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Bounding |ζ(1
2 + it)| on the Riemann hypothesis

Vorrapan Chandee and K. Soundararajan

Abstract

In 1924 Littlewood showed that, assuming the Riemann hypothesis, for large t, there is a constant
C such that |ζ(1/2 + it)| � exp(C log t/ log log t). In this note we show how the problem of
bounding |ζ(1/2 + it)| may be framed in terms of minorizing the function log((4 + x2)/x2) by
functions whose Fourier transforms are supported in a given interval, and drawing upon recent
work of Carneiro and Vaaler we find the optimal such minorant. Thus we establish that any
C > (log 2)/2 is permissible in Littlewood’s result.

1. Introduction

In 1924 Littlewood [10] proved that the Riemann hypothesis (RH) implies a strong form of
the Lindelöf hypothesis; namely, on RH, for large t, there is a constant C such that∣∣∣∣ζ

(
1
2

+ it

)∣∣∣∣ � exp
(

C
log t

log log t

)
. (1)

In the intervening years no improvement has been made over (1), except in reducing the
permissible value of C, see [11, 12]. In [12] Soundararajan showed that (1) holds for any
C > (1 + λ0)/4 = 0.372 . . . where λ0 = 0.4912 . . . is the unique positive real number satisfying
e−λ0 = λ0 + λ2

0/2. In [4] Chandee has provided an explicit version of this bound for general
L-functions.

A similar situation exists for S(t) = (1/π) arg ζ(1
2 + it), where the argument is defined by

continuous variation along the line segments joining 2, 2 + it, and 1
2 + it, taking the argument

of ζ(s) at 2 to be zero. On RH Littlewood showed that S(t) � log t/ log log t, and again this
bound has not been improved except for the size of the implied constant. Recently Goldston
and Gonek [7] gave an elegant argument leading to the bound |S(t)| � ( 1

2 + o(1)) log t/ log log t.
Their method used the explicit formula together with certain optimal majorants and minorants
of characteristic functions of intervals that were constructed by Selberg. The Goldston–Gonek
result may reasonably be thought of as having attained the limit of existing methods of
bounding S(t), although it seems likely that the true maximal size of S(t) is even smaller,
perhaps � √

log t log log t (see [6]).
In [12] Soundararajan asked for a corresponding treatment for |ζ(1

2 + it)| which would
represent the limit of existing methods for bounding |ζ( 1

2 + it)| on RH. In this note we
present such an approach. Using Hadamard’s factorization formula and the explicit formula,
we show how the problem of bounding |ζ( 1

2 + it)| may be framed in terms of minorizing the
function log((4 + x2)/x2) by functions whose Fourier transforms are supported in a given
interval, and drawing upon recent work of Carneiro and Vaaler [3] we find the optimal such
minorant.
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Theorem 1.1. Assume RH. For large real numbers t we have∣∣∣∣ζ
(

1
2

+ it

)∣∣∣∣ � exp
(

log 2
2

log t

log log t
+ O

(
log t log log log t

(log log t)2

))
.

As with S(t), the true maximal size of |ζ( 1
2 + it)| may be much smaller, perhaps of

size exp(
√

( 1
2 + o(1)) log t log log t) as suggested by Farmer, Gonek, and Hughes [6]. On the

other hand, it is known that there are arbitrarily large t such that |ζ(1
2 + it)| � exp((1 +

o(1))
√

log t/ log log t); see [13].

2. Proof of Theorem 1.1

Let ξ(s) = (1/2)s(s − 1)π−s/2Γ(s/2)ζ(s) denote Riemann’s ξ-function which is entire of order
1, satisfies the functional equation ξ(s) = ξ(1 − s), and whose zeros are the non-trivial zeros of
ζ(s). Recall (see, for example, [5, Chapter 12]) Hadamard’s factorization formula

ξ(s) = eA+Bs
∏
ρ

(
1 − s

ρ

)
es/ρ,

where ρ runs over the non-trivial zeros of ζ(s), and B = −∑
ρ Re(1/ρ). (Note that Re(1/ρ)

is positive and
∑

ρ Re(1/ρ) converges.) We apply this with s = 1
2 + it and s = − 3

2 + it and
divide. The absolute convergence of the product allows us to divide term by term, and we find,
writing (on RH) ρ = 1

2 + iγ,
∣∣∣∣ ξ(1/2 + it)
ξ(−3/2 + it)

∣∣∣∣ = e2B
∏
ρ

∣∣∣∣ i(γ − t)
2 + i(γ − t)

∣∣∣∣ eRe(2/ρ) =
∏
ρ

∣∣∣∣ (t − γ)2

4 + (t − γ)2

∣∣∣∣
1/2

.

Since ξ(− 3
2 + it) = ξ(5

2 − it), and |ζ( 5
2 − it)| � 1, we deduce using Stirling’s formula that

log
∣∣∣∣ζ

(
1
2

+ it

)∣∣∣∣ = log t + O(1) − 1
2

∑
γ

f(t − γ), (2)

where we have set

f(x) = log
4 + x2

x2
. (3)

The proof of Theorem 1.1 now proceeds by replacing f(t − γ) by a carefully chosen function
that minorizes it, and then invoking the explicit formula. The properties of the appropriate
minorant function are detailed in the following proposition which we shall demonstrate in the
next section.

Proposition 2.1. Let Δ denote a positive real number. There is an entire function gΔ

which satisfies the following properties.

(i) For all real x we have

−C
1

1 + x2
� gΔ(x) � f(x),

for some positive constant C. For any complex number x + iy we have

|gΔ(x + iy)| � Δ2

1 + Δ|x + iy|e
2πΔ|y|.
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(ii) The Fourier transform of gΔ, namely

ĝΔ(ξ) =
∫∞

−∞
gΔ(x)e−2πixξ dx,

is real-valued, equals zero for |ξ| � Δ, and satisfies |ĝΔ(ξ)| � 1.
(iii) The L1 distance between gΔ and f equals∫∞

−∞
(f(x) − gΔ(x)) dx =

1
Δ

(2 log 2 − 2 log(1 + e−4πΔ)).

Returning to (2), we have for any positive Δ∑
γ

f(t − γ) �
∑

γ

gΔ(t − γ). (4)

We now invoke the explicit formula connecting zeros and primes (see [7, Lemma 1] or [9,
Theorem 5.12]).

Lemma 2.2. Let h(s) be analytic in the strip |Im s| � 1/2 + ε for some ε > 0, and such
that |h(s)| � (1 + |s|)−(1+δ) for some δ > 0 when |Re s| → ∞. Let h(w) be real-valued for real
w, and set ĥ(x) =

∫∞
−∞ h(w)e−2πixw dw. Then

∑
ρ

h(γ) = h

(
1
2i

)
+ h

(
− 1

2i

)
− 1

2π
ĥ(0) log π +

1
2π

∫∞

−∞
h(u)Re

Γ′

Γ

(
1
4

+
iu

2

)
du

− 1
2π

∞∑
n=2

Λ(n)√
n

(
ĥ

(
log n

2π

)
+ ĥ

(− log n

2π

))
.

We apply Lemma 2.2, taking h(z) = gΔ(t − z) so that ĥ(x) = ĝΔ(−x)e−2πixt. From (i)
of Proposition 2.1 we find that h(1/2i) + h(−1/2i) � Δ2eπΔ/(1 + Δt), and using (ii) of
Proposition 2.1 that ĥ(0) � 1. Using Stirling’s formula, parts (i) and (iii) of Proposition 2.1,
and that

∫∞
−∞ f(x)dx = 4π we have

1
2π

∫∞

−∞
h(u)Re

Γ′

Γ

(
1
4

+
iu

2

)
du =

1
2π

∫∞

−∞
gΔ(u)(log t + O(log(2 + |u|)) du

= 2 log t − log t

πΔ
log

(
2

1 + e−4πΔ

)
+ O(1).

Using these remarks to evaluate the right-hand side of (4), and inserting that bound in (2) we
conclude that

log
∣∣∣∣ζ

(
1
2

+ it

)∣∣∣∣ � log t

2πΔ
log

(
2

1 + e−4πΔ

)
+

1
2π

Re
∞∑

n=2

Λ(n)
n1/2+it

ĝΔ

(
log n

2π

)

+ O

(
Δ2eπΔ

1 + Δt
+ 1

)
. (5)

Since
∞∑

n=2

Λ(n)√
n

∣∣∣∣ĝΔ

(
log n

2π

)∣∣∣∣ � eπΔ,

taking πΔ = log log t − 3 log log log t in (5) we obtain our theorem.
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3. Proof of Proposition 2.1: the work of Carneiro and Vaaler

Given a function from R to R Carneiro and Vaaler consider the problem of finding optimal
majorants and minorants for this function, with the additional property that the majorants
and minorants are restrictions to the real axis of complex analytic functions of exponential
type at most 2π. The majorants and minorants are to be optimal in the sense of minimizing
the L1 distance from the given function. This problem has a long history, going back to work of
Beurling for the signum function which was rediscovered and used by Selberg to study the case
of indicator functions of intervals (see [3, 8, 14]). Carneiro and Vaaler solve the optimization
problem for a wide class of functions including our function f(x).

Let μ be a (non-negative) measure defined on the Borel subsets of R+ such that

0 <

∫∞

0

λ

λ2 + 1
dμ(λ) < ∞. (6)

Let

fμ(x) =
∫∞

0

(e−λ|x| − e−λ) dμ(λ),

and define

Gμ(z) = lim
N→∞

(cos πz

π

)2 N+1∑
n=−N

(
fμ(n − 1/2)

(z − n + 1/2)2
+

f ′
μ(n − 1/2)

(z − n + 1/2)

)
.

Theorem 1.1 of Carneiro and Vaaler then demonstrates that Gμ(z) converges uniformly on
compact subsets of C, defines an entire function of exponential type at most 2π, and that for
real x we have Gμ(x) � fμ(x). Moreover they show that Gμ minimizes the L1 distance from
fμ (in particular fμ − Gμ is integrable) among all minorants of fμ with exponential type at
most 2π.

Let Δ be a given positive real number, and consider the measure

dμΔ(λ) =
2(1 − cos(2Δλ))

λ
dλ.

This measure satisfies (6), and moreover∫∞

0

(e−λ|x| − e−λ)
2(1 − cos(2Δλ))

λ
dλ = log

(
4Δ2 + x2

x2

)
− log(4Δ2 + 1). (7)

The identity (7) may be checked by noting that both sides equal zero for x = 1, and that the
derivatives of both sides agree (a little care is needed at x = 0 where the result follows by
continuity). Let us denote the right-hand side of (7) by fΔ(x) = f(x/Δ) − f(1/Δ). Let

GΔ(z) =
(cos πz

π

)2 ∞∑
n=−∞

(
fΔ(n − 1/2)

(z − n + 1/2)2
+

f ′
Δ(n − 1/2)

(z − n + 1/2)

)

denote the corresponding optimal function of Carneiro and Vaaler.
First we record an upper bound for GΔ(z). By an application of the Poisson summation

formula we see that(cos πz

π

)2 ∞∑
n=−∞

1
(z − n + 1/2)2

=
∞∑

n=−∞

(
sin(π(z − n + 1/2))

π(z − n + 1/2)

)2

= 1,

so that

GΔ(z) + f

(
1
Δ

)
=

∞∑
n=−∞

(
sin(π(z − n + 1/2))

π(z − n + 1/2)

)2

×
(

f

(
n − 1/2

Δ

)
+

(z − n + 1/2)
Δ

f ′
(

n − 1/2
Δ

))
. (8)
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For any complex number ξ we have (sin(πξ)/(πξ))2 � e2π|Im ξ|/(1 + |ξ|2), and further f(x) �
4/x2 and |f ′(x)| � 8/(|x|(4 + x2)), whence we deduce that∣∣∣∣GΔ(x + iy) + f

(
1
Δ

)∣∣∣∣ � Δ2

1 + |x + iy|e
2π|y|. (9)

We now cull from [3, Theorem 1.1] various facts about the function GΔ(z). This function
is entire of exponential type at most 2π, and for real x we have that GΔ(x) � fΔ(x). We
expect that GΔ(x) + f(1/Δ) is non-negative for all real x, but for our purposes a cruder lower
bound suffices. Since f(x) � 0 and f ′(−x) = −f ′(x), by pairing the terms n � 1 with the terms
1 − n � 0 we obtain from (8) that

GΔ(x) + f

(
1
Δ

)
�

(
cos(πx)

π

)2 ∞∑
n=1

1
Δ

f ′
(

n − 1/2
Δ

) (
1

x − n + 1/2
− 1

x + n − 1/2

)

=
∞∑

n=1

(
sin2(π(x − n + 1/2))
π(x2 − (n − 1/2)2)

)
2(n − 1/2)

Δ
f ′

(
n − 1/2

Δ

)
,

and from this we may easily deduce that there is a constant C such that

− C
Δ2

Δ2 + x2
� GΔ(x) + f

(
1
Δ

)
� f

( x

Δ

)
. (10)

By [3, Theorem 1.1(v)] we have∫∞

−∞

(
f

( x

Δ

)
−

(
GΔ(x) + f

(
1
Δ

)))
e−2πitx dx

=
∫∞

0

(
2λ

λ2 + 4π2t2
− L̂(λ, t)

)
2(1 − cos(2Δλ))

λ
dλ, (11)

where L̂(λ, t) = 0 if |t| � 1 and for |t| � 1 we have (see [3, Lemma 3.2])

L̂(λ, t) =
(1 − |t|) sinh(λ/2) cos(πt) + (λ/2π)| sin πt| cosh(λ/2)

sinh2(λ/2) + sin2 πt
. (12)

Now f(x/Δ) is integrable, and we may check that∫∞

−∞
f

( x

Δ

)
e−2πitx dx =

∫∞

0

2λ

λ2 + 4π2t2
2(1 − cos(2Δλ))

λ
dλ,

so that GΔ(x) + f(1/Δ) is also integrable and∫∞

−∞

(
GΔ(x) + f

(
1
Δ

))
e−2πixt dx =

∫∞

0

L̂(λ, t)
2(1 − cos(2Δλ))

λ
dλ. (13)

Since

L̂(λ, t) � 1 + λ

sinh(λ/2)
+

λ

(sinh(λ/2))2
,

and (1 − cos(2Δλ))/λ � min(1/λ, Δ2λ), we deduce from (12) and (13) that∣∣∣∣
∫∞

−∞

(
GΔ(x) + f

(
1
Δ

))
e−2πixt dx

∣∣∣∣ � Δ. (14)

Moreover from (11) and a little calculus we find that∫∞

−∞
(fΔ(x) − GΔ(x)) dx =

∫∞

0

(
2
x
− 1

sinh(x/2)

)
2(1 − cos(2Δx))

x
dx

= 2 log 2 − 2 log(1 + e−4πΔ). (15)

We are now in a position to prove Proposition 2.1. We take gΔ(z) = GΔ(zΔ) + f(1/Δ),
so that for real x we have gΔ(x) = GΔ(xΔ) + f(1/Δ) � fΔ(xΔ) + f(1/Δ) = f(x). Since GΔ
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has exponential type at most 2π, we see that gΔ has exponential type at most 2πΔ. Further,
ĝΔ(t) = Δ−1ĜΔ(t/Δ). Thus part (i) of Proposition 2.1 follows from (9) and (10), part (ii) from
(12)–(14), and part (iii) from (15).

4. Discussion

The estimate (5) gives a variant of the main proposition of [12] which states that for large t,

log
∣∣∣∣ζ

(
1
2

+ it

)∣∣∣∣ � Re
∑
n�x

Λ(n)
n1/2+λ/ log x+it log n

log(x/n)
log x

+
(1 + λ)

2
log t

log x
+ O

(
1

log x

)
,

where 2 � x � t2, and λ � λ0 = 0.4912 . . . where λ0 denotes the unique positive real number
satisfying e−λ0 = λ0 + λ2

0/2. For large t it is difficult to give good estimates for the sum over n
above (or in (5)) and this is the barrier to establishing better estimates for |ζ( 1

2 + it)|. However
one can study the frequency with which such sums get large, and this information is used in
[12] to understand the size of moments of ζ( 1

2 + it).
In light of our work we can view the proposition in [12] as constructing a different minorant

of our function f(x). We start with (for positive α and x real)

KΔ(α, x) = 2π

∫Δ

−Δ

(
1 − |t|

Δ

)
e−2πα|t|−2πitx dt =

2α

α2 + x2
− 1

πΔ
Re

1 − e−2πΔ(α+ix)

(α + ix)2
.

Integrating both sides from α0 > 0 to 2, we obtain∫2

α0

KΔ(α, x) dα � log
4 + x2

α2
0 + x2

+
1

πΔ

(
2

4 + x2
− α0

α2
0 + x2

)
+

1
πΔ

∫2

α0

e−2πΔα

α2
0 + x2

dα,

and, upon rearranging,

log
4 + x2

α2
0 + x2

�
∫2

α0

KΔ(α, x) dα +
1

πΔ(α2
0 + x2)

(
α0 − e−2πα0Δ

2πΔ

)
− 1

πΔ
2

4 + x2
.

Since log((α2
0 + x2)/x2) � α2

0/(α2
0 + x2), we conclude that

f(x) �
∫2

α0

KΔ(α, x) dα +
1

α2
0 + x2

(
α2

0 +
α0

πΔ
− e−2πα0Δ

2π2Δ2

)
− 1

πΔ
2

4 + x2
.

If we choose α0 � λ0/(2πΔ), then the middle term above is non-negative and we have shown
that for such α0

f(x) �
∫2

α0

KΔ(α, x) dα − 1
πΔ

2
4 + x2

.

The first term in the right-hand side above clearly has Fourier transform supported in [−Δ,Δ].
The second term may be easily approximated by functions having compactly supported Fourier
transform. For example, assuming that 2πΔ � 2 say, we can see from the definition of KΔ that
2/(4 + x2) � 1

2KΔ(2, x)(1 − 1/2πΔ)−1, so that f(x) �
∫2

α0
KΔ(α, x) dα − KΔ(2, x)/(2πΔ −

1). Using the explicit formula with such a minorant gives an alternative proof of the proposition
in [12]. The construction of minorants given above amounts to taking convolutions with
functions whose Fourier transforms have compact support. Although this is not optimal, the
method works for related functions such as log((4 + x2)/(α2 + x2)) (this arises in bounding
log |ζ( 1

2 + α + it)|) which do not fit the framework of Carneiro and Vaaler. However recent work
of Carneiro, Littmann, and Vaaler [2] develops a new method which allows one to find optimal
minorants for the function log((4 + x2)/(α2 + x2)), and using this Carneiro and Chandee [1]
have established good estimates for log |ζ( 1

2 + α + it)|.
Theorem 1.1 may be extended to general L-functions. To be concrete, consider the framework

described in [9, Chapter 5]. Thus we consider L-functions given in Re s > 1 by the absolutely
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convergent series and product

L(f, s) =
∞∑

n=1

λf (n)
ns

=
∏
p

d∏
j=1

(
1 − αj(p)

ps

)−1

,

where the ‘degree’ d is a fixed natural number. We assume that there is an integer q(f) � 1
and complex numbers κj with Re(κj) > −1 such that

Λ(f, s) =
(

q(f)
πd

)s/2 d∏
j=1

Γ
(

s + κj

2

)
L(f, s)

is entire of order 1 except possibly for poles at s = 0 and 1. Moreover, we suppose that a
functional equation

Λ(f, s) = ε(f)Λ(f, 1 − s),

holds, where ε(f) is a complex number of size 1, and Λ(f̄ , s) = Λ(f, s̄). We assume the
Generalized Riemann Hypothesis for L(f, s), namely that the zeros of Λ(f, s) all lie on
the line Re(s) = 1

2 , and then seek a bound for L(f, 1
2 ) in terms of the analytic conductor

C(f) := q(f)
∏d

j=1(3 + |κj |). Making minor modifications to our argument we find that

log
∣∣∣∣L

(
f,

1
2

)∣∣∣∣ � log C(f)
2πΔ

log
(

2
1 + e−4πΔ

)
+

1
4π

∞∑
n=2

1√
n

gΔ

(
log n

2π

)
(Λf (n) + Λf̄ (n))

+O

(
Δ2eπΔ

1 + ΔC(f)
+ 1

)
, (16)

where Λf (n) and Λf̄ (n) are the Dirichlet series coefficients of −L′/L(f, s) and −L′/L(f̄ , s)
respectively. If we now assume the Ramanujan conjectures (which imply that |Λf (n)| � dΛ(n))
then, choosing πΔ = (1 − o(1)) log log C(f) and estimating the sum over n in (16) trivially, we
obtain that

log
∣∣∣∣L

(
f,

1
2

)∣∣∣∣ �
(

log 2
2

+ o(1)
)

log C(f)
log log C(f)

,

which is the analog of Theorem 1.1. If we do not assume the Ramanujan conjectures, then using
that |Λf (n)| � dnΛ(n) (which follows from our assumption that the Euler product converges
absolutely in Re(s) > 1), and choosing πΔ = ( 1

3 − o(1)) log log C(f), we obtain

log
∣∣∣∣L

(
f,

1
2

)∣∣∣∣ � 3
(

log 2
2

+ o(1)
)

log C(f)
log log C(f)

.
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