for a long time,
so the temperature distribution within the plate is now steady (i.e. does not
change with time). We can then show that the temperature u(x, y) in the plate
will satisfy a partial differential equation with boundary conditions of the form

−
(∂2u

∂x2
+

∂2u

∂y2

)
= 1, within the plate

u(x, y) = 0, on the boundary
(1)
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We will later in the course see how to restate the problem (1) into a problem
more suitable to resolution by means of an electronic computer. For now,
however, knowing that the restated problem is a linear system of equations,

Au = f , (2)

is sufficient. The solution u is the temperature values in a finite number of
nodal points within the plate. This problem set studies and compares various
iterative methods for resolving the system (2).

To reduce the amount of programming required in this problem set, a pro-
gramme which sets up the linear system (i.e. creates A and f), solves the
system by means of Gaussian elimination, and plots the solution is available
on the course homepage. The programme, called driver, uses the auxillary
functions setup and plot_solution. These functions may be downloaded
from the course homepage. driver is typically used as follows

>> R = ’B’; n = 32;
>> driver(R, n)

The parameter n, an integer strictly greater than zero, designates the level
of accuracy in the solution. Increasing n produces a more accurate numerical
solution at the cost of increasing the amount of computation required to de-
termine the solution. Specifically, the dimension of (2) increases quickly when
increasing n. The parameter R is a name of a specifically shaped plate. Using
R = ’B’ means a square plate with a hole in the shape of a butterfly cut out in
the middle of the plate. Other possible values are listed in the function setup.
We recommend starting from driver when writing your own code.

We also remark that the matrix A, irrespective of the specific choices made
for R and n, is symmetric and positive definite (SPD). Moreover, the matrix is
sparse meaning that only very few elements of A are different from zero—in
this case at most 5 elements per row. The matlab function spy allows visual
inspection of which matricial elements are zero and which are not.

The report
Every group will produce an independent report from the work. The size of
the report should be no more than 3 + 2n pages with n being the number of
students in the group. The limitation does not include print-out of matlab
code. You may discuss different approaches to solving the problems with other
groups, but the discussion should not infringe on the independence of your
work. You are not to copy other people’s matlab code and every member of
the group should be able to defend the content of the report.
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Please cite references if gleaning material from the internet or texts other
than Kincaid and Cheney.

The report should be marked with a group number and the names of
all members of the group. The group number will be assigned by the lecturer
once the group has been formed.

Problem 1 – Classical iterative methods
Necessary background material for this problem is the text on iterative meth-
ods in Chapter 8.2 of Cheney & Kincaid.

1) Briefly describe the method known as Successive Overrelaxation (SOR).
Give reasons why SOR might be useful for the numerical resolution of
the lineary system of equations (2).

2) Implement SOR and test the implementation on the linear system of
equations (2).

3) How does the number of SOR iterations vary with the relaxation pa-
rameter ω? How does the “optimal” relaxation parameter vary with the
dimension of (2) and how sensitive is the number of SOR iterations to
the optimal value of ω?

4) Suggest a strategy for exploiting the sparsity structure of the matrix A.
You do not have to implement this strategy.

5) Decompose the matrix A of (2) as

A = D − CL − CU

with D = diag(A), CL = − tril(A,−1), and CU = triu(A, 1). The sym-
metric successive overrelaxation method (SSOR) is given in matricial
form as

(D − ωCL)x(k+1/2) = ω(CUx(k) + b) + (1− ω)Dx(k)

(D − ωCU )x(k+1) = ω(CLx(k+1/2) + b) + (1− ω)Dx(k+1/2),

for k = 0, 1, 2, . . . . Give an intuitive description of this algorithm.
State the algorithm in component form and implement it. Investigate
how the performance, measured both in terms of the number of itera-
tions and computational time, of SSOR compares with the corresponding
results of SOR. Finally, study SSOR’s dependence on the relaxation pa-
rameter.
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Problem 2 – conjugate gradients
Let A be a fixed symmetric, positive definite matrix of dimension n×n and b
a fixed vector of dimension n. Define the function f : Rn → R as

f(x) = 1
2x

TAx− xTb. (3)

1) Prove that f has a unique critical point x∗ given as the solution to the
linear system of equations Ax∗ = b and that f(x∗) < f(x) for all x ∈ Rn

when x 6= x∗.

Hint: Write x = x∗ − e with e 6= 0.

2) Let x ∈ Rn be arbitrary. Argue that the “residual” r = b − Ax is the
direction in which f decays most quickly from x.

3) Let {p(0),p(1), . . . ,p(n−1)} be a set of conjugate (known too under the
name of A-orthogonal) vectors, i.e.

p(i)TAp(j) = 0

whenever i 6= j. Let x(0) ∈ Rn be arbitrary and define a sequence of
vectors x(k+1) by

x(k+1) = x(k) + αkp(k).

Determine αk such that e(k+1) = x∗ − x(k+1) becomes A-orthogonal to
p(k). Give reasons why this in exact arithmetic (i.e. in the absence of
roundoff errors) means x(n) = x∗.

The method of conjugate gradients is a clever way of iteratively constructing
the conjugate search directions p(k).

Using various polynomial identities and the properties of a certain class of
vector spaces called Krylov spaces, this method can be stated as

αk =
r(k)Tr(k)

p(k)TAp(k)

x(k+1) = x(k) + αkp(k)

r(k+1) = r(k) − αkAp(k)

βk+1 =
r(k+1)Tr(k+1)

r(k)Tr(k)

p(k+1) = r(k+1) + βk+1p(k)
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for all k ≥ 0 with p(0) = r(0) = b − Ax(0). How much storage (memory) is
needed to implement this algorithm if we only care about the final result x∗?

Historically, this method was introduced around 1950 as an alternative to
the method of Gaussian elimination of constructing the exact solution to a
linear system. In other words, the method was originally viewed as a way of
constructing x(n). However, the method was not really used in practice due
to significantly higher cost compared to Gaussian elimination when run in this
mode. On the other hand, the method received renewed interest as an iterative
method for Ax∗ = b approximately 20 years later when it was discovered that
x(k) ≈ x∗ even for k � n. The method of conjugate gradients thus became a
useful tool for solving large linear systems of equations of the type arising in
the numerical resolution of partial differential equations such as (1).

matlab has a built-in function, pcg, which implements this method. pcg
uses a stopping criterion of the form

‖r(k)‖2 ≤ ε‖r(0)‖2 (4)

in which the tolerance ε kan be specified by the user but uses the default value
of 10−6 if unspecified. Use pcg to resolve the linear system of equations (2).
How does the number of “CG” iterations vary with the dimension of the system?

It can be shown that the error e(k) = x∗ − x(k) satisfies

‖e(k)‖A ≤ 2
(√κ− 1√

κ + 1

)k

· ‖e(0)‖A

in which κ is the condition number of A and

‖v‖2A = vTAv

is known as the A-norm of a positive definite matrix. How does this corroborate
your observations for the number of CG iterations?
Hint: How does the number of CG iterations required to satisfy the condition
‖e(k)‖A ≤ ε‖e(0)‖A depend on κ?
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