$$
\frac{\zeta^{\prime}}{\zeta}(0)
$$

Markus

October 10, 2021

We start from the functional equation

$$
\zeta(1-s)=2^{1-s} \pi^{-s} \cos \left(\frac{\pi s}{2}\right) \Gamma(s) \zeta(s)
$$

or more so its logarithmic derivative:

$$
-\frac{\zeta^{\prime}}{\zeta}(1-s)=-\log (2 \pi)-\frac{\pi}{2} \tan \left(\frac{\pi s}{2}\right)+\frac{\Gamma^{\prime}}{\Gamma}(s)+\frac{\zeta^{\prime}}{\zeta}(s)
$$

We want to take the limit as $s \rightarrow 1$, but this seems troubleful as the RHS might explode. Luckily the explosion happens in "both directions" and cancel out each other. Taking the limit we get

$$
-\frac{\zeta^{\prime}}{\zeta}(0)=-\log (2 \pi)+\frac{\Gamma^{\prime}}{\Gamma}(1)+\lim _{s \rightarrow 1}\left(\frac{\zeta^{\prime}}{\zeta}(s)-\frac{\pi}{2} \tan \left(\frac{\pi s}{2}\right)\right)
$$

For ζ^{\prime} / ζ and tan we have the following Laurent series valid on some annulus around $s=1$:

$$
\frac{\zeta^{\prime}}{\zeta}(s)=-\frac{1}{s-1}+\sum_{n=0}^{\infty} a_{n}(s-1)^{n} \quad \frac{\pi}{2} \tan \left(\frac{\pi s}{2}\right)=-\frac{1}{s-1}+\frac{\pi^{2}}{12}(s-1)+O\left(|s-1|^{3}\right)
$$

Moving $-\frac{1}{s-1}$ over to the other side in both expressions we obtain formulas that are valid in some neigborhood of $s=1$. We can then calculate the limit:

$$
\begin{aligned}
\lim _{s \rightarrow 1}\left(\frac{\zeta^{\prime}}{\zeta}(s)-\frac{\pi}{2} \tan \left(\frac{\pi s}{2}\right)\right) & =\lim _{s \rightarrow 1}(\frac{\zeta^{\prime}}{\zeta}(s)-\frac{\pi}{2} \tan \left(\frac{\pi s}{2}\right)+\underbrace{\frac{1}{s-1}-\frac{1}{s-1}}_{=0}) \\
& =\lim _{s \rightarrow 1}\left(\sum_{n=0}^{\infty} a_{n}(s-1)^{n}-\frac{\pi^{2}}{12}(s-1)+O\left(|s-1|^{3}\right)\right) \\
& =a_{0}
\end{aligned}
$$

By the Laurent series we also have

$$
a_{0}=\lim _{s \rightarrow 1}\left(\frac{\zeta^{\prime}}{\zeta}(s)+\frac{1}{s-1}\right)
$$

In class we proved that ζ has the following analytic continuation for $\operatorname{Re}(s)>0$:

$$
\zeta(s)=1+\frac{1}{s-1}+s \int_{1}^{\infty} \frac{[t]-t}{t^{s+1}} \mathrm{~d} t=\frac{s}{s-1}+s \mathcal{J}(s)
$$

where $\mathcal{J}(s)$ is just shorthand notation for the integral. We thus get that

$$
\zeta(s)(s-1)=s+s(s-1) \mathcal{J}(s)
$$

Logarithmically differentiating gives

$$
\frac{\zeta^{\prime}}{\zeta}(s)+\frac{1}{s-1}=\frac{1+(2 s-1) \mathcal{J}(s)+\left(s^{2}-s\right) \mathcal{J}^{\prime}(s)}{s+s(s-1) \mathcal{J}(s)}
$$

Taking the limit as $s \rightarrow 1$ we arrive at

$$
\lim _{s \rightarrow 1}\left(\frac{\zeta^{\prime}}{\zeta}(s)+\frac{1}{s-1}\right)=1+\mathcal{J}(1)
$$

Calculating $\mathcal{J}(1)$ is not very hard.

$$
\begin{aligned}
\mathcal{J}(1) & =\lim _{N \rightarrow \infty} \int_{1}^{N} \frac{[t]-t}{t^{2}} \mathrm{~d} t \\
& =\lim _{N \rightarrow \infty}\left(\int_{1}^{N} \frac{[t]}{t^{2}} \mathrm{~d} t-\int_{1}^{N} \frac{1}{t} \mathrm{~d} t\right) \\
& =\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} \int_{n}^{n+1} \frac{n}{t^{2}} \mathrm{~d} t-\log N\right) \\
& =\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} \frac{1}{n+1}-\log N\right) \\
& =-1+\gamma
\end{aligned}
$$

where the very last equality follows from the definition of the Euler-Mascheroni constant. We use the Weierstrass product for Γ to evaluate the Γ term. The Weiestrass product for Γ is

$$
\Gamma(s)=\frac{e^{-\gamma s}}{s} \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right)^{-1} e^{s / n}
$$

Taking the logarithmic derivative we get

$$
\frac{\Gamma^{\prime}}{\Gamma}(s)=-\gamma-\frac{1}{s}+\sum_{n=1}^{\infty}\left(-\frac{1}{n} \frac{n}{n+s}+\frac{1}{n}\right)=-\gamma-\frac{1}{s}+\sum_{n=1}^{\infty}\left(-\frac{1}{n+s}+\frac{1}{n}\right)
$$

When evaluated in $s=1$ we get a telescoping series and thus

$$
\frac{\Gamma^{\prime}}{\Gamma}(1)=-\gamma-1+\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=-\gamma
$$

We can finally conclude that

$$
\frac{\zeta^{\prime}}{\zeta}(0)=-(-\log (2 \pi)-\gamma+\gamma)=\log (2 \pi)
$$

