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Theorem (Approximation formula)

Let C > 1 and og > 0. Then, for x > 1,
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uniformly in 0 < 09 < 0 <1 and [t| < <.
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Lemma (Guinand-Weil explicit formula)

Let h(s) be analytic in the strip [Ims| < % + ¢ for some e > 0, and

assume that |h(s)| < (1 + |s|)~(*9) for some 6 > 0 when
|Res| — co. Then

Zh<p75> Z;T/Zh(u){Rerr/<i+i2>—|og7r}du
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Theorem (Montgomery-Vaughan)

Let M1, A2, - - -, Ay be real numbers such that |Aym — Ap| > 6, >0
when m # n. Let a1, ap, - - -, ay be complex numbers. Then
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Theorem (Montgomery-Vaughan)

Let M1, A2, - - -, Ay be real numbers such that |Aym — Ap| > 6, >0

when m # n. Let a1, ap, - - -, ay be complex numbers. Then
N N 2
aman Z an‘
m,n=1 >\m n=
n#m

Montgomery-Vaughan (1971) proved the result with constant
37/2.

Preissman (1983) proved the result with constant 47 /3.
Carneiro and Littmann have a smaller proof with constant 2.

Conjecture: .
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Therefore, for T > 2 we have:
If o =1:

2T
/ (3 + it)|Pdt = T log T + O(T).
.

BIfi<o<l:

/2T IC(o + it)2dt = C(20) T + o(T”U).

- l1—0

Ifo=1:

/TZT [¢(L+it)[2dt = ¢(2)T + O(log T).
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For T > 3 we have:

;
/ C(3 +it)]?dt = Tlog T — (1 + log 2m — 2y) T + O(E(T)).
1

Ingham (1928) E(T) < T'/?log T.
Titchmarsh (1934) E(T) < T%*2log? T.
Balasubramanian (1978) E(T) <« T?27/82+¢,
Watt (2010) E(T) < T131/416+<
Conjecture: E(T) < T/4+¢,
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Now, we want to bound ((s) in the critical strip!
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For Res > 1 we have
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For Res > 1 we have

()=
n=1

Then, for Res > 1+ 6 > 1, we have

C(s)] < G
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For Res > 0, we have

1 ] —t
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For Res > 0, we have

1 ] —t
C(s):l—i—s_l—i—s/l ot

Then, s =0 + it, with%§a§1+5, |t| > 2 we have

¢(s) = O(lt])-
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N[

Therefore, we conclude that for o >
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Recalling the functional equation:

7r5/2§(s)|'<;> — 7= (=9)/2¢(1 - s)r<1 5 5).

Then, we write

¢(s) = x(s)¢(1 = s),

where ooV 1
r022r ()

=)
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using your favorite Stirling’s formula: for a fixed § > 0 and
—m 460 < arg(s) < 7 — J, show that

1 1
logF(s) = (s - 2) logs — s+ 5 log 2 + O(|s| ™),

as |s| — oo.
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We explore the function:

r—(1=2s)/2(1=s
X(s) = r(s)l_( 2 )7

2

using your favorite Stirling’s formula: for a fixed § > 0 and
—m 460 < arg(s) < 7 — J, show that

1 1
logF(s) = (s - 2) logs — s+ 5 log 2 + O(|s| ™),

as |s| — oo. Then, we get for any fixed strip a < o < f3, as

t — o0:
otit—1
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Then, for a <o < 3, as t — oo:

i~ ()7

From
¢(s) = x(s)¢(1 =),
we get
C(s) = O(|t|"?79), for —M <o < —4,
and

¢(s) = O(|t|*/*9), for o > —0.
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Therefore, for any semiplane o > oo we have

<(s) = O(]t]"),

for some k depending on og. This implies that ((s) is a function of
finite order in the sense of the theory of Dirichlet series.



Class 14: Lindeldf hypothesis

For any o we define (o) as the infimum of the values £ such that

((o +it) = O(]t]*).
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Class 14: Lindeldf hypothesis

What is the value of u(%)?

We have proved that: {(s) = O(]t|), for Res > 1/2.

M .
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Using the approximation formula:

Theorem
Let C > 1 and og > 0. Then, for x > 1,

1 Xl—s s
()= s 175 T Ooocx™7),

n<x

21X

uniformly in 0 < o9 < o <1 and [t| < =F*.
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Using the approximation formula:

Let C > 1 and og > 0. Then, for x > 1,

1 Xl—s s
()= s 175 T Ooocx™7),

n<x

uniformly in 0 < o9 < o <1 and |t| < 27%

we have
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From

1 .
1 . 1 ta— "t 1

n<t nz2
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From

we get
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From -
1 ti*lt

we get

This implies that
()=
H <
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Using the theory of Dirichlet series we can improve the previous
bound.
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Using the theory of Dirichlet series we can improve the previous
bound. A classical theorem in the theory of Dirichlet series
establishes the following:

Let 1 : Q2 — C be a holomorphic function such that € contains the
strip 01 < Res < 3. Suppose that (o + it) = O(ea|t|) in the
strip 01 < Res < o3, for every € > 0. Suppose that

f(o1+it) = O(|t|r) and f(o2 + it) = O(|t|%2). Then, we have

f(o +it) = O(|t])),

uniformly for o1 < o < 03, where k(o) is the linear function of o
which takes the values k; and ko for 0 = o1 and o = o>
respectively.
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We apply this result for ((o + it). Let 01 < o < 07. We have that
C(o1 + it) = O(|t|[e1)*2) and (o2 + it) = O(|t|72)+¢). Then,
for o1 < o < o5:

((o +it) = O(|t|<(),
where k(o) - (2= W) +) + (0 = 1) (o) + )

02 — 01




Class 14: Lindeldf hypothesis

We apply this result for ((o + it). Let 01 < o < 07. We have that
C(o1 + it) = O(|t|[e1)*2) and (o2 + it) = O(|t|72)+¢). Then,
for o1 < o < o5:

((o +it) = O(|t|<(),

where k(o) — (2= DWtle1) +9) + (0= )(uloz) + 9)

02 — 01

Therefore, for o1 < o < 03:

(02 — o)pu(o1) + (0 — o1)u(02)
u(o) < p— :




Class 14: Lindeldf hypothesis

We apply this result for ((o + it). Let 01 < o < 07. We have that
C(o1 + it) = O(|t|[e1)*2) and (o2 + it) = O(|t|72)+¢). Then,
for o1 < o < o5:

((o +it) = O(|t|<(),

(02 — 0)(p(01) +¢) + (0 — g1)(u(02) +€)

where k(o) = :
o2 — 01

Therefore, for o1 < o < 03:

(02 — o)pu(o1) + (0 — o1)u(02)
u(o) < p— :

We conclude that p(o) is a convex function.
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The function p satisfies the following conditions:

1 is a convex function.

W Is a continuous function.
p(o) > 0.

u(e) =0, foro > 1.

(o) =% —o, fora <0.

@ . is a decreasing function.
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In particular, using the fact that 1(0) = 3 and p(1) = 0, it follows
for0 <o <1: 1

u(o) <

I\J\
m\q
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In particular, using the fact that 1(0) = 3 and p(1) = 0, it follows
for0 <o <1: )

m\q

u(o) < 2

u(3) =3

Therefore,

Bl
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In particular, using the fact that 1(0) = 3 and p(1) = 0, it follows
for0 <o <1: )

w\q

(o) < 2
()<t

‘C(;—i—it)‘ — O(|t]+1*).

This is called: Convexity bound

Therefore,

Bl

This implies that
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Lindelof hypothesis-1908
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Lindelof hypothesis-1908

1
‘C<2 + It>

= 0(jtf).
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u1/2) =
1/4

1/6
163/988
271164
229/1392

19/116
15/92
6/37
173/1067
35/216
139/858
32/205
53/342
13/84

u(1/2) =
0.25
0.1667
0.1650
0.1647
0.164512
0.164511
0.1638
0.1631
0.16217
0.16214
0.16204
0.16201
0.1561
0.1550
0.1548

Author
Lindelof (1908)
Hardy, Littlewood & ?

Convexity bound

Walfisz (1924)
Titchmarsh (1932)
Phillips (1933)
Rankin (1955)
Titchmarsh (1942)
Min (1949)
Haneke (1962)
Kolesnik (1973)
Kolesnik (1982)
Kolesnik (1985)
Huxley (2002, 2005)
Bourgain (2017)
Bourgain (2017)
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Riemann hypothesis implies Lindelof hypothesis
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The next class with Bondarenko!



