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We start from the functional equation
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or more so its logarithmic derivative:
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We want to take the limit as s → 1, but this seems troubleful as the RHS might explode.
Luckily the explosion happens in “both directions” and cancel out each other. Taking the
limit we get
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For ζ ′/ζ and tan we have the following Laurent series valid on some annulus around s = 1:
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Moving − 1
s−1 over to the other side in both expressions we obtain formulas that are valid in

some neigborhood of s = 1. We can then calculate the limit:
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By the Laurent series we also have
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In class we proved that ζ has the following analytic continuation for Re(s) > 0:
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where J (s) is just shorthand notation for the integral. We thus get that
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Logarithmically differentiating gives
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Taking the limit as s→ 1 we arrive at
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Calculating J (1) is not very hard.

J (1) = lim
N→∞

∫ N

1

[t]− t
t2

dt

= lim
N→∞

(∫ N

1

[t]

t2
dt−

∫ N

1

1

t
dt

)
= lim

N→∞

(
N∑
n=1

∫ n+1

n

n

t2
dt− logN

)

= lim
N→∞

(
N∑
n=1

1

n+ 1
− logN

)
= −1 + γ

where the very last equality follows from the definition of the Euler-Mascheroni constant.
We use the Weierstrass product for Γ to evaluate the Γ term. The Weiestrass product for Γ
is
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Taking the logarithmic derivative we get
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When evaluated in s = 1 we get a telescoping series and thus
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We can finally conclude that
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