Advanced topics in the study of the Riemann zeta function - NTNU 2021
 Instructor: Andrés Chirre

PROBLEM SET 4

(41) Prove that for any $m, n \in \mathbb{Z}$ such that $m \neq n$, we have

$$
\int_{-\infty}^{\infty} \frac{\sin ^{2}(\pi x)}{(x-n)(x-m)} \mathrm{d} x=0
$$

Conclude that $\left\{\frac{\sin (x-n)}{x-n}\right\}_{n \in \mathbb{Z}}$ is an orthonormal set in $L^{2}(\mathbb{R})$.
(42) Define the function $\psi(x)=F(x)-x_{0}^{+}(x)$, where

$$
F(x)=-\int_{-\infty}^{x} \frac{\sin ^{2}(\pi s)}{\pi^{2} s(s+1)^{2}} \mathrm{~d} s
$$

Following the ideas developed in class, prove that for $|t| \geq 1$ we have:

$$
\widehat{\psi}(t)=-\frac{1}{2 \pi i t} .
$$

(43) Let $\frac{1}{2}<\sigma \leq 1$. Find the asymptotic formulas for

$$
\int_{1}^{T}|\zeta(\sigma+i t)|^{2} \mathrm{~d} t
$$

(44) A classical theorem in the theory of Dirichlet series establishes the following:

Let $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function such that Ω contains the strip $\sigma_{1} \leq \operatorname{Re} s \leq \sigma_{2}$. Suppose that $f(\sigma+i t)=O\left(e^{\varepsilon|t|}\right)$ in the strip $\sigma_{1} \leq \operatorname{Re} s \leq \sigma_{2}$, for every $\varepsilon>0$. Suppose that $f\left(\sigma_{1}+i t\right)=O\left(|t|^{k_{1}}\right)$ and $f\left(\sigma_{2}+i t\right)=O\left(|t|^{k_{2}}\right)$. Then, we have

$$
f(\sigma+i t)=O\left(|t|^{k(\sigma)}\right)
$$

uniformly for $\sigma_{1} \leq \sigma \leq \sigma_{2}$, where $k(\sigma)$ is the linear function of σ which takes the values k_{1} and k_{2} for $\sigma=\sigma_{1}$ and $\sigma=\sigma_{2}$ respectively.
Hint: See the book The theory of functions by E. C. Titchmarsh, p. 180-181, to see an easy proof.
(45) Let $\Delta>0$. Prove that

$$
\int_{0}^{\infty}\left\{e^{-\lambda|x|}-e^{-\lambda}\right\} \frac{2(1-\cos (2 \Delta \lambda))}{\lambda} \mathrm{d} \lambda=\log \left(\frac{4 \Delta^{2}+x^{2}}{x^{2}}\right)-\log \left(4 \Delta^{2}+1\right)
$$

for all $x \in \mathbb{R}$.
(46) Let $f: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ be the function

$$
f(x)=\log \left(\frac{4+x^{2}}{x^{2}}\right)
$$

Prove the Proposition mentioned in class: Let $\Delta \geq 1$. Then, there is an even entire function $m_{\Delta}: \mathbb{C} \rightarrow \mathbb{C}$ such that:
(a) There is a constant $C>0$ such that for all $x \in \mathbb{R}$:

$$
\frac{-C}{1+x^{2}} \leq m_{\Delta}(x) \leq f(x)
$$

(b) For all $z \in \mathbb{C}$ we have:

$$
\left|m_{\Delta}(z)\right| \ll \frac{\Delta^{2}}{1+\Delta|z|} e^{2 \pi \Delta|\operatorname{Im} z|} \quad \text { for all } z \in \mathbb{C}
$$

(c) $m_{\Delta} \in L^{1}(\mathbb{R}), \widehat{m_{\Delta}}(\xi)=0$ for $|\xi| \geq \Delta$, and $\widehat{m_{\Delta}}(\xi)=O(1)$.
(d) The distance $L^{1}(\mathbb{R})$ is given by:

$$
\int_{-\infty}^{\infty}\left\{f(x)-m_{\Delta}(x)\right\} \mathrm{d} x=\frac{1}{\Delta}\left(2 \log 2-2 \log \left(1+e^{-4 \pi \Delta}\right)\right)
$$

(e) When $|\operatorname{Im} z| \leq \frac{1}{2}+\varepsilon$ and $|\operatorname{Re} z| \rightarrow \infty$ we have

$$
\left|m_{\Delta}(z)(1+|z|)^{2}\right| \ll \Delta 1
$$

(47) (Chebychev) We want to prove that there is a constant $C>0$ such that, for $x \geq 2$ we have

$$
\begin{equation*}
\psi(x):=\sum_{n \leq x} \Lambda(n) \leq C x \tag{0.1}
\end{equation*}
$$

(a) Define the function $L(x)=\sum_{n \leq x} \log (n)$. Prove that $L(x)=x \log x-x+O(\log x)$.
(b) Prove that

$$
\log n=\sum_{d \mid n} \Lambda(d)=\sum_{d \mid n} \Lambda\left(\frac{n}{d}\right)
$$

(c) Prove that

$$
L(x)=\sum_{d \leq x} \psi\left(\frac{x}{d}\right)
$$

(d) Prove that

$$
\psi(x)-\psi\left(\frac{x}{2}\right) \leq L(x)-2 L\left(\frac{x}{2}\right) \leq \psi(x)
$$

(e) Prove that

$$
\psi(x)-\psi\left(\frac{x}{2}\right) \leq x \log 2+O(\log x)
$$

(f) Conclude 0.1.
(48) Prove Hadamard's three-circles theorem: Let $\Omega \subset \mathbb{C}$ be an open set such that contains the annulus $r_{1} \leq|z| \leq r_{3}$. Let $f: \Omega \rightarrow \mathbb{C}$ be an holomorphic function. Define $M(r)$ the maximum of $|f(z)|$ on the circle $|z|=r$. Then, for $r_{1}<r_{2}<r_{3}$ we have:

$$
\left(M_{2}\right)^{\log \left(r_{3} / r_{1}\right)} \leq\left(M_{1}\right)^{\log \left(r_{3} / r_{2}\right)}\left(M_{3}\right)^{\log \left(r_{2} / r_{1}\right)}
$$

(49) Prove Borel-Carathéodory theorem: Let $\Omega \subset \mathbb{C}$ be an open set such that contains the disc $|z| \leq R$. Then, for $0<r<R$ we have that

$$
\max _{|z| \leq r}|f(z)| \leq \frac{2 r}{R-r} \max _{|z|=R} \operatorname{Re} f(z)+\frac{R+r}{R-r}|f(0)|
$$

(50) Let $\left\{a_{n}\right\}_{n=1}^{N}$ be complex numbers. Then, we have for $T \geq 2$:

$$
\int_{0}^{T}\left|\sum_{n=1}^{N} a_{n} n^{i t}\right|^{2} \mathrm{~d} t=(T+O(N)) \sum_{n=1}^{N}\left|a_{n}\right|^{2}
$$

Email address: carlos.a.c.chavez@ntnu.no

