
Numerical solution of Ordinary Differential equations.

Anne Kværnø

March 25, 2009

1 Some background on ODEs.

In this section some useful notation on ordinary differential equations will be presented. We
will also give existence and uniqueness results, but without proofs.

A system of m first order ordinary differential equation is given by

y′ = f(t, y) (1)

or, written out, as

y′1 = f1(t, y1, · · · , ym),
y′2 = f2(t, y1, · · · , ym),
...

y′m = fm(t, y1, · · · , ym).

This is an initial value problem (IVP) if the solution is given at some point t0, thus

y1(t0) = y1,0, y(t0) = y2,0, · · · ym(t0) = ym,0.

Example 1.1. The following equation is an example of the Lotka-Volterra equation:

y′1 = y1 − y1y2,

y′2 = y1y2 − 2y2.

An ODE is called autonomous if f is not a function of t, but only of y. The Lotka-
Volterra equation is an example of an autonomous ODE. A nonautonomous system can be
made autonomous by a simple trick, just add the equation

y′m+1 = 1, ym+1(t0) = t0,

and replace t with ym+1. Also higher order ODE/IVPs

u(m) = f(t, u, u′, · · · , u(m−1)), u(t0) = u0, u
′(t0) = u′0, · · · , u(m−1)(t0) = u

(m−1)
0 ,

where u(m) = dmu/dtm, can be written as a system of first order equations, again by a simple
trick: Let

y1 = u, y2 = u′, · · · ym = u(m−1),

1



and we get the system

y′1 = y2, y1(t0) = u0,

y′2 = y2, y2(t0) = u′0,

...
...

y′m−1 = ym, ym−1(t0) = u
(m−2)
0 ,

y′m = f(t, y1, y2, · · · , ym), ym(t0) = u
(m−1)
0 .

Example 1.2. Van der Pol’s equation is given by

u′′ + µ(u2 − 1)u′ + u = 0.

Using y1 = u and y2 = u′ this equation can be rewritten as

y′1 = y2,

y′2 = µ(1− y2
1)y2 − y1.

This problem was first introduced by Van der Pol in 1926 in the study of an electronic oscillator.

Before concluding this section, we present some existence and uniqueness results for solu-
tion of ODEs.

Definition 1.3. A function f : R × Rm → Rm satisfies the Lipschitz condition with respect
to y on a domain (a, b)×D where D ⊂ Rm if there exist a constant L so that

‖f(t, y)− f(t, ỹ)‖ ≤ L‖y − ỹ‖, for all t ∈ (a, b), y, ỹ ∈ D.

The constant L is called the Lipschitz constant.

It is not hard to show that the function f satisfies the Lipschitz condition if ∂fi/∂yj , i, j =
1, · · · ,m are continuous and bounded on the domain.

Theorem 1.4. Consider the initial value problem

y′ = f(t, y), y(t0) = y0. (2)

If

1. f(t, y) is continuous in (a, b)×D,

2. f(t, y) satisfies the Lipschitz condition with respect to y in (a, b)×D.

with given initial values t0 ∈ (a, b) and y0 ∈ D, then (2) has one and only one solution in
(a, b)×D.

2



2 Numerical solution of ODEs.

In this section we develop some simple methods for the solution of initial value problems. In
both cases, let us assume that we somehow have found solutions yl ≈ y(tl), for l = 0, 1, · · · , n,
and we want to find an approximation yn+1 ≈ y(tn+1) where tn+1 = tn + h, where h is the
stepsize. Basically, there are two different classes of methods in practical use.

1. Onestep methods. Only yn is used to find the approximation yn+1. Onestep methods
usually require more than one function evaluation pr. step. They can all be put in a
general abstract form

yn+1 = yn + hΦ(tn, yn;h).

2. Linear multistep methods: yn+1 is approximated from yn−k+1, · · · , yn.

2.1 Some examples of onestep methods.

Assume that tn, yn is known. The exact solution y(tn+1) with tn+1 = tn + h of (1) passing
through this point is given by

y(tn + h) = yn +
∫ tn+1

tn

y′(τ)dτ = yn +
∫ tn+1

tn

f(τ, y(τ))dτ. (3)

The idea is to find approximations to the last integral. The simplest idea is to use f(τ, y(τ)) ≈
f(tn, yn), in which case we get the Euler method again:

yn+1 = yn + hf(tn, yn).

The integral can also be approximated by the trapezoidal rule∫ tn+1

tn

f(τ, y(τ)) =
h

2
(f(tn, yn) + f(tn+1, y(tn+1)).

By replacing the unknown solution y(tn+1) by yn+1 we get the trapezoidal method

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1)) .

Here yn+1 is available by solving a (usually) nonlinear system of equations. Such methods are
called implicit. To avoid this extra difficulty, we could replace yn+1 on the right hand side by
the approximation from Eulers method, thus

ỹn+1 = yn + hf(tn, yn);

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, ỹn+1)) .

This method is called the improved Euler method. Similarly, we could have used the midpoint
rule for the integral, ∫ tn+1

tn

f(τ, y(τ)) =
(
f(tn +

h

2
, y(tn +

h

2
)
)
,

3



and replaced y(tn + h
2 ) by one half Euler step. The result is the modified Euler method :

ỹn+ 1
2

= yn +
h

2
f(tn, yn),

yn+1 = yn + hf(tn +
h

2
, ỹn+ 1

2
).

Do we gain anything by constructing these methods? Let us solve the problem

y′ == 2ty, , y(t0) = 1, 0 ≤ t ≤ 1

using improved/modified Euler with h = 0.1. For each step, also the global error en =
y(tn)− yn is computed. For comparison, also the result for the Euler method is included.

Euler improved Euler modified Euler
tn yn en yn en yn en
0.0 1.000000 0 1.000000 0 1.000000 0
0.1 1.000000 −9.95 · 10−3 0.990000 4.98 · 10−5 0.990000 4.98 · 10−5

0.2 0.980000 −1.92 · 10−2 0.960696 9.34 · 10−5 0.960597 1.92 · 10−4

0.3 0.940800 −2.69 · 10−2 0.913814 1.17 · 10−4 0.913528 4.03 · 10−4

0.4 0.884352 −3.22 · 10−2 0.852040 1.04 · 10−4 0.851499 6.45 · 10−4

0.5 0.813604 −3.48 · 10−2 0.778765 3.60 · 10−5 0.777930 8.71 · 10−4

0.6 0.732243 −3.46 · 10−2 0.697773 −9.69 · 10−5 0.696636 1.04 · 10−3

0.7 0.644374 −3.17 · 10−2 0.612924 −2.98 · 10−4 0.611507 1.12 · 10−3

0.8 0.554162 −2.69 · 10−2 0.527850 −5.58 · 10−4 0.526202 1.09 · 10−3

0.9 0.465496 −2.06 · 10−2 0.445717 −8.59 · 10−4 0.443904 9.54 · 10−4

1.0 0.381707 −1.38 · 10−2 0.369053 −1.17 · 10−3 0.367153 7.27 · 10−4

As we can see, there is a significant improvement in accuracy, compared with the Euler method.

3 Runge-Kutta methods

The Euler method, as well as the improved and modified Euler methods are all examples on
explicit Runge-Kutta methods (ERK). Such schemes are given by

k1 = f(tn, yn), (4)
k2 = f(tn + c2h, yn + ha21k1),
k3 = f

(
tn + c3h, yn + h(a31k1 + a32k2)

)
,

...

ks = f
(
tn + csh, yn + h

s−1∑
j=1

asjkj

)
,

yn+1 = yn + h
s∑

i=1

biki,

where ci, aij and bi are coefficients defining the method. We always require ci =
∑s

j=1 aij .
Here, s is the number of stages, or the number of function evaluations needed for each step.

4



The vectors ki are called stage derivatives. The improved Euler method is then a two-stage
RK-method, written as

k1 = f(tn, yn),
k2 = f(tn + h, yn + hk1),

yn+1 = yn +
h

2
(k1 + k2).

Also implicit methods, like the trapezoidal rule,

yn+1 = yn +
h

2
(
f(tn, yn) + f(tn + h, yn+1)

)
can be written in a similar form,

k1 = f(tn, yn),

k2 = f
(
tn + h, yn +

h

2
(k1 + k2)

)
,

yn+1 = yn +
h

2
(k1 + k2).

But, contrary to what is the case for explicit methods, a nonlinear system of equations has to
be solved to find k2.

Definition 3.1. An s-stage Runge-Kutta method is given by

ki = f
(
tn + cih, yn + h

s∑
j=1

aijkj

)
, i = 1, 2, · · · , s,

yn+1 = yn + h

s∑
i=1

biki.

The method is defined by its coefficients, which is given in a Butcher tableau

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

cs as1 as2 · · · ass

b1 b2 · · · bs

, where ci =
s∑

i=1

aij , i = 1, · · · , s.

The method is explicit if aij = 0 whenever j ≥ i, otherwise implicit.

Example 3.2. The Butcher-tableaux for the methods presented so far are

0 0

1

0 0 0

1 1 0
1
2

1
2

0 0 0
1
2

1
2 0

0 1

0 0 0

1 1
2

1
2

1
2

1
2

Euler improved Euler modified Euler trapezoidal rule

5



When the method is explicit, the zeros on and above the diagonal is usually ignored. We
conclude this section by presenting the maybe most popular among the RK-methods over
times, The 4th order Runge-Kutta method (Kutta – 1901):

k1 = f(tn, yn)

k2 = f(tn + h
2 , yn + h

2k1)

k3 = f(tn + h
2 , yn + h

2k2)

k4 = f(tn + h, yn + hk3)

yn+1 = yn + h
6 (k1 + 2k2 + 2k3 + k4)

or

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

. (5)

3.1 Order conditions for Runge-Kutta methods.

The following theorem is quite useful:

Theorem 3.3. Let

y′ = f(t, y), y(t0) = y0, t0 ≤ t ≤ tend

be solved by a onestep method

yn+1 = yn + hΦ(tn, yn;h), (6)

with stepsize h = (tend − t0)/Nstep. If

1. the increment function Φ is Lipschitz in y, and

2. the local truncation error dn+1 = O(hp+1) ,

then the method is of order p, that is, the global error at tend satisfies

eNstep = y(tend)− yNstep = O(hp).

A RK method is a onestep method with increment function Φ(tn, yn;h) =
∑s

i=1 biki. It is
possible to show that Φ is Lipschitz in y whenever f is Lipschitz and h ≤ hmax, where hmax is
some predefined maximal stepsize. What remains is the order of the local truncation error. To
find it, we take the Taylor-expansions of the exact and the numerical solutions and compare.
The local truncation error is O(hp+1) if the two series matches for all terms corresponding to
hq with q ≤ p. In principle, this is trivial. In practise, it becomes extremely tedious (give it
a try). It is (somewhat surprisingly) possible to express the series in terms of graphs, called
rooted trees. However, in this note, we restrict ourself to write down the order conditions up

6



to order 4.
Order Condition

1
∑
bi = 1

2
∑
bici = 1/2

3
∑
bic

2
i = 1/3∑

biaijcj = 1/6

4
∑
bic

3
i = 1/4∑

biciaijcj = 1/8∑
biaijc

2
j = 1/12∑

biaijajkck = 1/24

7


