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Professional liaison during examination:
Bård Skaflestad (73 59 35 47)

EXAM IN NUMERICAL METHODS (MA2501)

Friday the 2nd of June 2006
Time: 09:00 – 13:00 Examination results due on Friday the 23rd of June 2006

Permitted technical aids:

• W. Cheney & D. Kincaid, Numerical Mathematics and Computing, 4. eller 5. edition.

• Pocket calculator.

General information:

• All subproblems count equally towards the examination results.

• All answers must be justified.

• Any answer must be accompanied by sufficient calculations to allow assessement of which
methods and partial results are used.

• If two functions f1(x) and f2(x) are sufficiently differentiable, then

dn

dxn

(
f1(x) f2(x)

)
=

n∑
k=0

(
n

k

)
f

(k)
1 (x) f

(n−k)
2 (x) where

(
n

k

)
=

n!

k! (n− k)!
.

• The attachment at the end of the problem set is required in the answer to Problem 4.

• Good luck!
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Problem 1 The function
f(x) =

e−x

1 + x

is defined for all x ≥ 0.

a) Find the minimum degree polynomial p(x) which interpolates f(x) at the points x0 = 0,
x1 = 2, x2 = 6, and x3 = 8. Compute f(1/2)− p(1/2).

b) Determine a guaranteed upper bound on the error |f(x)− p(x)| when 0 ≤ x ≤ 8. Is this
bound reasonable?

Problem 2 The function
f(x) =

e−x

1 + x

is defined for all x ≥ 0.

a) Find an approximation to
∫ 8

0
f(x) dx using Simpson’s method with 8 sub-intervals.

b) We wish to compute
∫∞

0
f(x) dx. One way of doing this is to compute, by means of

Simpson’s method using step size h, the integral∫ B

0

f(x) dx

with B > 0 fixed and finite.

Show that the error committed in this approach is bounded from above by

E1(h,B) + E2(B) = 13
36

Bh4 + e−B.

c) Determine the value of B and the least number of sub-intervals, n, which guarantee that
the error of the method in b) is less than 1

2
· 10−3 (i.e. the number of correct desimals in

the result is at least three).
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Problem 3 The function
R(z) =

1 + z/2

1− z/2
(1)

is defined for all −2 < z < 2.

a) Prove that ez −R(z) = − z3

12
+O(z4).

b) Find a unit diagonal, lower triangular matrix L and an upper triangular matrix U such
that LU = A when

A =

 1.10 −0.05 0.00
−0.05 1.10 −0.05

0.00 −0.05 1.10

 .

Hint: Pivoting is not needed.

c) The matrix exponential ehX in which X is a square matrix and h ∈ R is a scalar is
defined by the series expansion

ehX = I +
∞∑

n=1

(hX)n

n!
. (2)

Here, I is the identity matrix of the same size as X. We remark that this series converges
for all square matrices X. The matrix exponential is an example of a generalisation of
a known, analytic function to matricial arguments. The function is central to certain
types of methods for the resolution of ordinary differential equations and we are hence
in need of good methods to approximate ehX .

To this end several algorithms have been proposed, among which we find terminated series
expansions based on (2). In this problem, however, we will use rational approximations
to ehX . Specifically, we will evaluate R(hX) with R(z) defined in (1).

State the linear system of equations to which R(hX) is a solution when

h = 0.1, X =

−2 1
1 −2 1

1 −2

 .

Hint: The constant 1 must be replaced by the identity matrix when evaluating R(z) at
matricial arguments.

Compute the second column of R(hX).
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Problem 4 The partial differential equation and accompanying initial and boundary con-
ditions

∂u

∂t
=

∂2u

∂x2
+

1

1 + u2
, (x, t) ∈ [0, 1]× [0, 1]

u(0, t) = 0, u(1, t) = 0

u(x, 0) = x · (1− x), 0 ≤ x ≤ 1

is given. Let xi = ih for all i = 0, 1, . . . , N be grid points in the x direction at a distance of
h = 1/N apart. Furthermore, let Ui(t) be an approximation to u(xi, t) for all i = 0, 1, . . . , N
and all t ∈ [0, 1].

a) Derive a system of ordinary differential equations for the functions Ui(t) by, among
other things, replacing all spatial derivatives (i.e. terms of the form ∂u

∂x
and similar) of

the partial differential equation by suitable difference approximations.

Use the dependent variable y = [U1, U2, . . . , UN−1]
T in the resulting system.

b) Write a matlab function named ode_rhs which, toghether with matlab’s built-in ODE
solver ode15s, can be used in the resolution of the system of ODEs derived in a). See
the attachment for detailed information on ode15s.

If you were unsuccessful in the derivation of problem a), you will here consider the ODE
system defined by

y′1 = −N
4
y2

2 + 10−3N2
(
− 2y1 + y2

)
y′i = N

4
(y2

i−1 − y2
i+1) + 10−3N2

(
yi−1 − 2yi + yi+1

)
, i = 2, 3, . . . , N − 2

y′N−1 = N
4
y2

N−2 + 10−3N2
(
yN−2 − 2yN−1

)
.

Finally, give the matlab statements required to resolve the partial differential equation
by means of matlab’s built-in function ode15s. Use N = 200.

We note in conclusion that the general methodolgy illustrated in this problem is called semi-
discretisation.

Enjoy your summer!



The MATLAB ODE solver ode15s

[T, Y] = ODE15S(ODEFUN, TSPAN, Y0)

If TSPAN = [T0 TFINAL], this call integrates the system of differential equations{
y′ = f(t,y)

y(t0) = y0

from time T0 to TFINAL using initial conditions Y0.

The function ODEFUN(T,Y) must return a column vector corresponding to f(t,y). Each row
in the solution array Y corresponds to a time returned in the column vector T.

To obtain solutions at specific times T0,T1,...,TFINAL (all increasing or all decreasing), use
TSPAN = [T0 T1 ... TFINAL].


