Class 14: Lindelöf hypothesis

Andrés Chirre Norwegian University of Science and Technology - NTNU

21-October-2021

Theorem (Approximation formula)

Let C > 1 and $\sigma_0 > 0$. Then, for $x \ge 1$,

$$\zeta(s) = \sum_{n \leq x} \frac{1}{n^s} - \frac{x^{1-s}}{1-s} + O_{\sigma_0,C}(x^{-\sigma}),$$

uniformly in $0 < \sigma_0 \le \sigma \le 1$ and $|t| < \frac{2\pi x}{C}$.

Lemma (Guinand-Weil explicit formula)

Let h(s) be analytic in the strip $|\operatorname{Im} s| \leq \frac{1}{2} + \varepsilon$ for some $\varepsilon > 0$, and assume that $|h(s)| \ll (1+|s|)^{-(1+\delta)}$ for some $\delta > 0$ when $|\operatorname{Re} s| \to \infty$. Then

$$\sum_{\rho} h\left(\frac{\rho - \frac{1}{2}}{i}\right) = \frac{1}{2\pi} \int_{-\infty}^{\infty} h(u) \left\{ \operatorname{Re} \frac{\Gamma'}{\Gamma} \left(\frac{1}{4} + \frac{iu}{2}\right) - \log \pi \right\} du$$
$$-\frac{1}{2\pi} \sum_{n \ge 2} \frac{\Lambda(n)}{\sqrt{n}} \left(\widehat{h} \left(\frac{\log n}{2\pi}\right) + \widehat{h} \left(\frac{-\log n}{2\pi}\right) \right)$$
$$+ h\left(\frac{1}{2i}\right) + h\left(-\frac{1}{2i}\right)$$

$$\left|\sum_{\substack{m,n=1\\n\neq m}}^{N} \frac{a_m \overline{a_n}}{\lambda_m - \lambda_n}\right| \leq C \sum_{n=1}^{N} \frac{|a_n|^2}{\delta_n}.$$

Let $\lambda_1, \lambda_2, \dots, \lambda_N$ be real numbers such that $|\lambda_m - \lambda_n| \ge \delta_n > 0$ when $m \ne n$. Let a_1, a_2, \dots, a_N be complex numbers. Then

$$\left|\sum_{\substack{m,n=1\\n\neq m}}^{N} \frac{a_m \overline{a_n}}{\lambda_m - \lambda_n}\right| \leq C \sum_{n=1}^{N} \frac{|a_n|^2}{\delta_n}.$$

I Montgomery-Vaughan (1971) proved the result with constant $3\pi/2$.

$$\left|\sum_{\substack{m,n=1\\n\neq m}}^{N} \frac{a_m \overline{a_n}}{\lambda_m - \lambda_n}\right| \leq C \sum_{n=1}^{N} \frac{|a_n|^2}{\delta_n}.$$

- I Montgomery-Vaughan (1971) proved the result with constant $3\pi/2$.
- 2 Preissman (1983) proved the result with constant $4\pi/3$.

$$\left|\sum_{\substack{m,n=1\\n\neq m}}^{N} \frac{a_m \overline{a_n}}{\lambda_m - \lambda_n}\right| \leq C \sum_{n=1}^{N} \frac{|a_n|^2}{\delta_n}.$$

- I Montgomery-Vaughan (1971) proved the result with constant $3\pi/2$.
- 2 Preissman (1983) proved the result with constant $4\pi/3$.
- 3 Carneiro and Littmann have a smaller proof with constant 2π .

$$\left|\sum_{\substack{m,n=1\\n\neq m}}^{N} \frac{a_m \overline{a_n}}{\lambda_m - \lambda_n}\right| \leq C \sum_{n=1}^{N} \frac{|a_n|^2}{\delta_n}.$$

- I Montgomery-Vaughan (1971) proved the result with constant $3\pi/2$.
- 2 Preissman (1983) proved the result with constant $4\pi/3$.
- 3 Carneiro and Littmann have a smaller proof with constant 2π .
- 4 Conjecture: π .

Therefore, for T > 2 we have:

1 If $\sigma = \frac{1}{2}$:

$$\int_{T}^{2T} |\zeta(\frac{1}{2}+it)|^2 dt = T \log T + O(T).$$

2 If $\frac{1}{2} < \sigma < 1$:

$$\int_{\mathcal{T}}^{2\mathcal{T}} |\zeta(\sigma+it)|^2 dt = \zeta(2\sigma)\mathcal{T} + O\left(\frac{\mathcal{T}^{2-2\sigma}}{1-\sigma}\right).$$

 $If \sigma = 1:$

$$\int_{T}^{2T} |\zeta(1+it)|^2 \mathrm{d}t = \zeta(2)T + O(\log T).$$

For $T \ge 3$ we have:

$$\int_{1}^{T} |\zeta(\frac{1}{2} + it)|^{2} dt = T \log T - (1 + \log 2\pi - 2\gamma)T + O(E(T)).$$

For T > 3 we have:

$$\int_{1}^{T} |\zeta(\frac{1}{2} + it)|^{2} dt = T \log T - (1 + \log 2\pi - 2\gamma)T + O(E(T)).$$

1 Ingham (1928) $E(T) \ll T^{1/2} \log T$.

For T > 3 we have:

$$\int_{1}^{T} |\zeta(\frac{1}{2} + it)|^{2} dt = T \log T - (1 + \log 2\pi - 2\gamma)T + O(E(T)).$$

- **1** Ingham (1928) $E(T) \ll T^{1/2} \log T$.
- 2 Titchmarsh (1934) $E(T) \ll T^{5/12} \log^2 T$.

For $T \geq 3$ we have:

$$\int_{1}^{T} |\zeta(\frac{1}{2} + it)|^{2} dt = T \log T - (1 + \log 2\pi - 2\gamma)T + O(E(T)).$$

- **1** Ingham (1928) $E(T) \ll T^{1/2} \log T$.
- 2 Titchmarsh (1934) $E(T) \ll T^{5/12} \log^2 T$.
- **3** Balasubramanian (1978) $E(T) \ll T^{27/82+\varepsilon}$.

For $T \geq 3$ we have:

$$\int_{1}^{T} |\zeta(\frac{1}{2} + it)|^{2} dt = T \log T - (1 + \log 2\pi - 2\gamma)T + O(E(T)).$$

- **1** Ingham (1928) $E(T) \ll T^{1/2} \log T$.
- 2 Titchmarsh (1934) $E(T) \ll T^{5/12} \log^2 T$.
- **3** Balasubramanian (1978) $E(T) \ll T^{27/82+\varepsilon}$.
- 4 Watt (2010) $E(T) \ll T^{131/416+\varepsilon}$.

For $T \geq 3$ we have:

$$\int_{1}^{T} |\zeta(\frac{1}{2} + it)|^{2} dt = T \log T - (1 + \log 2\pi - 2\gamma)T + O(E(T)).$$

- **1** Ingham (1928) $E(T) \ll T^{1/2} \log T$.
- 2 Titchmarsh (1934) $E(T) \ll T^{5/12} \log^2 T$.
- **3** Balasubramanian (1978) $E(T) \ll T^{27/82+\varepsilon}$.
- 4 Watt (2010) $E(T) \ll T^{131/416+\varepsilon}$.
- **5** Conjecture: $E(T) \ll T^{1/4+\varepsilon}$.

Now, we want to bound $\zeta(s)$ in the critical strip!

For $\operatorname{Re} s > 1$ we have

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

For $\operatorname{Re} s > 1$ we have

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

Then, for $\operatorname{Re} s \geq 1 + \delta > 1$, we have

$$|\zeta(s)| \leq C_{\delta}$$
.

For Re s > 0, we have

$$\zeta(s) = 1 + \frac{1}{s-1} + s \int_1^\infty \frac{[t] - t}{t^{s+1}} \mathrm{d}t.$$

For Re s > 0, we have

$$\zeta(s) = 1 + \frac{1}{s-1} + s \int_1^\infty \frac{[t] - t}{t^{s+1}} \mathrm{d}t.$$

Then,
$$s=\sigma+it$$
, with $\frac{1}{2}\leq\sigma\leq1+\delta$, $|t|\geq2$ we have

$$\zeta(s)=O(|t|).$$

Therefore, we conclude that for $\sigma \geq \frac{1}{2}$:

$$\zeta(s) = O(|t|).$$

Recalling the functional equation:

$$\pi^{-s/2}\zeta(s)\Gamma\left(\frac{s}{2}\right)=\pi^{-(1-s)/2}\zeta(1-s)\Gamma\left(\frac{1-s}{2}\right).$$

Recalling the functional equation:

$$\pi^{-s/2}\zeta(s)\Gamma\left(\frac{s}{2}\right)=\pi^{-(1-s)/2}\zeta(1-s)\Gamma\left(\frac{1-s}{2}\right).$$

Then, we write

$$\zeta(s) = \chi(s)\,\zeta(1-s),$$

where

$$\chi(s) = \frac{\pi^{-(1-2s)/2} \Gamma(\frac{1-s}{2})}{\Gamma(\frac{s}{2})}.$$

We explore the function:

$$\chi(s) = \frac{\pi^{-(1-2s)/2} \, \Gamma(\frac{1-s}{2})}{\Gamma(\frac{s}{2})},$$

We explore the function:

$$\chi(s) = \frac{\pi^{-(1-2s)/2} \Gamma(\frac{1-s}{2})}{\Gamma(\frac{s}{2})},$$

using your favorite Stirling's formula: for a fixed $\delta>0$ and $-\pi+\delta<\arg(s)<\pi-\delta$, show that

$$\log \Gamma(s) = \left(s - \frac{1}{2}\right) \log s - s + \frac{1}{2} \log 2\pi + O(|s|^{-1}),$$

as $|s| \to \infty$.

We explore the function:

$$\chi(s) = \frac{\pi^{-(1-2s)/2} \Gamma(\frac{1-s}{2})}{\Gamma(\frac{s}{2})},$$

using your favorite Stirling's formula: for a fixed $\delta>0$ and $-\pi+\delta<\arg(s)<\pi-\delta$, show that

$$\log \Gamma(s) = \left(s - \frac{1}{2}\right) \log s - s + \frac{1}{2} \log 2\pi + O(|s|^{-1}),$$

as $|s| \to \infty$. Then, we get for any fixed strip $\alpha \le \sigma \le \beta$, as $t \to \infty$:

$$\chi(s) = \left(\frac{2\pi}{t}\right)^{\sigma + it - \frac{1}{2}} e^{i(t + \frac{\pi}{4})} \left(1 + O\left(\frac{1}{t}\right)\right).$$

$$|\chi(s)| \sim \left(\frac{2\pi}{t}\right)^{\sigma-\frac{1}{2}}.$$

$$|\chi(s)| \sim \left(\frac{2\pi}{t}\right)^{\sigma-\frac{1}{2}}.$$

From

$$\zeta(s) = \chi(s)\,\zeta(1-s),$$

$$|\chi(s)| \sim \left(\frac{2\pi}{t}\right)^{\sigma-\frac{1}{2}}.$$

From

$$\zeta(s) = \chi(s)\,\zeta(1-s),$$

we get

$$\zeta(s) = O(|t|^{1/2-\sigma}), \text{ for } -M \le \sigma \le -\delta,$$

$$|\chi(s)| \sim \left(\frac{2\pi}{t}\right)^{\sigma-\frac{1}{2}}.$$

From

$$\zeta(s) = \chi(s)\,\zeta(1-s),$$

we get

$$\zeta(s) = O(|t|^{1/2-\sigma}), \text{ for } -M \le \sigma \le -\delta,$$

and

$$\zeta(s) = O(|t|^{3/2+\delta}), \text{ for } \sigma \ge -\delta.$$

Therefore, for any semiplane $\sigma \geq \sigma_0$ we have

$$|\zeta(s)| = O(|t|^k),$$

for some k depending on σ_0 . This implies that $\zeta(s)$ is a function of finite order in the sense of the theory of Dirichlet series.

For any σ we define $\mu(\sigma)$ as the infimum of the values ξ such that

$$\zeta(\sigma+it)=O(|t|^{\xi}).$$

What is the value of $\mu(\frac{1}{2})$?

What is the value of $\mu(\frac{1}{2})$?

We have proved that: $\zeta(s) = O(|t|)$, for Re $s \ge 1/2$.

What is the value of $\mu(\frac{1}{2})$?

We have proved that: $\zeta(s) = O(|t|)$, for $\operatorname{Re} s \ge 1/2$. Then:

$$\mu\left(\frac{1}{2}\right) \leq 1.$$

Using the approximation formula:

Using the approximation formula:

Theorem

Let C > 1 and $\sigma_0 > 0$. Then, for $x \ge 1$,

$$\zeta(s) = \sum_{n \leq x} \frac{1}{n^s} - \frac{x^{1-s}}{1-s} + O_{\sigma_0,C}(x^{-\sigma}),$$

uniformly in $0 < \sigma_0 \le \sigma \le 1$ and $|t| < \frac{2\pi x}{C}$.

Using the approximation formula:

Theorem

Let C > 1 and $\sigma_0 > 0$. Then, for $x \ge 1$,

$$\zeta(s) = \sum_{n \leq x} \frac{1}{n^s} - \frac{x^{1-s}}{1-s} + O_{\sigma_0,C}(x^{-\sigma}),$$

uniformly in $0 < \sigma_0 \le \sigma \le 1$ and $|t| < \frac{2\pi x}{C}$.

we have

$$\zeta\left(\frac{1}{2}+it\right)=\sum_{n\leq t}\frac{1}{n^{\frac{1}{2}+it}}-\frac{t^{\frac{1}{2}-it}}{\frac{1}{2}-it}+O(t^{-\frac{1}{2}}).$$

From

$$\zeta\left(\frac{1}{2}+it\right)=\sum_{n\leq t}\frac{1}{n^{\frac{1}{2}+it}}-\frac{t^{\frac{1}{2}-it}}{\frac{1}{2}-it}+O(t^{-\frac{1}{2}}),$$

From

$$\zeta\left(\frac{1}{2}+it\right)=\sum_{n\leq t}\frac{1}{n^{\frac{1}{2}+it}}-\frac{t^{\frac{1}{2}-it}}{\frac{1}{2}-it}+O(t^{-\frac{1}{2}}),$$

we get

$$\left|\zeta\left(\frac{1}{2}+it\right)\right|\leq \sum_{n\leq t}\frac{1}{n^{\frac{1}{2}}}+O(t^{-\frac{1}{2}}).$$

From

$$\zeta\left(\frac{1}{2}+it\right)=\sum_{n\leq t}\frac{1}{n^{\frac{1}{2}+it}}-\frac{t^{\frac{1}{2}-it}}{\frac{1}{2}-it}+O(t^{-\frac{1}{2}}),$$

we get

$$\left|\zeta\left(\frac{1}{2}+it\right)\right|\leq \sum_{n\leq t}\frac{1}{n^{\frac{1}{2}}}+O(t^{-\frac{1}{2}}).$$

This implies that

$$\mu\left(\frac{1}{2}\right) \leq \frac{1}{2}.$$

Using the theory of Dirichlet series we can improve the previous bound.

Using the theory of Dirichlet series we can improve the previous bound. A classical theorem in the theory of Dirichlet series establishes the following:

Let $f:\Omega \to \mathbb{C}$ be a holomorphic function such that Ω contains the strip $\sigma_1 \leq \operatorname{Re} s \leq \sigma_2$. Suppose that $f(\sigma+it) = O(e^{\varepsilon|t|})$ in the strip $\sigma_1 \leq \operatorname{Re} s \leq \sigma_2$, for every $\varepsilon > 0$. Suppose that $f(\sigma_1+it) = O(|t|^{k_1})$ and $f(\sigma_2+it) = O(|t|^{k_2})$. Then, we have

$$f(\sigma + it) = O(|t|^{k(\sigma)}),$$

uniformly for $\sigma_1 \leq \sigma \leq \sigma_2$, where $k(\sigma)$ is the linear function of σ which takes the values k_1 and k_2 for $\sigma = \sigma_1$ and $\sigma = \sigma_2$ respectively.

We apply this result for $\zeta(\sigma+it)$. Let $\sigma_1 \leq \sigma \leq \sigma_2$. We have that $\zeta(\sigma_1+it) = O(|t|^{\mu(\sigma_1)+\varepsilon})$ and $\zeta(\sigma_2+it) = O(|t|^{\mu(\sigma_2)+\varepsilon})$. Then, for $\sigma_1 \leq \sigma \leq \sigma_2$: $\zeta(\sigma+it) = O(|t|^{k(\sigma)}),$ where $k(\sigma) = \frac{(\sigma_2-\sigma)(\mu(\sigma_1)+\varepsilon)+(\sigma-\sigma_1)(\mu(\sigma_2)+\varepsilon)}{\sigma_2-\sigma_1}$.

We apply this result for $\zeta(\sigma+it)$. Let $\sigma_1 \leq \sigma \leq \sigma_2$. We have that $\zeta(\sigma_1+it) = O(|t|^{\mu(\sigma_1)+\varepsilon})$ and $\zeta(\sigma_2+it) = O(|t|^{\mu(\sigma_2)+\varepsilon})$. Then, for $\sigma_1 \leq \sigma \leq \sigma_2$:

$$\zeta(\sigma+it)=O(|t|^{k(\sigma)}),$$

where
$$k(\sigma) = \frac{(\sigma_2 - \sigma)(\mu(\sigma_1) + \varepsilon) + (\sigma - \sigma_1)(\mu(\sigma_2) + \varepsilon)}{\sigma_2 - \sigma_1}$$
.

Therefore, for $\sigma_1 \leq \sigma \leq \sigma_2$:

$$\mu(\sigma) \leq \frac{(\sigma_2 - \sigma)\mu(\sigma_1) + (\sigma - \sigma_1)\mu(\sigma_2)}{\sigma_2 - \sigma_1}.$$

We apply this result for $\zeta(\sigma+it)$. Let $\sigma_1 \leq \sigma \leq \sigma_2$. We have that $\zeta(\sigma_1+it) = O(|t|^{\mu(\sigma_1)+\varepsilon})$ and $\zeta(\sigma_2+it) = O(|t|^{\mu(\sigma_2)+\varepsilon})$. Then, for $\sigma_1 \leq \sigma \leq \sigma_2$:

$$\zeta(\sigma+it)=O(|t|^{k(\sigma)}),$$

where $k(\sigma) = \frac{(\sigma_2 - \sigma)(\mu(\sigma_1) + \varepsilon) + (\sigma - \sigma_1)(\mu(\sigma_2) + \varepsilon)}{\sigma_2 - \sigma_1}$.

Therefore, for $\sigma_1 \leq \sigma \leq \sigma_2$:

$$\mu(\sigma) \leq \frac{(\sigma_2 - \sigma)\mu(\sigma_1) + (\sigma - \sigma_1)\mu(\sigma_2)}{\sigma_2 - \sigma_1}.$$

We conclude that $\mu(\sigma)$ is a convex function.

The function μ satisfies the following conditions:

 $\mathbf{1}$ μ is a convex function.

- $\mathbf{1}$ μ is a convex function.
- 2μ is a continuous function.

- $\mathbf{1}$ μ is a convex function.
- $\mathbf{2}$ μ is a continuous function.
- $\mu(\sigma) \geq 0.$

- $\mathbf{1}$ μ is a convex function.
- $\mathbf{2}$ μ is a continuous function.
- $\mu(\sigma) \geq 0.$

- $\mathbf{1}$ μ is a convex function.
- $\mathbf{2}$ μ is a continuous function.
- $\mu(\sigma) \geq 0.$

- $\mathbf{1}$ μ is a convex function.
- $\mathbf{2}$ μ is a continuous function.
- $\mu(\sigma) \geq 0.$
- $\mu(\sigma) = \frac{1}{2} \sigma, \text{ for } \sigma \leq 0.$
- **6** μ is a decreasing function.

$$\mu(\sigma) \leq \frac{1}{2} - \frac{\sigma}{2}$$
.

$$\mu(\sigma) \leq \frac{1}{2} - \frac{\sigma}{2}$$
.

Therefore,

$$\mu\left(\frac{1}{2}\right) \leq \frac{1}{4}.$$

$$\mu(\sigma) \leq \frac{1}{2} - \frac{\sigma}{2}.$$

Therefore,

$$\mu\left(\frac{1}{2}\right) \leq \frac{1}{4}.$$

This implies that

$$\left|\zeta\left(\frac{1}{2}+it\right)\right|=O\left(|t|^{\frac{1}{4}+\varepsilon}\right).$$

$$\mu(\sigma) \leq \frac{1}{2} - \frac{\sigma}{2}.$$

Therefore,

$$\mu\left(\frac{1}{2}\right) \leq \frac{1}{4}.$$

This implies that

$$\left|\zeta\left(\frac{1}{2}+it\right)\right|=O(|t|^{\frac{1}{4}+\varepsilon}).$$

This is called: Convexity bound

Lindelöf hypothesis-1908

Lindelöf hypothesis-1908

$$\left|\zeta\left(\frac{1}{2}+it\right)\right|=O(|t|^{\varepsilon}).$$

$\mu(1/2) \leq$	<i>μ</i> (1/2) ≤	Author	
1/4	0.25	Lindelöf (1908)	Convexity bound
1/6	0.1667	Hardy, Littlewood & ?	
163/988	0.1650	Walfisz (1924)	
27/164	0.1647	Titchmarsh (1932)	
229/1392	0.164512	Phillips (1933)	
	0.164511	Rankin (1955)	
19/116	0.1638	Titchmarsh (1942)	
15/92	0.1631	Min (1949)	
6/37	0.16217	Haneke (1962)	
173/1067	0.16214	Kolesnik (1973)	
35/216	0.16204	Kolesnik (1982)	
139/858	0.16201	Kolesnik (1985)	
32/205	0.1561	Huxley (2002, 2005)	
53/342	0.1550	Bourgain (2017)	
13/84	0.1548	Bourgain (2017)	

Riemann hypothesis implies Lindelöf hypothesis

The next class with Bondarenko!