
MA2501 Numerical Methods

Suggested solutions to exam problems

2nd of June 2006

Problem 1

We are given the function

f(x) =
e−x

1 + x
for all x ≥ 0.

a) We wish to compute the minimum degree polynomial p(x) which inter-
polates f(x) at the nodes x0 = 0, x1 = 2, x2 = 6, and x3 = 8.
We will use the Newton form of the interpolating polynomial as this is
more amenable to hand calculation. We recall briefly that the Newton
form is generally given by

p(x) =
n∑

i=0

f [x0, . . . , xi]
i−1∏
j=0

(x− xj) (1)

in which n is the degree of the resulting polynomial—one less than the
number of nodes. In this case, n = 3. Moreover, the divided differences
f [x0, . . . , xi] satisfy the relation

f [xj , . . . , xk] =
f [xj+1, . . . , xk]− f [xj , . . . , xk−1]

xk − xj
(2)

for all 0 ≤ j < k ≤ n when we define f [xj] = f(xj).
The relation (2) gives Table 1 of divided differences, whence the inter-
polating polynomial

p(x) = 1.00000− 4.77444 · 10−1 x + 7.77091 · 10−2 x(x− 2)

− 9.48383 · 10−3 x(x− 2)(x− 6)

= −9.48383 · 10−2 x3 + 0.15358 x2 − 0.74667 x + 1.

1

0 1.00000
−4.77444·10−1

2 4.51118·10−2 7.77091·10−2

−1.11894·10−2 −9.48383·10−3

6 3.54107·10−4 1.83850·10−3

−1.58417·10−4

8 3.72736·10−5

Table 1: Table of divided differences f [xj , . . . , xk] of Problem 1.

Moreover, p(1/2) = 0.66388 which means that

f(1/2)− p(1/2) = −0.25952.

b) To establish a guaranteed upper bound on the error |f(x)− p(x)|, we
proceed from a result presented in the lectures. The function f(x) is at
least 4 times continuously differentiable, meaning that for any x ∈ [0, 8]
there is a point ξx ∈ (0, 8) for which

f(x)− p(x) =
1
24

f (4)(ξx) · x (x− 2)(x− 6)(x− 8). (3)

Let w4(x) = x(x−2)(x−6)(x−8) = x4−16x3+76x2−96x. Equation (3)
means that

|f(x)− p(x)| ≤ 1
24

max
0≤p≤8

|f (4)(p)| · max
0≤p≤8

|w4(p)|. (4)

Differentiating gives

w′4(x) = 4x3 − 48x2 + 152x− 96 = 4 · (x3 − 12x2 + 38x− 24)

and we observe that w′4(4) = 0. Polynomial division then gives

w′4(x) = 4 · (x− 4) · (x2 − 8x + 6)

from which the extremal points of w4(x) are

(4−
√

10,−36), (4, 64), (4 +
√

10,−36).

In other words, max0≤p≤8|w4(p)| = 64.

2

Let f1(x) = 1/(1 + x) and f2(x) = e−x. Then f
(n)
1 (x) = (−1)nn!/(1 +

x)n+1 and f
(n)
2 (x) = (−1)ne−x. From the given formula for higher deriva-

tives of products we then get

f (4)(x) =
(−1)00!
1 + x

(−1)4e−x + 4
(−1)11!
(1 + x)2

(−1)3e−x

+ 6
(−1)22!
(1 + x)3

(−1)2e−x + 4
(−1)33!
(1 + x)4

(−1)1e−x

+
(−1)44!
(1 + x)5

(−1)0e−x

=
e−x

(1 + x)5
(
24 + 24(1 + x) + 12(1 + x)2 + 4(1 + x)3 + (1 + x)4

)
and similarly

f (5)(x) = − e−x

(1 + x)6
(
120 + 120(1 + x) + 60(1 + x)2+

20(1 + x)3 + 5(1 + x)4 + (1 + x)5
)
.

We notice that f (5)(x) < 0 for all x ≥ 0 and, consequently, that the
maximum value of |f (4)(x)| must be attained at either x = 0 or at x = 8.
Moreover, f (4)(x) decays rapidly for increasing values of x yet remains
always positive. Thus, the maximum value of |f (4)(x)| is attained at
x = 0. In summary:

max
0≤p≤8

|f (4)(p)| = |f (4)(0)| = f (4)(0) = 65.

Inserting this and the maximum value of |w4(x)| on [0, 8] into the error
estimate (4) finally yields

|f(x)− p(x)| ≤ 65 · 64
24

=
520
3
≈ 173.333.

This bound, however, is much too unrefined and inaccurate to be of any
practical use. We know that f(x) ∈ (0, 1] for all x ≥ 0 and having an
error bound that is several orders of magnitude worse than the largest
value of the function means we cannot actually control the error. In fact,
max0≤x≤8|f(x)− p(x)| ≈ 0.262, attained at x ≈ 0.58.

The main reason for this “bounding failure” is that while the largest
value of |f (4)(x)| is certainly big, this largest value does not actually

3

represent the true nature of f (4)(x) throughout the interval of interest.
To establish sharp error bounds, the result (4) implictly assumes that
f (4)(x) does not vary too much on [0, 8]. This assumption is violated in
the present case.

Problem 2

We are given the function

f(x) =
e−x

1 + x

for all x ≥ 0.

a) We wish to compute the Simpson approximation to
∫ 8

0
f(x) dx using 8

sub-intervals or, equivalently, a step size of h = (8− 0)/8 = 1. We get

S8(f) = 1
3

(
f(0) + 4

(
f(1) + f(3) + f(5) + f(7)

)
+ 2

(
f(2) + f(4) + f(6)

)
+ f(8)

)
≈ 0.62960.

b) The error committed in computing
∫∞
0

f(x) dx by means of a Simpson
method approximation of

∫ B

0
f(x) dx for some finite B > 0 can be divided

into two components

• Numerical error in Simpson’s method on
∫ B

0
f(x) dx.

• Methodological error (or truncation error) incurred by computing∫ B

0
f(x) dx rather than

∫∞
0

f(x) dx.

Let Sh(f ; 0, B) denote the step size h Simpson method approximation to∫ B

0
f(x) dx. We know that∫ B

0

f(x) dx− Sh(f ; 0, B) = − 1
180 Bh4f (4)(ξ)

for some ξ ∈ (0, B). Thus∣∣∣ ∫ B

0

f(x) dx− Sh(f ; 0, B)
∣∣∣ ≤ 1

180 Bh4 max
0≤p≤B

|f (4)(p)| = 13
36 Bh4,

the latter equality due to max0≤p≤B |f (4)(p)| = 65 for all B > 0 as shown
in Problem 1b).

4

As
∫∞
0

f(x) dx =
∫ B

0
f(x) dx +

∫∞
B

f(x) dx, the methodological error is
given by

∣∣∣ ∫ ∞

B

f(x) dx
∣∣∣ =

∫ ∞

B

e−x

1 + x
dx

≤ 1
1 + B

∫ ∞

B

e−x dx ≤
∫ ∞

B

e−x dx = e−B .

In summary, we find∣∣∣ ∫ ∞

0

f(x) dx− Sh(f ; 0, B)
∣∣∣ ≤ 13

36 Bh4 + e−B

as we wanted to prove.

c) We wish to determine the least number of sub-intervals n such that the
total error incurred in the above method is less than ε = 1

2 · 10−3. As
h = B/n, this means finding the least value of n guaranteeing that

13
36

B5

n4
+ e−B < ε

which leads to

n4 >
13
36

B5

ε− e−B
=

13
36

g(B) (5)

when we define g(B) = B5/(ε− e−B). We need in particular e−B < ε or
B > − ln ε lest the methodological error itself be too large. As we want
the least possible value of n we thus need to find the minimum value
of g(B) when B > − ln ε. This, then, means that g(B) > 0 for all B
in the valid domain and as limB↓− ln ε g(B) = limB→∞ g(B) = ∞, the
minimum value of g(B) is attained at a point for which g′(B) = 0.

Differentiating gives

g′(B) =
5B4(ε− e−B)−B5e−B

(ε− e−B)2
= −B4 (B + 5) e−B − 5ε

(ε− e−B)2
,

a zero for which is attained when

F (B) = (B + 5) e−B − 5ε = 0 (6)

subject to the extra condition that B > − ln ε.

5

k Bk

0 8.600902
1 8.601656
2 8.601656

Table 2: Newton iterates for the minimum point of g(B) in Problem 2.

Formulating Newton’s method for the non-linear equation (6) yields the
iteration

Bk+1 = Bk −
(Bk + 5) e−Bk − 5ε

−(Bk + 4) e−Bk
= Bk +

(Bk + 5) e−Bk − 5ε

(Bk + 4) e−Bk
(7)

for all k ≥ 0. Using initial value B0 = − ln(ε) + 1 ≈ 8.600902 yields the
Newton iterates of Table 2. In other words Bopt = 8.601656 is the best
value of the upper limit of the integral when minimising the number of
sub-intervals of the Simpson method. Inserting this value into the lower
bound (5) yields

n >
(13 B5

opt

36 (ε− e−Bopt)

)1/4

≈ 85.634

or, as the number of sub-intervals in Simpson’s method must be an even
integer, n = 86.

Problem 3

We are given the function

R(z) =
1 + z/2
1− z/2

for all −2 < z < 2.

a) We wish to show that ez −R(z) = − z3

12 +O(z4). Using either knowledge
of the geometric series or explicit Taylor series expansion, we find that

1
1− x

=
∞∑

k=0

xk = 1 + x + x2 + x3 + · · ·

6

whenever −1 < x < 1. Consequently

R(z) = (1 +
z

2
) · (1 +

z

2
+

z2

4
+

z3

8
+

z4

16
+ · · ·)

= 1 +
z

2
+

z2

4
+

z3

8
+

z4

16
+ · · ·+ z

2
+

z2

4
+

z3

8
+

z4

16
+ · · ·

= 1 + z +
z2

2
+

z3

4
+

z4

8
+ · · ·

for all −2 < z < 2. We know in addition that

ez =
∞∑

k=0

zk

k!
= 1 + z +

z2

2
+

z3

6
+

z4

24
+ · · ·

so

ez −R(z) = (
1
6
− 1

4
) z3 + (

1
24
− 1

8
) z4 + · · · = − z3

12
+O(z4)

as we wanted to prove.

b) We know that LU factorisation amounts to Gaussian elimination and
additionally storing the multipliers in the lower triangular matrix L.
From the initial matrix

A =

 1.10 −0.05 0.00
−0.05 1.10 −0.05

0.00 −0.05 1.10


we calculate the multipliers

`21 = a21
a11

= − 0.05
1.10 ≈ −0.0455, `31 = a31

a11
= 0.0000

and obtain the reduced matrix

Ã =

 1.1000 −0.0500 0.0000
0.0000 1.0977 −0.0500
0.0000 −0.0500 1.1000

 .

Repeating the elimination step we obtain the multiplier

`32 = ã32
ã22

≈ −0.0455

and the final reduced matrix

˜̃A =

 1.1000 −0.0500 0.0000
0.0000 1.0977 −0.0500
0.0000 0.0000 1.0977

 .

7

Thus, the unit diagonal lower triangular matrix L and the upper trian-
gular matrix U such that LU = A are, respectively,

L =

 1.0000 0.0000 0.0000
−0.0455 1.0000 0.0000

0.0000 −0.0455 1.0000

 ,

and

U =

 1.1000 −0.0500 0.0000
0.0000 1.0977 −0.0500
0.0000 0.0000 1.0977

 .

c) Let P (z) = 1 + z/2 and Q(z) = 1− z/2. Thus R(z) = P (z)/Q(z) which
means that Q(z)R(z) = P (z). Substituting z = hX we find

P (hX) = I + hX
2 =

0.90 0.05 0.00
0.05 0.90 0.05
0.00 0.05 0.90


Q(hX) = I − hX

2 =

 1.10 −0.05 0.00
−0.05 1.10 −0.05

0.00 −0.05 1.10

 .

In other words, the matrix R(hX) must satisfy the simultaneous equa-
tions  1.10 −0.05 0.00

−0.05 1.10 −0.05
0.00 −0.05 1.10

R(hX) =

0.90 0.05 0.00
0.05 0.90 0.05
0.00 0.05 0.90

 .

In particular, the second column of R(hX), here denoted by the symbol
r(2), must satisfy the linear system 1.10 −0.05 0.00

−0.05 1.10 −0.05
0.00 −0.05 1.10

 r(2) =

0.05
0.90
0.05

 ,

the coefficient matrix of which is the matrix A of Problem b).

Using the LU decomposition of Problem b) and defining y = Ur(2), we
first solve the linear system 1.0000 0.0000 0.0000

−0.0455 1.0000 0.0000
0.0000 −0.0455 1.0000

y =

0.05
0.90
0.05

 ,

8

to get
y1 = 0.05,

y2 = 0.90− (−0.0455) · 0.05 ≈ 0.9023,

y3 = 0.05− (−0.0455) · 0.9023 ≈ 0.0911.

Then, to compute the final result r(2), we must solve the linear system 1.1000 −0.0500 0.0000
0.0000 1.0977 −0.0500
0.0000 0.0000 1.0977

 r(2) =

0.0500
0.9023
0.0911


to obtain

(r(2))3 =
0.0911
1.0977

≈ 0.0830

(r(2))2 =
1

1.0977
(0.9023− (−0.05) · 0.0830) ≈ 0.8257

(r(2))1 =
1

1.1000
(0.0500− (−0.05) · 0.8257) ≈ 0.0830

,

or in vector form, r(2) = [0.0830, 0.8257, 0.0830]T.

Problem 4

We are given the (non-linear) partial differential equation with initial and
boundary conditions

∂u

∂t
=

∂2u

∂x2
+

1
1 + u2

, (x, t) ∈ [0, 1]× [0, 1]

u(0, t) = 0, u(1, t) = 0
u(x, 0) = x · (x− 1), 0 ≤ x ≤ 1.

a) We have seen in the lectures that an arbitrary, sufficiently differentiable
function v(x, y) satisfies the relation

v(x + h, y)− 2v(x, y) + v(x− h, y)
h2

=
∂2v

∂x2
(x, y) +O(h2).

Thus at the point (xi, t) we find

∂2u

∂x2
(xi, t) =

u(xi+1, t)− 2u(xi, t) + u(xi−1, t)
h2

+O(h2)

=
Ui+1(t)− 2Ui(t) + Ui−1(t)

h2
+O(h2)

≈ Ui+1(t)− 2Ui(t) + Ui−1(t)
h2

9

Moreover,

∂u

∂t
(xi, t) = U ′i(t), and

1
1 + u(xi, t)2

=
1

1 +
(
Ui(t)

)2 .

Inserting these relations into the partial differential equation and using
h = 1/N we find

U ′i(t) =
1
h2

(
Ui+1(t)− 2Ui(t) + Ui−1(t)

)
+

1

1 +
(
Ui(t)

)2

= N2
(
Ui−1(t)− 2Ui(t) + Ui+1(t)

)
+

1

1 +
(
Ui(t)

)2

which must hold for all i = 1, . . . , N−1. Additionally, U0(t) = UN (t) ≡ 0
for all t ∈ [0, 1] due to the boundary conditions and Ui(0) = xi · (1− xi)
for all i = 1, . . . , N − 1 due to the PDE initial condition.

Using this knowledge we arrive at the final system of N − 1 ordinary
differential equations given by

U ′1 = N2 · (−2U1 + U2) +
1

1 + U2
1

U ′i = N2 · (Ui−1 − 2Ui + Ui+1) +
1

1 + U2
i

, i = 2, . . . , N − 2

U ′N−1 = N2 · (UN−2 − 2UN−1) +
1

1 + U2
N−1

.

b) There are several ways, mostly differing in computational efficiency, of
implementing the matlab function ode_rhs. The only two rules that
must be obeyed are that

• the function signature be

function dy = ode_rhs(t, y)

in which t and y are the current values of the independent variable
t and the dependent variable y, respectively

• the return value dy be a column vector of the same size as y

We can implement the function using a matlab for-loop as follows

10

function dy = ode_rhs(t, y)
N = numel(y) + 1; % system dimension: N - 1
N2 = N * N; % N^2, convenience
dy = zeros(size(y));

dy(1) = N2 * (-2*y(1) + y(2)) + 1./(1 + y(1).^2);
for i = 2 : N - 2,

dy(i) = N2 * (y(i-1) - 2*y(i) + y(i+1)) + ...
1./(1 + y(i).^2);

end
dy(N-1) = N2 * (y(N-2) - 2*y(N-1)) + ...

1./(1 + y(N-1).^2);

Another possibility is to use matlab’s powerful indexing and array op-
erations as follows

function dy = ode_rhs(t, y)
N = numel(y) + 1;
N2 = N * N;

dy = N2 .* [- 2.*y(1) + y(2); ...
y(1:N-3) - 2.*y(2:N-2) + y(3:N-1); ...
y(N-2) - 2.*y(N-1)] + ...

1 ./ (1 + y.^2);

However the function is implemented, though, the final PDE resolution
process is effectuated through the statements

>> N = 200;
>> x = linspace(0, 1, N + 1); % N intervals: N+1 points
>> y0 = x .* (1 - x); % initial condition
>> y0 = y0(2 : end-1); % ‘internal’ points
>> [t, y] = ode15s(’ode_rhs’, [0, 1], y0);

The final result is shown in Figure 1.

11

Figure 1: Solution to non-linear PDE of Problem 4.

12

