Advanced topics in the study of the Riemann zeta function - NTNU 2021
 Instructor: Andrés Chirre

PROBLEM SET 1

Let $\Omega \subset \mathbb{C}$ be an open set.
(1) Let $\left\{f_{n}\right\}_{n \geq 1}$ be a sequence of analytic function in Ω such that f_{n} converges uniformly in compacts of Ω to f. Prove that f is analytic in Ω. Moreover, prove that f_{n}^{\prime} converges uniformly in compacts of Ω to f^{\prime}.
(2) Prove that for $\sigma>1$ we have

$$
\frac{1}{\sigma-1} \leq \zeta(\sigma) \leq \frac{\sigma}{\sigma-1}
$$

In particular, show that $\lim _{\sigma \rightarrow 1^{+}} \zeta(\sigma)=+\infty$.
(3) Show that $\lim _{\sigma \rightarrow+\infty} \zeta(\sigma)=1$.
(4) The values of $\zeta(s)$ and $\eta(s)$:
(a) Find the values of $\zeta(2)$ and $\zeta(4)$.
(b) Find the values of $\eta(1), \eta(2)$ and $\eta(4)$.

Give proofs to find these values (using Fourier analysis for instance).
(5) Prove Abel's identity: Let a_{n} be a sequence of complex numbers., and define $A:(0, \infty) \rightarrow \mathbb{C}$ by

$$
A(x)=\sum_{n \leq x} a_{n}
$$

and $A(x)=0$ if $0<x<1$. Assume f has a continuous derivative on the interval $[y, x]$ where $0<y<x$. Then we have

$$
\sum_{y<n \leq x} a_{n} f(n)=A(x) f(x)-A(y) f(y)-\int_{y}^{x} A(t) f^{\prime}(t) \mathrm{d} t
$$

Hint: Use the fact that $A(n)-A(n-1)=a_{n}$, to prove that

$$
\sum_{y<n \leq x} a_{n} f(n)=\sum_{n=[y]+1}^{[x]-1} A(n)\{f(n)-f(n+1)\}+A([x]) f([x])-A([y]) f([y]+1)
$$

Then, use the fundamental calculus theorem and the fact that $A(t)$ is constant in $[n, n+1)$ to obtain the desired result.
(6) Using Abel's identity, deduce Euler's summation formula: if f has a continuous derivative on the interval $[y, x]$ where $0<y<x$ then

$$
\sum_{y<n \leq x} f(n)=\int_{y}^{x} f(t) \mathrm{d} t+\int_{y}^{x}(t-[t]) f^{\prime}(t) \mathrm{d} t+f(x)([x]-x)-f(y)([y]-y)
$$

(7) For $x \geq 2$, prove the following estimates:
(a) $\sum_{n \leq x} \frac{1}{n}=\log x+C+O\left(\frac{1}{x}\right), \quad$ for some constant $C \in \mathbb{R}$.
(b) $\sum_{n \leq x} \frac{1}{n^{\sigma}}=\frac{x^{1-\sigma}}{1-\sigma}+\zeta(\sigma)+O\left(x^{-\sigma}\right), \quad$ for $\sigma>0, \sigma \neq 1$.
(c) $\sum_{n>x} \frac{1}{n^{\sigma}}=O\left(x^{1-\sigma}\right), \quad$ for $\sigma>1$.
(d) $\sum_{n \leq x} n^{\alpha}=\frac{x^{1+\alpha}}{1+\alpha}+O\left(x^{\alpha}\right)$, for $\alpha \geq 0$.
(e) $\sum_{n \leq x} \frac{\log n}{n}=\frac{\log ^{2} x}{2}+A+O\left(\frac{\log x}{x}\right)$, for some constant $A \in \mathbb{R}$.
(f) $\sum_{n \leq x} \frac{1}{n \log n}=\log \log x+B+O\left(\frac{1}{x \log x}\right)$, for some constant $B \in \mathbb{R}$.
(8) Prove that, uniformly in compacts of $\operatorname{Re} s>1$, we have the convergence

$$
\sum_{p} \log \left(1-\frac{1}{p^{s}}\right)=-\log \zeta(s)
$$

Here the logarithm of $\zeta(s)$ is defined such that $\log \zeta(2) \in \mathbb{R}$.
(9) Define the Möbius function as follows:

$$
\mu(n)= \begin{cases}1, & \text { if } n=1 \\ (-1)^{k}, & \text { if } n=p_{1} p_{2} \cdots p_{k} \\ 0, & \text { otherwise }\end{cases}
$$

Then, prove that for $n>1$ we have

$$
\sum_{d \mid n} \mu(d)=0
$$

where the sum runs over the positive divisors d of n. Note that $\sum_{d \mid 1} \mu(d)=\mu(1)=1$.
(10) Let $F(s)$ and $G(s)$ be two functions with representation

$$
F(s)=\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}, \quad \text { and } \quad G(s)=\sum_{n=1}^{\infty} \frac{g(n)}{n^{s}}
$$

for some sequences $f(n)$ and $g(n)$. Suppose that F converges absolutely for $\operatorname{Re} s>a$ and G converges absolutely for $\operatorname{Re} s>b$. Prove that, in $\operatorname{Re} s>\max \{a, b\}$ we have the representation

$$
F(s) G(s)=\sum_{n=1}^{\infty} \frac{h(n)}{n^{s}}
$$

where this series converges absolutely, and

$$
h(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)
$$

(11) Prove that, for $\operatorname{Re} s>1$,

$$
\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}=\frac{1}{\zeta(s)}
$$

Hint: Use problems (9) and (10).
(12) Prove that $\zeta(\sigma)<0$ for $0<\sigma<1$.
(13) Prove that for $\sigma>0(\sigma \neq 1)$ we have

$$
\frac{1}{\sigma-1}<\zeta(\sigma)<\frac{\sigma}{\sigma-1}
$$

Note that this is a refination of the problem (2).
(14) Let $\mathcal{M}(\mathbb{R})$ the family of moderate decrease functions. This means that $f \in \mathcal{M}(\mathbb{R})$, if f is continuous on \mathbb{R} and for some $M>0$

$$
|f(x)| \leq \frac{M}{1+x^{2}}, \text { for all } \mathrm{x} \in \mathbb{R}
$$

Denote by \widehat{f} the Fourier transform of f defined by

$$
\widehat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \xi} \mathrm{~d} x
$$

for all $\xi \in \mathbb{R}$. Prove the classical Poisson summation formula: if $f \in \mathcal{M}(\mathbb{R})$ and $\widehat{f} \in \mathcal{M}(\mathbb{R})$, then

$$
\sum_{n=-\infty}^{\infty} f(x+n)=\sum_{k=-\infty}^{\infty} \widehat{f}(k) e^{2 \pi i k x}
$$

for all $x \in \mathbb{R}$.

