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A user of some numerical black box software will usually require one thing: The accuracy
of the numerical solution should be within some user specified tolerance. To accomplish this
we have to measure the error, and if the error is too large, it has to be reduced. For ordinary
differential equations, this means to reduce the stepsize. On the other hand, we would like
our algorithm to be as efficient as possible, that is, to use large stepsizes. This leaves us with
two problems: How to measure the error, and how to get the right balance between accuracy
and efficiency.

Local error estimate. As demonstrated in Figure 1, the global error y(tn)−yn comes from
two sources: the local truncation error and the propagation of errors produced in preceding
steps. This makes it difficult (but not impossible) to measure the global error. Fortunately
it is surprisingly easy to measure the local error, ln+1, the error produced in one step when
starting at (tn, yn), see Figure 1. Let y(t; tn, yn) be the exact solution of the ODE through
the point tn, yn. For a method of order p we get

ln+1 = y(tn + h; tn, yn)− yn+1 = Ψ(tn, yn)hp+1 +O(hp+2),

where O(hp+1) refer to higher order terms 1 . The term Ψ(tn, yn)hp+1 is called the principal
error term, and we assume that this term is the dominating part of the error. This assumption
is true if the stepsize h is sufficiently small. Taking a step from the same point tn, yn with a
method of order p̂ = p + 1 gives a solution ŷn+1 with a local error satisfying

y(tn + h; tn, yn)− ŷn+1 = O(hp+2).

The local error estimate is given by

len+1 = ŷn+1 − yn+1 = Ψ(tn, yn)hp+1 +Ohp+2 ≈ ln+1.

1Strictly speaking, the Landau-symbol O is defined by

f(x) = O(g(x)) for x→ x0 if limx→x0
‖f(x)‖
‖g(x)‖ < K <∞

for some unspecified constant K. Thus f(h) = O(hq) means that ‖f(h)‖ ≤ Khq when h→ 0, and refer to the
remainder terms of a truncated series.
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Figure 1: Lady Windermere’s Fan

Embedded Runge-Kutta pair Given a Runge-Kutta method of order p. To be able to
measure the local error, we need a method of order p + 1 (or higher). But we do not want
to spend more work (in terms of f -evaluations) than necessary. The solution is embedded
Runge-Kutta pairs, which, for explicit methods are given by

0

c2 a21

c3 a31 a32

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1

b̂1 b̂2 · · · b̂s−1 b̂s

The method given by the bi’s is of order p, the error estimating method given by the b̂i’s is
of order p + 1. (Sometimes it is the other way round. The important thing is to have two
methods of different order.) The local error estimate of yn+1 is then given by

len+1 = ŷn+1 − yn+1 = h
s∑

i=1

(b̂i − bi)ki.

Example 0.1. A combination of the Euler method and improved Euler will result in the
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following pair

0

1 1

1
1
2

1
2

so that

k1 = f(tn, yn), k2 = f(tn + h, yn + hk1), yn+1 = yn + hk1, ln+1 ≈ len+1 =
h

2
(−k1 + k2).

Example 0.2. Assume that you have decided to use improved Euler, which is of order 2, as
your advancing method, and you would like to find an error estimating method of order 3.
There are no 2-stage order 3 ERKs, so you have to add one stage to your method. This gives
a method like

0

1 1

c3 a31 a32

1
2

1
2

b̂1 b̂2 b̂3

where we require c3 = a31 + a32, which give us five free parameters. These have to satisfy all
four order condition for an order 3 method. Using c3 as a free parameter, we get the following
class of 3th order methods:

b1 =
3c3 − 1

6c3
, b2 =

2− 3c3

6(1− c3)
, b3 =

1
6c3(1− c3)

, a31 = c2
3, a31 = c3 − c2

3.

It is also possible to use the highest order method to advance the solution. In this case,
we still measure the local error estimate of the lowest order order solution, but we get a more
accurate numerical solution for free. This idea is called local extrapolation.

MATLAB has two integrators based on explicit Runge-Kutta schemes, ODE23 which is
based on an order 3/2 pair by Bogacki and Shampine, (a 3th order advancing and a 2nd order
error estimating method), and ODE45 based on an order 5/4 pair by Dormand and Prince.
Both use local extrapolation.

Stepsize control Let the user specify a tolerance Tol, and a norm ‖ · ‖ in which the error
is measured. Let us start with tn, yn, and do one step forward in time with a stepsize hn,
giving yn+1 and len+1. If ‖len+1‖ ≤ Tol the step is accepted, and we proceed till the next
step, maybe with an increased stepsize. If ‖len+1‖ > Tol the step is rejected and we try again
with a smaller stepsize. In both cases, we would like to find a stepsize hnew which gives a local
error estimate smaller than Tol, but at the same time as close to Tol as possible. To find the
right stepsize, we make one assumption: The function Ψ(tn, yn) of the principle error term do
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not change much from one step to the next, thus ‖Ψ(tn, yn)‖ ≈ ‖Ψ(tn+1, yn+1)‖ ≈ C. Then

we have: ‖len+1‖ ≈ C · hp+1
n

we want: Tol ≈ C · hp+1
new

We get rid of the unknown C by dividing the two equations with each other, and hnew can be
solved from

‖len+1‖
Tol

≈
(

hn

hnew

)p+1

.

Rejected steps are wasted work, and it should be avoided. Thus we choose the new stepsize
somewhat conservative. The new stepsize is computed by

hnew = P ·
(

Tol

‖len+1‖

) 1
p+1

hn. (1)

where P is a pessimist factor, usually chosen somewhere in the interval [0.5,0.95]. In the
discussion so far we have used the requirement ‖len+1‖ ≤ Tol, that is error pr. step (EPS).
This do not take into account the fact that the smaller the step is, the more steps you take,
and the local errors from each step adds up. From this point of view, it would make sense to
rather use the requirement le‖n+1 ≤ Tol ·hn, that is error pr. unit step (EPUS). The stepsize
selection is then given by

hnew = P ·
(

Tol

‖len+1‖

) 1
p

hn. (2)

Careful analysis has proved that the local extrapolation together with EPS gives proportion-
ality between the global error and the tolerance. The same is true for the use of the lower
order method to advance the solution in combination with EPUS.
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