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We start from the functional equation
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or more so its logarithmic derivative:
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We want to take the limit as s — 1, but this seems troubleful as the RHS might explode.
Luckily the explosion happens in “both directions” and cancel out each other. Taking the

limit we get
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For (’/¢ and tan we have the following Laurent series valid on some annulus around s = 1:
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Moving —ﬁ over to the other side in both expressions we obtain formulas that are valid in
some neigborhood of s = 1. We can then calculate the limit:
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By the Laurent series we also have

(e




In class we proved that ¢ has the following analytic continuation for Re(s) > 0:
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where J(s) is just shorthand notation for the integral. We thus get that
C(s)(s =1) = s +s(s = 1) T (s)
Logarithmically differentiating gives
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Taking the limit as s — 1 we arrive at
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Calculating J (1) is not very hard.
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where the very last equality follows from the definition of the Euler-Mascheroni constant.
We use the Weierstrass product for I' to evaluate the I term. The Weiestrass product for I'
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Taking the logarithmic derivative we get
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When evaluated in s = 1 we get a telescoping series and thus
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We can finally conclude that

¢
¢

(0) = = (= log(2m) — v + ) = log(2n)



