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Class 16: Extreme values and conditional bounds for ζ(s)

For T ≥ 3 we have proved that∫ T

1
|ζ(12 + it)|2dt = T logT + O(T ).

The refined result for the second moment of ζ is given by:∫ T

1
|ζ(12 + it)|2dt = T logT − (1 + log 2π − 2γ)T + O(E (T )).

1 Ingham (1928) E (T )� T 1/2 logT .

2 Titchmarsh (1934) E (T )� T 5/12 log2 T .

3 Balasubramanian (1978) E (T )� T 27/82+ε.

4 Watt (2010) E (T )� T 131/416+ε.

5 Conjecture: E (T )� T 1/4+ε.
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Using the functional equation, we proved that

ζ(s) = O(|t|3/2+δ), for σ ≥ −δ.
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Therefore, for any semiplane σ ≥ σ0 we have

|ζ(s)| = O(|t|k),

for some k depending on σ0. This implies that ζ(s) is a function of
finite order in the sense of the theory of Dirichlet series.



Class 16: Extreme values and conditional bounds for ζ(s)

For any σ we define µ(σ) as the infimum of the values ξ such that

ζ(σ + it) = O
(
|t|ξ
)
.
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What is the value of µ
(

1
2

)
?

1 Using the representation of ζ(s) in Re s > 0: µ(12) ≤ 1.

2 Using the approximation formula: µ(12) ≤ 1
2 .
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Using the theory of Dirichlet series we can improve the previous
bound.

Proposition

The function µ satisfies the following conditions:

1 µ is a convex function.

2 µ is a continuous function.

3 µ(σ) ≥ 0.

4 µ(σ) = 0, for σ ≥ 1.

5 µ(σ) = 1
2 − σ, for σ ≤ 0.

6 µ is a decreasing function.
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In particular, using the fact that µ(0) = 1
2 and µ(1) = 0, it follows

for 0 < σ < 1:

µ(σ) ≤ 1

2
− σ

2
.

Therefore,

µ

(
1

2

)
≤ 1

4
.

This implies that ∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ = O
(
|t|

1
4
+ε
)
.

This is called: Convexity bound
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Lindelöf hypothesis-1908

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ = O
(
|t|ε
)
.



Class 16: Extreme values and conditional bounds for ζ(s)

Lindelöf hypothesis-1908∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ = O
(
|t|ε
)
.
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Then, for all t sufficiently large:∣∣∣∣ζ(1

2
+ it

)∣∣∣∣� exp

((
13

84
+ ε

)
log t

)
.
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Extreme values

Omega results

(1) Titchmarsh (1928): for any ε > 0 there are infinitely many t
sufficiently large such that∣∣∣∣ζ(1

2
+ it

)∣∣∣∣� exp
(
c(ε)(log t)

1
2
−ε
)
.

(2) Levinson (1972): there are infinitely many t sufficiently large
such that ∣∣∣∣ζ(1

2
+ it

)∣∣∣∣� exp

(
c

(log t)
1
2

log log t

)
.
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Extreme values

Omega results

(3) Balasubramanian and Ramachandra (1977): for some constant
c > 0 there are infinitely many t sufficiently large such that∣∣∣∣ζ(1

2
+ it

)∣∣∣∣� exp

(
c

(log t)
1
2

(log log t)
1
2

)
.

(4) Montgomery (1977): assuming RH, there are infinitely many t
sufficiently large such that∣∣∣∣ζ(1

2
+ it

)∣∣∣∣� exp

(
1

20

(log t)
1
2

(log log t)
1
2

)
.
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Extreme values

Omega results

(5) Soundararajan (2008): there are infinitely many t sufficiently
large such that∣∣∣∣ζ(1

2
+ it

)∣∣∣∣� exp

(
(1 + o(1))

(log t)
1
2

(log log t)
1
2

)
.
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Extreme values

Omega results

(6) Bondarenko and Seip (2017): there are infinitely many t
sufficiently large such that∣∣∣∣ζ(1

2
+ it

)∣∣∣∣� exp

((
1√
2

+ o(1)

)
(log t)

1
2 (log log log t)

1
2

(log log t)
1
2

)
.
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Extreme values

Omega results

(7) Bondarenko and Seip (2017): there are infinitely many t
sufficiently large such that∣∣∣∣ζ(1

2
+ it

)∣∣∣∣� exp

(
(1 + o(1))

(log t)
1
2 (log log log t)

1
2

(log log t)
1
2

)
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Extreme values

Omega results

(8) R. de la Bretèche and Tenenbaum (2018): there are infinitely
many t sufficiently large such that∣∣∣∣ζ(1

2
+ it

)∣∣∣∣� exp

(
(
√

2 + o(1))
(log t)

1
2 (log log log t)

1
2

(log log t)
1
2

)
.
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Extreme values

Sketch of the proof

Idea of the proof

We will use the classical resonance method of Soundararajan in the
version of Bondarenko and Seip. We find a certain Dirichlet
polynomial which “resonates” with the |ζ(12 + it)|, i.e. that pick
large values of zeta. The resonator will be |R(t)|2, where

R(t) =
∑

m∈M′

r(m)m−it =
∑
m≤N

r(m)m−it ,

and M′ is a suitable finite set of integers and r(m) is an arithmetic
function.
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Extreme values

Sketch of the proof

Soundararajan’s version

Let ϕ(t) be a smooth function compactly supported in [1, 2], such
that 0 ≤ ϕ(t) ≤ 1 and ϕ(t) = 1, for t ∈ (5/4, 7/4). He computed

M1(R,T ) =

∫ ∞
−∞
|R(t)|2ϕ

(
t

T

)
dt,

and

M2(R,T ) =

∫ ∞
−∞

ζ(12 + it)|R(t)|2ϕ
(

t

T

)
dt.

Then
|M2(R,T )|
M1(R,T )

≤ máx
t∈[T ,2T ]

|ζ(12 + it)|.
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Extreme values

Sketch of the proof

Considering N ≤ T 1−ε:

M1(R,T ) =

∫ ∞
−∞
|R(t)|2ϕ

(
t

T

)
dt

= T
∑

m,n≤N
r(m) r(n) ϕ̂

(
T log

m

n

)
= T ϕ̂(0)

∑
m≤N

|r(m)|2 + small terms.
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Extreme values

Sketch of the proof

From the approximation formula we have for T ≤ t ≤ 2T :

ζ

(
1

2
+ it

)
=
∑
k≤T

1

k
1
2
+it

+ O(T−
1
2 ).

Therefore, considering N ≤ T 1−ε:

M2(R,T ) =

∫ ∞
−∞

ζ(12 + it)|R(t)|2ϕ
(

t

T

)
dt

= T
∑

m,n≤N

∑
k≤T

r(m) r(n)

k
1
2

ϕ̂

(
T log

mk

n

)
+ small terms.

= T ϕ̂(0)
∑

mk=n≤N

r(m) r(n)

k
1
2

+ small terms.
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Extreme values

Sketch of the proof

M1(R,T ) = T ϕ̂(0)
∑
m≤N

|r(m)|2 + small terms.

M2(R,T ) = T ϕ̂(0)
∑

mk=n≤N

r(m) r(n)

k
1
2

+ small terms.

máx
t∈[T ,2T ]

|ζ(12 + it)| ≥

∣∣∣∣∣ ∑
mk=n≤N

r(m) r(n)

k
1
2

∣∣∣∣∣
/( ∑

m≤N
|r(m)|2

)
+ small terms.
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Extreme values

Sketch of the proof

máx
t∈[T ,2T ]

|ζ(12 + it)| ≥

∣∣∣∣∣ ∑
mk=n≤N

r(m) r(n)

k
1
2

∣∣∣∣∣
/( ∑

m≤N
|r(m)|2

)
+ small terms.

Soundararajan proved that:

sup
r

∣∣∣∣∣ ∑
mk=n≤N

r(m) r(n)

k
1
2

∣∣∣∣∣
/( ∑

m≤N
|r(m)|2

)
= exp

(
(1+o(1))

(logN)
1
2

(log logN)
1
2

)
,

and using N = T 1−ε we obtain the desired result.
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Extreme values

Sketch of the proof

Bondarenko and Seip’s version

Inspired in GCD-sums, they constructed a certain

R(t) =
∑

m∈M′

r(m)m−it ,

where |M′| ≤ Tκ for κ ≤ 1/2 and let Φ(t) = e−
t2

2 .

M1(R,T ) =

∫
√
T≤|t|≤T

|R(t)|2 Φ

(
logT

T
t

)
dt,

and

M2(R,T ) =

∫
√
T≤|t|≤T

ζ(12 + it)|R(t)|2 Φ

(
logT

T
t

)
dt.

Then
|M2(R,T )|
M1(R,T )

≤ máx
t∈[
√
T ,T ]
|ζ(12 + it)|.
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t2

2 .

M1(R,T ) =

∫
√
T≤|t|≤T

|R(t)|2 Φ

(
logT

T
t

)
dt,

and
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√
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From the approximation formula we have for T ≤ t ≤ 2T :

ζ

(
1

2
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)
=
∑
k≤T

1

k
1
2
+it

+ O(T−
1
2 ).

Then
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|R(t)|2Φ

(
t
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)
dt + small terms.
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Bondarenko and Seip established that

AN ≥ exp

(
(γ + o(1))

(logN)
1
2 (log log logN)

1
2

(log logN)
1
2

)
,

where γ = 1− ε.
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Considering N = [Tκ] with κ ≤ 1/2:
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Therefore
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and

|M2(R,T )| �R
T

logT
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(κ logT )
1
2 (log log logT )

1
2

(log logT )
1
2

)
,

with κ ≤ 1/2, and γ = 1− ε. Using the inequality

máx
t∈[
√
T ,T ]
|ζ(12 + it)| ≥ |M2(R,T )|

M1(R,T )
,

we get the desired result.
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Unconditionally, for all t sufficiently large:∣∣∣∣ζ(1
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.
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Littlewood’s result

A classical result of Littlewood (1924) states that, under the
Riemann hypothesis, there is C > 0 such that∣∣∣∣ζ(1

2
+ it

)∣∣∣∣� exp

(
C

log t

log log t

)
.

for t sufficiently large.

The order of magnitude has not been
improved over the last ninety years, and the efforts have hence been
concentrated in optimizing the values of the implicit constants.
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Assuming the Riemann hypothesis, we have∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ ≤ exp

(
(C + o(1))

log t

log log t

)
.

(1) Ramachandra and Sankaranarayanan (1993) : C = 0.466.

(2) Soundararajan (2009) : C = 0.373.

(3) Chandee and Soundararajan (2011) : C = ln(2)
2 ≈ 0.347.

In this case o(1) = log log log t
log log t .
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Idea of the proof

The proof of these results consists of the following steps:

Representation lemma: to express the desired object as sums
over the zeros of ζ(s).

Explicit formulas: the tools to evaluate such sums

Harmonic analysis tools: find appropriate majorants/minorants
to plug in.

Evaluation of the terms.
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Lemma (Representation lemma)

Assume the Riemann hypothesis. We define the function
f : R∗ → R by

f (x) = log

(
4 + x2

x2

)
.

Then, for t > 0 sufficiently large we have

log

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣ = log t − 1

2

∑
γ

f (t − γ) + O(1).

The sums run over the non-trivial zeros ρ = 1
2 + iγ of ζ(s).
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It’s time to call our Guinand-Weil explicit formula!
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