Advanced topics in the study of the Riemann zeta function - NTNU 2021 Instructor: Andrés Chirre

PROBLEM SET 3

(27) Let γ be given and define $f(\beta) = \beta/(\beta^2 + \gamma^2)$. Show that if $0 \le \beta \le 1$, then $f(\beta) \ge \beta/(1 + \gamma^2)$. Deduce that if $0 \le \beta \le 1$, then $f(\beta) + f(1 - \beta) \ge f(0) + f(1)$. Use this to prove that if $\rho = \beta + i\gamma$ is a non-trivial zero of $\zeta(s)$ with $\beta \ne 1/2$, then

$$|\gamma| \ge \left(-\frac{2}{B}-1\right)^{1/2} = 9.2518...,$$

where B is the parameter in the Hadamard factorization of $\xi(s)$.

(28) (a) Show that

$$\sum_{\rho} \operatorname{Re} \frac{1}{\sigma - \rho} = \frac{1}{2} \log \sigma + O(1),$$

for $\sigma \geq 2$, where the sum is over all non-trivial zeros of $\zeta(s)$.

(b) Deduce that

$$\sum_{\rho} \left(\operatorname{Re} \frac{1}{\sigma - \rho} - \frac{3}{4} \operatorname{Re} \frac{1}{2\sigma - \rho} \right) = \frac{1}{8} \log \sigma + O(1),$$

for $\sigma \geq 2$.

- (c) Show that each summand above is $\leq 1/(\sigma 1)$.
- (d) Show that if $|\gamma| \ge 3\sigma$ and σ large, then the summand arising from ρ in the sum above is ≤ 0 .
- (e) Conclude that $N(T) \gg T \log T$, when T is large.

(29) Put

$$f(s) = \operatorname{Re}\left\{\frac{1}{s+1} - \frac{3}{4(s+2)}\right\}.$$

(a) Show that if $t \ge 2$, then

$$\sum_{\rho} f(1 + it - \rho) = \frac{1}{8} \log t + O(1),$$

where the sum is over all non-trivial zeros of $\zeta(s)$.

- (b) Show that $f(s) \leq 1$, where $s = \sigma + it$ with $\sigma \geq 0$.
- (c) Show that if $0 \le \sigma < 2$, then $f(s) \le 0$ when

$$t^2 \ge \frac{(\sigma+1)(\sigma+2)(\sigma+5)}{2-\sigma}.$$

- (d) Deduce that $f(s) \leq 0$ if $0 < \sigma < 1$ and $|t| \geq 6$.
- (e) Show that $N(T+6) N(T-6) \gg \log T$ for all T sufficiently large.
- (30) Prove that for $T \ge 2$ we have

$$\sum_{|\gamma| \le T} \frac{1}{|\gamma|} = O(\log^2 T), \quad \text{and} \quad \sum_{|\gamma| > T} \frac{1}{\gamma^2} = O\left(\frac{\log T}{T}\right),$$

where the sum runs over the imaginary part γ of the non-trivial zeros of $\zeta(s)$.

(31) Let $0 < \gamma_1 \leq \gamma_2 \leq \dots$ be the consecutive ordinates of the non-trivial zeros of $\zeta(s)$ with positive imaginary parts. Prove that

$$\gamma_n \sim \frac{2\pi n}{\log n}$$
, as $n \to \infty$.

- (32) Let N(T) be the counting function of the non-trivial zeros of $\zeta(s)$ with $0 < \gamma \leq T$. Decide the veracity of the following estimates:
 - (a) $N(T^2 + T) N(T^2) \le N(3T) N(T)$, for T sufficiently large.
 - (b) $N(T^2 + T) N(T^2) \le N(4T) N(2T)$, for T sufficiently large.
- (33) Use Proposition of the class 7, to prove that, if the Riemann hypothesis is true, for $\frac{1}{2} < \sigma \leq 2$ and $t \geq 2$ we have

$$\frac{\zeta'}{\zeta}(\sigma+it) = O\left(\frac{\log t}{\sigma-\frac{1}{2}}\right).$$

(34) Prove that for any integer $k \ge 1$, we have for $s = \sigma + it$ with $\frac{1}{2} \le \sigma \le \frac{3}{2}$ and $t \ge 2$

$$\sum_{|\gamma - t| > 1} \frac{1}{(s - \rho)^{k+1}} = O(\log t).$$

(35) $0 < \gamma_1 \leq \gamma_2 \leq \dots$ be the consecutive ordinates of the non-trivial zeros of $\zeta(s)$ with positive imaginary parts. Show that

$$\gamma_{n+1} - \gamma_n = O(1).$$

Hint: Find H > 0 such that N(T + H) - N(T) > 0.

(36) Prove that there is C > 0 and $n_0 \in \mathbb{N}$ such that, for $n \ge n_0$ there is $T_n \in \mathbb{R}$ with $n \le T_n \le n+1$ such that

$$|\gamma - T_n| \ge \frac{C}{\log T_n},$$

for all $\gamma \in \mathbb{R}$, where γ is the ordinate of a non-trivial zero of $\zeta(s)$.

(37) *Let S(t) be the argument function defined in class:

$$S(t) = \frac{1}{\pi} \arg \zeta(\frac{1}{2} + it),$$

for t > 0.

(a) Prove that

$$S(t) = -\frac{1}{\pi} \int_{\frac{1}{2}}^{\infty} \operatorname{Im} \frac{\zeta'}{\zeta} (\sigma + it) \, \mathrm{d}\sigma.$$

(b) Define for T > 0:

$$S_1(T) = \int_0^T S(t) \,\mathrm{d}t.$$

Prove that

$$S_1(T) = \frac{1}{\pi} \int_{\frac{1}{2}}^{2} \log |\zeta(\sigma + iT)| \, \mathrm{d}\sigma + O(1).$$

(c) Prove that for $T \ge 2$:

$$S_1(T) = O(\log T).$$

Hint: Take a look on Titchmarsh's book Chapter 9.

(38) A refined version of the Riemann-von Mangoldt formula gives, for $T \ge 2$:

$$N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + \frac{7}{8} + S(T) + \frac{1}{48\pi T} + O\left(\frac{1}{T^3}\right).$$

Define the function

$$N_1(T) = \sum_{0 < \gamma \le T} \gamma,$$

where the sum runs over the imaginary part γ of the non-trivial zeros of $\zeta(s)$. Use the refined version of the Riemann-von Mangoldt formula to prove that

$$N_1(T) = \frac{T^2}{4\pi} \log \frac{T}{2\pi} - \frac{T^2}{8\pi} - \frac{\log T}{48\pi} + TS(T) - S_1(T) + O(1).$$

(39) *Prove the second mean value theorem for integrals: Let $G : [a, b] \to \mathbb{R}$ be a monotonic function and $f : [a, b] \to \mathbb{R}$ be a Riemann integrable function. Then, there is $c \in (a, b]$ such that

$$\int_{a}^{b} G(x)f(x)dx = G(a^{+})\int_{a}^{c} f(x)dx + G(b^{-})\int_{c}^{b} f(x)dx.$$

(40) *Define the sawtooth function $\psi : \mathbb{R} \to \mathbb{R}$ as

$$\psi(x) = \begin{cases} x - [x] - \frac{1}{2}, & \text{if } x \notin \mathbb{Z} \\ 0 & \text{if } x \in \mathbb{Z}. \end{cases}$$

Prove that

$$\psi(x) = -\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin 2\pi m x}{m},$$

for all $x \in \mathbb{R}$, and the partial sums of its Fourier series are uniformly bounded.

Email address: carlos.a.c.chavez@ntnu.no