Class 11: Beurling-Selberg problem and Hilbert's inequality

Andrés Chirre
 Norwegian University of Science and Technology - NTNU

11-October-2021

Review:

Review:

1 For $\operatorname{Re} s>1$ we define the Riemann zeta-function $\zeta(s)$ by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

Review:
1 For $\operatorname{Re} s>1$ we define the Riemann zeta-function $\zeta(s)$ by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

2 For $\operatorname{Re} s>0$,

$$
\zeta(s)=1+\frac{1}{s-1}+s \int_{1}^{\infty} \frac{[t]-t}{t^{s+1}} \mathrm{~d} t .
$$

Theorem (Approximation formula)

Let $C>1$ and $\sigma_{0}>0$. Then, for $x \geq 1$,

$$
\zeta(s)=\sum_{n \leq x} \frac{1}{n^{s}}-\frac{x^{1-s}}{1-s}+O_{\sigma_{0}, C}\left(x^{-\sigma}\right)
$$

uniformly in $0<\sigma_{0} \leq \sigma \leq 1$ and $|t|<\frac{2 \pi x}{C}$.

Proposition

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuously differentiable function such that $f^{\prime}(x)$ is monotone and $\left|f^{\prime}(x)\right| \leq \delta<1$. Then

$$
\sum_{a<n \leq b} e^{2 \pi i f(n)}=\int_{a}^{b} e^{2 \pi i f(x)} \mathrm{d} x+O\left(\frac{1}{1-\delta}\right)
$$

Lemma (Guinand-Weil explicit formula)

Let $h(s)$ be analytic in the strip $|\operatorname{Im} s| \leq \frac{1}{2}+\varepsilon$ for some $\varepsilon>0$, and assume that $|h(s)| \ll(1+|s|)^{-(1+\delta)}$ for some $\delta>0$ when $|\operatorname{Re} s| \rightarrow \infty$. Then

$$
\begin{aligned}
\sum_{\rho} h\left(\frac{\rho-\frac{1}{2}}{i}\right)= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} h(u)\left\{\operatorname{Re} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{4}+\frac{i u}{2}\right)-\log \pi\right\} \mathrm{d} u \\
& -\frac{1}{2 \pi} \sum_{n \geq 2} \frac{\Lambda(n)}{\sqrt{n}}\left(\widehat{h}\left(\frac{\log n}{2 \pi}\right)+\widehat{h}\left(\frac{-\log n}{2 \pi}\right)\right) \\
& +h\left(\frac{1}{2 i}\right)+h\left(-\frac{1}{2 i}\right)
\end{aligned}
$$

Review Fourier Analysis

Definition

Let $p \geq 1$. The vector space $L^{p}(\mathbb{R})$ is defined by

$$
L^{p}(\mathbb{R})=\left\{f: \mathbb{R} \rightarrow \mathbb{C}: \int_{-\infty}^{\infty}|f(x)|^{p} \mathrm{~d} x<\infty\right\}
$$

where $\mathrm{d} x$: denotes the Lebesgue measure.
This vector space has norm

$$
\|f\|_{p}=\left(\int_{-\infty}^{\infty}|f(x)|^{p} \mathrm{~d} x\right)^{1 / p}
$$

The Fourier transform in $L^{1}(\mathbb{R})$

Definition

Let $f \in L^{1}(\mathbb{R})$. We define the Fourier transform of f as

$$
\widehat{f}(t)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x t} \mathrm{~d} x
$$

for $t \in \mathbb{R}$.

Example

1 Let $\chi_{[-1,1]}$ be the characteristic function of the interval $[-1,1]$. Then

$$
\widehat{\chi_{[-1,1]}}(t)=\frac{\sin 2 \pi t}{\pi t} .
$$

Example

1 Let $\chi_{[-1,1]}$ be the characteristic function of the interval $[-1,1]$. Then

$$
\widehat{\chi_{[-1,1]}}(t)=\frac{\sin 2 \pi t}{\pi t} .
$$

2 The function $f(x)=$ máx $\{1-|x|, 0\}$ has

$$
\widehat{f}(t)=\left(\frac{\sin \pi x}{\pi x}\right)^{2}
$$

Example

1 Let $\chi_{[-1,1]}$ be the characteristic function of the interval $[-1,1]$. Then

$$
\widehat{\chi_{[-1,1]}}(t)=\frac{\sin 2 \pi t}{\pi t} .
$$

2 The function $f(x)=$ máx $\{1-|x|, 0\}$ has

$$
\widehat{f}(t)=\left(\frac{\sin \pi x}{\pi x}\right)^{2}
$$

3 The function $g(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ has

$$
\widehat{g}(t)=e^{-2 \pi|t|}
$$

Proposition

1 For all $t \in \mathbb{R}$ we have

$$
|\widehat{f}(t)| \leq\|f\|_{1} .
$$

2 The function $\widehat{f}: \mathbb{R} \rightarrow \mathbb{C}$ is continuous.
3 Riemann-Lebesgue lemma:

$$
\lim _{t \rightarrow \pm \infty} \widehat{f}(t)=0
$$

The Fourier transform in $L^{2}(\mathbb{R})$

Proposition

Let $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$. Then $\|f\|_{2}=\|\widehat{f}\|_{2}$. In particular, the operator $\mathcal{F}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is linear, isometric and surjective.

The Fourier transform in $L^{2}(\mathbb{R})$

Proposition

Let $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$. Then $\|f\|_{2}=\|\widehat{f}\|_{2}$. In particular, the operator $\mathcal{F}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is linear, isometric and surjective.

Example

The function $L(x)=\frac{\sin \pi x}{\pi x}$ satisfies

$$
\widehat{L}(t)=\chi_{\left[-\frac{1}{2}, \frac{1}{2}\right]}(t) .
$$

Poisson summation formula

Theorem

Let $f \in L^{1}(\mathbb{R})$ be a normalized function of bounded variation. Then

$$
\sum_{m \in \mathbb{Z}} f(x+m)=\sum_{k \in \mathbb{Z}} \widehat{f}(k) e^{2 \pi i k x}
$$

for all $x \in \mathbb{R}$.

Poisson summation formula

Theorem

Let $f \in L^{1}(\mathbb{R})$ be a normalized function of bounded variation. Then

$$
\sum_{m \in \mathbb{Z}} f(x+m)=\sum_{k \in \mathbb{Z}} \widehat{f}(k) e^{2 \pi i k x}
$$

for all $x \in \mathbb{R}$.

Theorem

Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a continuous function such that $|f(x)| \ll 1 /(1+|x|)^{1+\delta}$ and $|\widehat{f}(x)| \ll 1 /(1+|x|)^{1+\delta}$. Then

$$
\sum_{m \in \mathbb{Z}} f(x+m)=\sum_{k \in \mathbb{Z}} \widehat{f}(k) e^{2 \pi i k x}
$$

for all $x \in \mathbb{R}$.

Entire functions of exponential type

Definition

We say that an entire function has exponential type $2 \pi \delta$, if for any
$\varepsilon>0$ there is $C_{\varepsilon}>0$ such that

$$
|f(z)| \leq C_{\varepsilon} e^{(2 \pi \delta+\varepsilon)|z|}
$$

for all $z \in \mathbb{C}$.
$\left\llcorner_{\text {Entire functions of exponential type }}\right.$

Example

1 The function $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$ has exponential type 0 .

Example

1 The function $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$ has exponential type 0 .
2 The function $E(z)=e^{2 \pi \delta z}$ has exponential type $2 \pi \delta$.

Example

1 The function $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$ has exponential type 0 .
2 The function $E(z)=e^{2 \pi \delta z}$ has exponential type $2 \pi \delta$.
3 The function $L(z)=\sin (\pi z)$ has exponential type π.

Example

1 The function $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$ has exponential type 0 .
2 The function $E(z)=e^{2 \pi \delta z}$ has exponential type $2 \pi \delta$.
3 The function $L(z)=\sin (\pi z)$ has exponential type π.
4. The function $G(z)=\left(\frac{\sin \pi z}{\pi z}\right)^{2}$ has exponential type 2π.

Paley-Wiener theorem

Theorem

Let F be an entire function such that $F \in L^{2}(\mathbb{R})$. The following statements are equivalent:
$1 F$ has exponential type $2 \pi \delta$.
$2 \widehat{F}$ has compact support in $[-\delta, \delta]$ a.e.

Example

$1 L(z)=\frac{\sin \pi z}{\pi z}$ has exponential type π and satisfies

$$
\widehat{L}(t)=\chi_{\left[-\frac{1}{2}, \frac{1}{2}\right]}(t)
$$

$$
\begin{gathered}
2 G(z)=\left(\frac{\sin \pi z}{\pi z}\right)^{2} \text { has exponential type } 2 \pi \text { and satisfies } \\
\widehat{G}(t)=\operatorname{máx}\{1-|t|, 0\} .
\end{gathered}
$$

Interpolation formulas

Theorem (Shannon-Whittaker)

Let F be an entire function of exponential type π such that $F \in L^{2}(\mathbb{R})$. Then

$$
F(z)=\frac{\sin \pi z}{\pi} \sum_{n \in \mathbb{Z}}(-1)^{n} \frac{F(n)}{z-n},
$$

where the series converges uniformly in compacts of \mathbb{C}.

Interpolation formulas

Theorem (Vaaler, 1985)

Let F be an entire function of exponential type 2π such that $F \in L^{2}(\mathbb{R})$. Then

$$
F(z)=\left(\frac{\sin \pi z}{\pi}\right)^{2}\left\{\sum_{n \in \mathbb{Z}} \frac{F(n)}{(z-n)^{2}}+\sum_{n \in \mathbb{Z}} \frac{F^{\prime}(n)}{(z-n)}\right\}
$$

where the series converges uniformly in compacts of \mathbb{C}.

Beurling-Selberg problem

Delta problem

Let $\delta: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\delta(x)=\left\{\begin{array}{lll}
1 & \text { if } & x=0 \\
0 & \text { if } & x \neq 0
\end{array}\right.
$$

Let \mathcal{E} be the set of functions $f: \mathbb{C} \rightarrow \mathbb{C}$ such that:
$1 f$ is a real entire function of exponential type 2π.
$2 f(x) \geq \delta(x)$ for all $x \in \mathbb{R}$.
Find:

$$
\inf _{f \in \mathcal{E}} \int_{-\infty}^{\infty}(f(x)-\delta(x)) \mathrm{d} x
$$

Answer of the problem

$$
\begin{aligned}
& \inf _{f \in \mathcal{E}} \int_{-\infty}^{\infty} f(x) \mathrm{d} x=1 \\
& F(z)=\left(\frac{\sin \pi z}{\pi z}\right)^{2}
\end{aligned}
$$

- Extremal problems
- Delta problem

$$
F(x)=\left(\frac{\sin \pi x}{\pi x}\right)^{2}
$$

Delta problem

\Rightarrow
Pair correlation of the zeros of the Riemann zeta-function, multiplicity of the zeros of zeta.

Arne Carl-August Beurling (1905-1986)

Beurling's problem

Let $\operatorname{sgn}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\operatorname{sgn}(x)=\left\{\begin{array}{lll}
1 & \text { si } & x>0 \\
0 & \text { si } & x=0 \\
-1 & \text { si } & x<0
\end{array}\right.
$$

Let \mathcal{E} be the set of functions $f: \mathbb{C} \rightarrow \mathbb{C}$ such that:
$1 f$ is a real entire function of exponential type 2π.
$2 f(x) \geq \operatorname{sgn}(x)$ for all $x \in \mathbb{R}$.
Find:

$$
\inf _{f \in \mathcal{E}} \int_{-\infty}^{\infty}(f(x)-\operatorname{sgn}(x)) \mathrm{d} x
$$

Answer of the problem

$$
\begin{gathered}
\inf _{f \in \mathcal{E}} \int_{-\infty}^{\infty}(f(x)-\operatorname{sgn}(x)) \mathrm{d} x=1 . \\
F(z)=\left(\frac{\sin \pi z}{\pi}\right)^{2}\left\{\sum_{n=0}^{\infty} \frac{1}{(z-n)^{2}}-\sum_{n=-\infty}^{-1} \frac{1}{(z-n)^{2}}+\frac{2}{z}\right\} .
\end{gathered}
$$

$$
F(x)=\left(\frac{\sin \pi x}{\pi}\right)^{2}\left\{\sum_{n=0}^{\infty} \frac{1}{(x-n)^{2}}-\sum_{n=-\infty}^{-1} \frac{1}{(x-n)^{2}}+\frac{2}{x}\right\}
$$

Beurling's problem

Hilbert's inequality (Montgomery-Vaughan)

- Extremal problems

LSelberg's problem

Selberg's problem - 1974

Atle Selberg (1917-2007)

Medalha Fields (1950)

Selberg's problem

Let $a, b \in \mathbb{R}$ such that $b-a \in \mathbb{Z}$. Let \mathcal{E} be the set of functions $f: \mathbb{C} \rightarrow \mathbb{C}$ such that:
$1 f$ is a real entire function of exponential type 2π.
2] $f(x) \geq \chi_{[a, b]}(x)$ for all $x \in \mathbb{R}$.
Find:

$$
\inf _{f \in \mathcal{E}} \int_{-\infty}^{\infty}\left(f(x)-\chi_{[a, b]}(x)\right) \mathrm{d} x
$$

Answer of the problem

$$
\inf _{f \in \mathcal{E}} \int_{-\infty}^{\infty}\left(f(x)-\chi_{[a, b]}\right) \mathrm{d} x=1
$$

The function is not unique.

For all $x \in \mathbb{R} \backslash\{a, b\}$ we have

$$
\chi_{[a, b]}=\frac{1}{2}(\operatorname{sgn}(b-x)+\operatorname{sgn}(x-a)) .
$$

Let F be the solution of the sgn-problem. An answer for the Selberg's problem can be:

$$
G(z)=\frac{1}{2}(F(b-z)+F(z-a))
$$

When $a=-1, b=1$ we have

$$
G(z)=\frac{1}{2}(F(1-z)+F(z+1)) .
$$

Selberg's problem
\Rightarrow
Selberg - Sharp Form of the large sieve inequality

Extremal problem: Majorant

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Let \mathcal{E} be the set of functions $M: \mathbb{C} \rightarrow \mathbb{C}$ such that:
$1 M$ is a real entire function of exponential type 2π.
$2 M(x) \geq f(x)$ for all $x \in \mathbb{R}$.
Find:

$$
\inf _{M \in \mathcal{E}} \int_{-\infty}^{\infty}(M(x)-f(x)) \mathrm{d} x
$$

Extremal problem: Minorant

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Let \mathcal{E} be the set of functions $m: \mathbb{C} \rightarrow \mathbb{C}$ such that:
$1 m$ is a real entire function of exponential type 2π.
$2 f(x) \geq m(x)$ for all $x \in \mathbb{R}$.
Find:

$$
\inf _{m \in \mathcal{E}} \int_{-\infty}^{\infty}(f(x)-m(x)) \mathrm{d} x
$$

Function	Answer
$\operatorname{sgn}(x)$	Beurling 1930's
$\chi_{[a, b]}(x)$	Selberg 1970's and Logan 1980's
$e^{-\lambda\|x\|}, \operatorname{sgn}(x) e^{-\lambda\|x\|}$	Graham - Vaaler 1981
Even functions $(\log \|x\|)$	Carneiro - Vaaler 2009
Even functions $\left(e^{-\lambda x^{2}}\right)$ (Gaussian subordination)	Carneiro - Littmann - Vaaler 2010
Odd functions (sgn $\left.(x) e^{-\lambda x^{2}}\right)$ $($ odd Gaussian subordination)	Carneiro - Vaaler 2011

Theorem (Hilbert)

Let $a_{1}, a_{2}, \cdots, a_{n}$ be complex numbers. Then

$$
\left|\sum_{\substack{m, n=1 \\ n \neq m}}^{N} \frac{a_{m} \overline{a_{n}}}{m-n}\right| \leq \pi \sum_{n=1}^{N}\left|a_{n}\right|^{2}
$$

Theorem (Hilbert)

Let $a_{1}, a_{2}, \cdots, a_{n}$ be complex numbers. Then

$$
\left|\sum_{\substack{m, n=1 \\ n \neq m}}^{N} \frac{a_{m} \overline{a_{n}}}{m-n}\right| \leq \pi \sum_{n=1}^{N}\left|a_{n}\right|^{2}
$$

1 Hilbert proved the result with constant 2π.

Theorem (Hilbert)

Let $a_{1}, a_{2}, \cdots, a_{n}$ be complex numbers. Then

$$
\left|\sum_{\substack{m, n=1 \\ n \neq m}}^{N} \frac{a_{m} \overline{a_{n}}}{m-n}\right| \leq \pi \sum_{n=1}^{N}\left|a_{n}\right|^{2}
$$

1 Hilbert proved the result with constant 2π.
2 Schur proved the result with constant π (optimal constant).

Theorem (Montgomery-Vaughan)

Let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ be real numbers such that $\left|\lambda_{m}-\lambda_{n}\right| \geq \delta>0$ when $m \neq n$. Let $a_{1}, a_{2}, \cdots, a_{n}$ be complex numbers. Then

$$
\left|\sum_{\substack{m, n=1 \\ n \neq m}}^{N} \frac{a_{m} \overline{a_{n}}}{\lambda_{m}-\lambda_{n}}\right| \leq \pi \sum_{n=1}^{N} \frac{\left|a_{n}\right|^{2}}{\delta}
$$

Beurling's problem

Let $\operatorname{sgn}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\operatorname{sgn}(x)=\left\{\begin{array}{lll}
1 & \text { si } & x>0 \\
0 & \text { si } & x=0 \\
-1 & \text { si } & x<0
\end{array}\right.
$$

Let \mathcal{E} be the set of functions $f: \mathbb{C} \rightarrow \mathbb{C}$ such that:
$1 f$ is a real entire function of exponential type 2π.
$2 f(x) \geq \operatorname{sgn}(x)$ for all $x \in \mathbb{R}$.
Find

$$
\inf _{f \in \mathcal{E}} \int_{-\infty}^{\infty}(f(x)-\operatorname{sgn}(x)) \mathrm{d} x
$$

Beurling's problem

Let sgn : $\mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\operatorname{sgn}(x)=\left\{\begin{array}{lll}
1 & \text { si } & x>0 \\
0 & \text { si } & x=0 \\
-1 & \text { si } & x<0
\end{array}\right.
$$

Let \mathcal{E} be the set of functions $f: \mathbb{C} \rightarrow \mathbb{C}$ such that:
$1 f$ is a real entire function of exponential type 2π.
$2 f(x) \geq \operatorname{sgn}(x)$ for all $x \in \mathbb{R}$.
Find

$$
\inf _{f \in \mathcal{E}} \int_{-\infty}^{\infty}(f(x)-\operatorname{sgn}(x)) \mathrm{d} x
$$

Answer: 1

Proposition (Vaaler)

Let F be the solution of the Beurling's problem. Let

$$
\psi(x)=F(x)-\operatorname{sgn}(x)
$$

Então
$1 \psi(x) \geq 0$ for all $x \in \mathbb{R}$.
$2 \psi \in L^{1}(\mathbb{R})$ and $\widehat{\psi}(0)=1$.
$3 \widehat{\psi}(t)=-\frac{1}{\pi i t}$ for all $|t| \geq 1$.

Proof of Montgomery-Vaughan inequality!

