MA2501 Numerical Methods

Suggested solutions to exam problems

2nd of June 2006

Problem 1

We are given the function

for all z > 0.

a) We wish to compute the minimum degree polynomial p(z) which inter-

polates f(x) at the nodes g =0, z1 = 2, 29 = 6, and a3 = 8.

We will use the Newton form of the interpolating polynomial as this is
more amenable to hand calculation. We recall briefly that the Newton
form is generally given by

i—1

p(I):Zf[Io,,IZ}H(I—IJ) (1)
=0

j=0
in which n is the degree of the resulting polynomial—one less than the

number of nodes. In this case, n = 3. Moreover, the divided differences
flzo, .. .,x;] satisfy the relation

f[xj+17"'vmk]:f[j%.ja"'vxkfl] (2)
Tk Zj
for all 0 < j < k <n when we define f[z;] = f(z;).

The relation (2) gives Table 1 of divided differences, whence the inter-
polating polynomial

p(z) = 1.00000 — 4.77444 - 10~ 2 4 7.77091 - 102 2(x — 2)
—9.48383 - 103 z(z — 2)(z — 6)
= —9.48383 - 107223 4 0.15358 22 — 0.74667 z + 1.
1

flag, ...,z =

1.00000
—4.77444-1071
4.51118-10~2 7.77091-102
—1.11894-10~2 —9.48383-1073
3.54107-10~4 1.83850-103
—1.58417-10~%
3.72736-10~°

Table 1: Table of divided differences f|x;,...,zx] of Problem 1.

Moreover, p(1/2) = 0.66388 which means that

£(1/2) = p(1/2) = —0.25952.

To establish a guaranteed upper bound on the error |f(z) — p(z)|, we
proceed from a result presented in the lectures. The function f(zx) is at
least 4 times continuously differentiable, meaning that for any z € [0, 8]
there is a point &, € (0, 8) for which

f(x)—p(a?)=if“)(fw)-x(x—2)($—6)(x—8)- (3)

Let wy(z) = 2(z—2)(z—6)(z—8) = 2* — 162>+ 7622 —962. Equation (3)
means that

1

[F@) =p(@)] < 57 max | £ ()] - max [wi(p)] (4)

Differentiating gives
w)(z) = 4a® — 4827 + 152x — 96 = 4 - (2 — 122% + 38z — 24)
and we observe that w)(4) = 0. Polynomial division then gives
wi(z) =4 (z —4) - (2> — 8z +6)
from which the extremal points of w4(x) are
(4-+10,-36), (4,64), (4++/10,-36).

In other words, maxo<p<s|wa(p)| = 64.
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Let fi(z) = 1/(1 + ) and fo(x) = e~ *. Then fl(n)(x) = (-1)™n!l/(1+
x)" Tt and fz(n) (z) = (—1)™e~*. From the given formula for higher deriva-
tives of products we then get

y,.y _ (=1)%! P G i —z
FO(2) = o (—1)%e +4<1+$)2 (—1)3e
(=1)%2! e, 4 (=1)?8! e
O gy VT A (e
—1)441
((1 —lk)x;lo (=1)%

= ey G2 H120 4P 40+ + (14 2)")

and similarly

—X

(§]
e (120 + 120(1 4 =) + 60(1 + z)*+

f(5) (z) = 1+

20(1+2)> +5(1+z)* + (1 + z)°).

We notice that f®)(z) < 0 for all z > 0 and, consequently, that the
maximum value of |f(*) ()| must be attained at either z = 0 or at 2 = 8.
Moreover, f*)(z) decays rapidly for increasing values of  yet remains
always positive. Thus, the maximum value of |f*)(x)| is attained at
z = 0. In summary:

max [ £ (p)| = |f@(0)] = f@(0) = 65.

0<p<8

Inserting this and the maximum value of |wy ()| on [0, 8] into the error
estimate (4) finally yields

65-64 520
=22~
2 3 73.333.

|[f (@) = p(a)] <

This bound, however, is much too unrefined and inaccurate to be of any
practical use. We know that f(z) € (0,1] for all z > 0 and having an
error bound that is several orders of magnitude worse than the largest
value of the function means we cannot actually control the error. In fact,
maxo<g<s|f(z) — p(x)| ~ 0.262, attained at x ~ 0.58.

The main reason for this “bounding failure” is that while the largest
value of |f®*)(z)| is certainly big, this largest value does not actually

3

represent the true nature of f(*)(x) throughout the interval of interest.
To establish sharp error bounds, the result (4) implictly assumes that
f®(z) does not vary too much on [0,8]. This assumption is violated in
the present case.

Problem 2
We are given the function )
o
fa) =
for all z > 0.
a) We wish to compute the Simpson approximation to fO x) dx using 8

sub-intervals or, equivalently, a step size of h = (8§ — 0)/8 = 1 We get

Ss(f) = 5(f(0) +4(f(1) + f(3) + f(5) + f(7))

£2(£(2) + £(4) + £(6)) + £(8))
~ 0.62960.

b) The error committed in computing fooo f(x)dx by means of a Simpson

method approximation of fOB f(x) dz for some finite B > 0 can be divided
into two components

e Numerical error in Simpson’s method on fOB f(z)da.

. Methodological error (or truncation error) incurred by computing
fo ) dz rather than [° f(z) da.

Let Sh (f;0, B) denote the step size h Simpson method approximation to
fo x) dz. We know that

B
/0 f()dw — Sy(f;0,B) = — 155 Bh* f 1 (€)

for some & € (0, B). Thus
0<p<B

B
‘/0 f(x)dz — Sp(f;0,B)| < 155 Bh' max |fW(p)| = 8 B?,

the latter equality due to maxo<,<g|f* (p)| = 65 for all B > 0 as shown
in Problem 1b).



As [ f(z)dz = fOB f(z)dz + [ f(z)dz, the methodological error is
given by

‘/: f(z) da:‘ = /BOO 16:; dz

1 oo oo
gi/ e_ldmg/ e dr=e 5.
1+ B Jp B

In summary, we find
| / J(@)dz = Su(f30,B)| < B B + 77
0

as we wanted to prove.

We wish to determine the least number of sub-intervals n such that the
total error incurred in the above method is less than ¢ = % -1073. As
h = B/n, this means finding the least value of n guaranteeing that

13 B° _B
% ﬁ e < e
which leads to B
13 13
s 2 Syp) (5)

36e—e B 36
when we define g(B) = B?/(c —e~5). We need in particular e 2 < ¢ or
B > —Ine lest the methodological error itself be too large. As we want
the least possible value of n we thus need to find the minimum value
of g(B) when B > —Ine. This, then, means that g(B) > 0 for all B
in the valid domain and as limp|_ 1. g(B) = limp_, g(B) = oo, the
minimum value of g(B) is attained at a point for which ¢’'(B) = 0.

Differentiating gives

_ 5BYe—eB)—BPe P _pt (B+5)e P —5¢

g/(B) (8_e_B)2 (6—6_3)2 )

a zero for which is attained when
F(B)=(B+5)e P -5:=0 (6)

subject to the extra condition that B > —Ine.

k| By

-0 | 8.600902
1 | 8.601656
2 | 8.601656

Table 2: Newton iterates for the minimum point of g(B) in Problem 2.

Formulating Newton’s method for the non-linear equation (6) yields the
iteration

(Bk + 5) e Br — 5¢ .

By +5)e B —5
—(By +4)e B = B+ (PO -

(Bk + 4) e Bk

Biy1 = By — (7)
for all k& > 0. Using initial value By = —1In(e) + 1 & 8.600902 yields the
Newton iterates of Table 2. In other words B,pt = 8.601656 is the best
value of the upper limit of the integral when minimising the number of

sub-intervals of the Simpson method. Inserting this value into the lower
bound (5) yields

13 Boy i 85.634
> ———m— ~ .
" (36 (5—e—BOPt))

or, as the number of sub-intervals in Simpson’s method must be an even
integer, n = 86.

Problem 3

We are given the function

_14z/2
o 1—2z/2

R(z)

for all =2 < z < 2.

a) We wish to show that e* — R(z) = —% + O(z%). Using either knowledge

of the geometric series or explicit Taylor series expansion, we find that

1 o0
- =Y db=1ta+a2®+a7+.
— T
k=0



whenever —1 < z < 1. Consequently

2 3 4

z z z z z
=1+ . 1+ 4+ 4L Z 4 ...

R(z) (+2)(+2+4+8+16+ )
—1+Z+Z2+23+24+ +Z+Z2+Z3+24+
2 4 8 16 2 4 8 16

22 23 Z4
=1 —
tet ottt

for all —2 < z < 2. We know in addition that

Z—oozk—1+ IS
CEL T AT T g Tt
k=0
SO
11 11 23
*_ R _ N Y I W - _= 04
e (2) (6 4) (24 8)Z+ Thi (z%)

as we wanted to prove.

We know that LU factorisation amounts to Gaussian elimination and
additionally storing the multipliers in the lower triangular matrix L.
From the initial matrix

1.10 —-0.05 0.00
A=1-0.05 1.10 —0.05
0.00 -0.05 1.10

we calculate the multipliers

lyy = %21 = —005 & 00455, (g = 93 = 0.0000

ail 1.1 air
and obtain the reduced matrix

R 1.1000 —0.0500  0.0000
A= 0.0000 1.0977 —0.0500
0.0000 —0.0500 1.1000

Repeating the elimination step we obtain the multiplier

f39 = 32y —().0455

a22

and the final reduced matrix

- 1.1000 —0.0500  0.0000
A= 0.0000 1.0977 —0.0500
0.0000  0.0000 1.0977

Thus, the unit diagonal lower triangular matrix L and the upper trian-
gular matrix U such that LU = A are, respectively,

[ 1.0000  0.0000  0.0000]
L = | —-0.0455 1.0000  0.0000] ,
0.0000 —0.0455 1.0000

and -
1.1000 —0.0500 0.0000

U= 0.0000 1.0977 —0.0500] .
| 0.0000  0.0000 1.0977 ]

Let P(z) =1+ 2/2 and Q(z) =1 — z/2. Thus R(z) = P(z)/Q(%) which
means that Q(z)R(z) = P(z). Substituting z = hX we find

[0.90 0.05 0.00
P(hX)=1+"%%=10.05 0.90 0.05
10.00 0.05 0.90
110 —0.05  0.00
QhX)=1-12=1-005 110 —0.05
| 0.00 —0.05 1.10

In other words, the matrix R(hX) must satisfy the simultaneous equa-
tions

1.10 —-0.05  0.00 0.90 0.05 0.00
—0.05 1.10 —0.05| R(hX) = [0.05 0.90 0.05
0.00 -0.05 1.10 0.00 0.05 0.90

In particular, the second column of R(hX), here denoted by the symbol
r? | must satisfy the linear system

1.10 —0.05  0.00 0.05
—0.05 1.10 —0.05|[r® = [0.90] ,
0.00 —0.05 1.10 0.05

the coefficient matrix of which is the matrix A of Problem b).

Using the LU decomposition of Problem b) and defining y = Ur(?), we
first solve the linear system

1.0000  0.0000  0.0000 0.05
—0.0455 1.0000  0.0000| y = [0.90] ,
0.0000 —0.0455 1.0000 0.05
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to get
y1 = 0.05,

y2 = 0.90 — (—0.0455) - 0.05 ~ 0.9023,
ys = 0.05 — (—0.0455) - 0.9023 ~ 0.0911.

Then, to compute the final result r(®), we must solve the linear system

1.1000 —0.0500  0.0000 0.0500
0.0000  1.0977 —0.0500| r® = |0.9023
0.0000  0.0000  1.0977 0.0911
to obtain
0.0911
2 = ~ U.
(F%)s = T o977 ~ 00830
@), = 9023 — (—0.05) - 0. ~ 0.8257,
@), 1.0977(0903 (—0.05) - 0.0830) ~ 0.8257
1
@), = — (= . 2 ~ 0.
@), 1'1000(0.0500 (—0.05) - 0.8257) ~ 0.0830

or in vector form, r(®) = [0.0830,0.8257,0.0830]".

Problem 4

We are given the (non-linear) partial differential equation with initial and
boundary conditions

ou  0%u 1
— =5 +t— t 0,1 0,1
= @)X [0,
u(0,t) =0, wu(l,t)=0
uw(z,0)=z-(x—1), 0<zx<L
a) We have seen in the lectures that an arbitrary, sufficiently differentiable
function v(x,y) satisfies the relation

”U(.T + hvy) B 2’[)(.%, y) + 'U(ZL’ - h,y) _ 820

h? 0z
Thus at the point (z;,t) we find

(z,y) + O(h?).

82u (1' t) _ u(xlqu, t) — QU(CC“ t) + 'I.L((Ei,h t)

pre E + oK)
Ui+1(t) — 2Uz(t) + Ui_l(t)
- 2 + O(h?)
N Ui—i—l(t) — QUi(t) + Ui_l(t)
~ 2
9

Moreover,
ou 1 1
— (x4, t) = U/(t), and = )
ot (z:,) ) L+u(z, )2 14 (Ui(t))z

Inserting these relations into the partial differential equation and using
h =1/N we find

Ui(t) = %(Ui+1(t) —2U;(t) + Ui () + 1-1—((1](75))2
1

= N0 = 20(0) + Ui (0) + s

which must hold for alli =1,..., N—1. Additionally, Uy(t) = Un(t) =0
for all t € [0,1] due to the boundary conditions and U;(0) = z; - (1 — z;)
foralli=1,...,N — 1 due to the PDE initial condition.

Using this knowledge we arrive at the final system of N — 1 ordinary
differential equations given by

1
U =N?.(=2U; +Us) + ——
1 (=200 + 2)+1+U12
U{:NQ'(Ui—l—QUi+Ui+1)+mv i=2,...,N=-2
1
Uny_1=N?. (Uy_o —2Un_1) + Ty
N-1

There are several ways, mostly differing in computational efficiency, of
implementing the MATLAB function ode_rhs. The only two rules that
must be obeyed are that

e the function signature be
function dy = ode_rhs(t, y)

in which t and y are the current values of the independent variable
t and the dependent variable y, respectively

e the return value dy be a column vector of the same size as y

We can implement the function using a MATLAB for-loop as follows
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function dy = ode_rhs(t, y)

N = numel(y) + 1; % system dimension: N - 1
N2 = N * N; % N~2, convenience

dy = zeros(size(y));

dy(1) = N2 * (-2*%y(1) + y(2)) + 1./(1 + y(1)."2);
for i =2 : N - 2,

dy(i) = N2 * (y(i-1) - 2xy(i) + y(i+1)) + ...
1./(1 + y(i).~2);
end
dy(N-1) = N2 * (y(N-2) - 2%xy(N-1)) + ...
1./(1 + y(N-1).72); B 0.25
Another possibility is to use MATLAB’s powerful indexing and array op- o
erations as follows 02

0.2

function dy = ode_rhs(t, y)
N = numel(y) + 1;

N2 = N * N;

dy = N2 .* [ - 2.xy(1) + y(2);
y(1:N-3) - 2.%y(2:N-2) + y(3:N-1);
yN-2) - 2.y (N-1)] + o

1./ (4 +y.~2);

However the function is implemented, though, the final PDE resolution
process is effectuated through the statements

>> N = 200;

>> x = linspace(0, 1, N + 1); % N intervals: N+1 points Figure 1: Solution to non-linear PDE of Problem 4.
>> y0 =x .x (1 - x); % initial condition

>> y0 = y0(2 : end-1); % ‘internal’ points

>> [t, y] = odelbs(’ode_rhs’, [0, 1], y0);

The final result is shown in Figure 1.
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