Class 16: Extreme values and conditional bounds for $\zeta(s)$

Andrés Chirre Norwegian University of Science and Technology - NTNU

28-October-2021

$$\int_1^T |\zeta(\frac{1}{2}+it)|^2 \mathrm{d}t = T\log T + O(T).$$

$$\int_1^T |\zeta(\frac{1}{2}+it)|^2 \mathrm{d}t = T\log T + O(T).$$

The refined result for the second moment of ζ is given by:

$$\int_{1}^{T} |\zeta(\frac{1}{2} + it)|^{2} \mathrm{d}t = T \log T - (1 + \log 2\pi - 2\gamma)T + O(E(T)).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\int_1^T |\zeta(\frac{1}{2}+it)|^2 \mathrm{d}t = T\log T + O(T).$$

The refined result for the second moment of ζ is given by:

$$\int_1^T |\zeta(\frac{1}{2}+it)|^2 \mathrm{d}t = T \log T - (1+\log 2\pi - 2\gamma)T + O(E(T)).$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

1 Ingham (1928) $E(T) \ll T^{1/2} \log T$.

$$\int_1^T |\zeta(\frac{1}{2}+it)|^2 \mathrm{d}t = T\log T + O(T).$$

The refined result for the second moment of ζ is given by:

$$\int_1^T |\zeta(\tfrac{1}{2}+it)|^2 \mathrm{d}t = T \log T - (1+\log 2\pi - 2\gamma)T + O(E(T)).$$

- **1** Ingham (1928) $E(T) \ll T^{1/2} \log T$.
- 2 Titchmarsh (1934) $E(T) \ll T^{5/12} \log^2 T$.

$$\int_1^T |\zeta(\frac{1}{2}+it)|^2 \mathrm{d}t = T\log T + O(T).$$

The refined result for the second moment of ζ is given by:

$$\int_1^T |\zeta(\frac{1}{2}+it)|^2 \mathrm{d}t = T \log T - (1+\log 2\pi - 2\gamma)T + O(E(T)).$$

- **1** Ingham (1928) $E(T) \ll T^{1/2} \log T$.
- 2 Titchmarsh (1934) $E(T) \ll T^{5/12} \log^2 T$.
- 3 Balasubramanian (1978) $E(T) \ll T^{27/82+\varepsilon}$.

$$\int_1^T |\zeta(\frac{1}{2}+it)|^2 \mathrm{d}t = T\log T + O(T).$$

The refined result for the second moment of ζ is given by:

$$\int_1^T |\zeta(\frac{1}{2}+it)|^2 \mathrm{d}t = T \log T - (1+\log 2\pi - 2\gamma)T + O(E(T)).$$

A D N A 目 N A E N A E N A B N A C N

- **1** Ingham (1928) $E(T) \ll T^{1/2} \log T$.
- 2 Titchmarsh (1934) $E(T) \ll T^{5/12} \log^2 T$.
- **3** Balasubramanian (1978) $E(T) \ll T^{27/82+\varepsilon}$.
- 4 Watt (2010) $E(T) \ll T^{131/416+\varepsilon}$.

$$\int_1^T |\zeta(\frac{1}{2}+it)|^2 \mathrm{d}t = T\log T + O(T).$$

The refined result for the second moment of ζ is given by:

$$\int_1^T |\zeta(\tfrac{1}{2}+it)|^2 \mathrm{d}t = T \log T - (1+\log 2\pi - 2\gamma)T + O(E(T)).$$

- **1** Ingham (1928) $E(T) \ll T^{1/2} \log T$.
- 2 Titchmarsh (1934) $E(T) \ll T^{5/12} \log^2 T$.
- **3** Balasubramanian (1978) $E(T) \ll T^{27/82+\varepsilon}$.
- 4 Watt (2010) $E(T) \ll T^{131/416+\varepsilon}$.
- **5** Conjecture: $E(T) \ll T^{1/4+\varepsilon}$.

Using the functional equation, we proved that

$$\zeta(s)=O(|t|^{3/2+\delta}), \ \ ext{for} \ \sigma\geq -\delta.$$

Therefore, for any semiplane $\sigma \geq \sigma_0$ we have

$$|\zeta(s)|=O(|t|^k),$$

for some k depending on σ_0 . This implies that $\zeta(s)$ is a function of finite order in the sense of the theory of Dirichlet series.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

For any σ we define $\mu(\sigma)$ as the infimum of the values ξ such that

$$\zeta(\sigma+it)=O\bigl(|t|^{\xi}\bigr).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

What is the value of $\mu(\frac{1}{2})$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

What is the value of $\mu(\frac{1}{2})$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

1 Using the representation of $\zeta(s)$ in $\operatorname{Re} s > 0$: $\mu(\frac{1}{2}) \leq 1$.

What is the value of $\mu(\frac{1}{2})$?

Using the representation of ζ(s) in Re s > 0: μ(¹/₂) ≤ 1.
 Using the approximation formula: μ(¹/₂) ≤ ¹/₂.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proposition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

The function μ satisfies the following conditions:

1 μ is a convex function.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition

- **1** μ is a convex function.
- **2** μ is a continuous function.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition

- **1** μ is a convex function.
- 2 μ is a continuous function.
- $\exists \ \mu(\sigma) \geq 0.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition

- **1** μ is a convex function.
- **2** μ is a continuous function.

3
$$\mu(\sigma) \geq 0.$$

4
$$\mu(\sigma) = 0$$
, for $\sigma \ge 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition

- **1** μ is a convex function.
- **2** μ is a continuous function.

3
$$\mu(\sigma) \geq 0$$

4
$$\mu(\sigma) = 0$$
, for $\sigma \ge 1$.

5
$$\mu(\sigma) = \frac{1}{2} - \sigma$$
, for $\sigma \leq 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition

The function μ satisfies the following conditions:

- **1** μ is a convex function.
- **2** μ is a continuous function.

3
$$\mu(\sigma) \geq 0$$

4
$$\mu(\sigma) = 0$$
, for $\sigma \ge 1$.

5
$$\mu(\sigma) = rac{1}{2} - \sigma$$
, for $\sigma \leq 0$.

6 μ is a decreasing function.

$$\mu(\sigma) \leq \frac{1}{2} - \frac{\sigma}{2}.$$

$$\mu(\sigma) \leq rac{1}{2} - rac{\sigma}{2}.$$

Therefore,

$$\mu\left(\frac{1}{2}\right) \leq \frac{1}{4}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mu(\sigma) \leq rac{1}{2} - rac{\sigma}{2}.$$

Therefore,

$$\mu\left(\frac{1}{2}\right) \leq \frac{1}{4}.$$

This implies that

$$\left|\zeta\left(\frac{1}{2}+it\right)\right|=O(|t|^{\frac{1}{4}+\varepsilon}).$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

$$\mu(\sigma) \leq rac{1}{2} - rac{\sigma}{2}.$$

Therefore,

$$\mu\left(rac{1}{2}
ight) \leq rac{1}{4}.$$

This implies that

$$\left|\zeta\left(\frac{1}{2}+it\right)\right|=O(|t|^{\frac{1}{4}+\varepsilon}).$$

This is called: Convexity bound

Lindelöf hypothesis-1908

Lindelöf hypothesis-1908

$$\left|\zeta\left(\frac{1}{2}+it\right)\right|=O(|t|^{\varepsilon}).$$

µ(1/2) ≤	µ(1/2) ≤	Author	
1/4	0.25	Lindelöf (1908)	Convexity bound
1/6	0.1667	Hardy, Littlewood & ?	
163/988	0.1650	Walfisz (1924)	
27/164	0.1647	Titchmarsh (1932)	
229/1392	0.164512	Phillips (1933)	
	0.164511	Rankin (1955)	
19/116	0.1638	Titchmarsh (1942)	
15/92	0.1631	Min (1949)	
6/37	0.16217	Haneke (1962)	
173/1067	0.16214	Kolesnik (1973)	
35/216	0.16204	Kolesnik (1982)	
139/858	0.16201	Kolesnik (1985)	
32/205	0.1561	Huxley (2002, 2005)	
53/342	0.1550	Bourgain (2017)	
13/84	0.1548	Bourgain (2017)	

Then, for all *t* sufficiently large:

$$\left|\zeta\left(\frac{1}{2}+it\right)\right|\ll\exp\left(\left(\frac{13}{84}+\epsilon\right)\log t\right).$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Omega results

(1) Titchmarsh (1928): for any $\varepsilon > 0$ there are infinitely many t sufficiently large such that

$$\left|\zeta\left(\frac{1}{2}+it\right)\right| \gg \exp\left(c(\epsilon)(\log t)^{\frac{1}{2}-\epsilon}\right).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Omega results

(1) Titchmarsh (1928): for any $\varepsilon > 0$ there are infinitely many t sufficiently large such that

$$\left|\zeta\left(\frac{1}{2}+it\right)\right|\gg\exp\left(c(\epsilon)(\log t)^{\frac{1}{2}-\epsilon}\right).$$

(2) Levinson (1972): there are infinitely many t sufficiently large such that

$$\left|\zeta\left(\frac{1}{2}+it\right)\right| \gg \exp\left(c \frac{(\log t)^{\frac{1}{2}}}{\log\log t}\right).$$

Omega results

(3) Balasubramanian and Ramachandra (1977): for some constant c > 0 there are infinitely many t sufficiently large such that

$$\left|\zeta\left(\frac{1}{2}+it\right)\right| \gg \exp\left(c\,\frac{(\log t)^{\frac{1}{2}}}{(\log\log t)^{\frac{1}{2}}}\right).$$

Omega results

(3) Balasubramanian and Ramachandra (1977): for some constant c > 0 there are infinitely many t sufficiently large such that

$$\left|\zeta\left(\frac{1}{2}+it\right)\right| \gg \exp\left(c \frac{\left(\log t\right)^{\frac{1}{2}}}{\left(\log\log t\right)^{\frac{1}{2}}}\right).$$

(4) Montgomery (1977): assuming RH, there are infinitely many t sufficiently large such that

$$\left|\zeta\left(\frac{1}{2}+it\right)\right| \gg \exp\left(\frac{1}{20}\,\frac{(\log t)^{\frac{1}{2}}}{\left(\log\log t\right)^{\frac{1}{2}}}\right)$$

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Omega results

(5) Soundararajan (2008): there are infinitely many *t* sufficiently large such that

$$\left|\zeta\left(\frac{1}{2}+it\right)\right| \gg \exp\left((1+o(1))\frac{(\log t)^{\frac{1}{2}}}{(\log\log t)^{\frac{1}{2}}}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Omega results

(5) Soundararajan (2008): there are infinitely many *t* sufficiently large such that

$$\left|\zeta\left(\frac{1}{2}+it\right)\right| \gg \exp\left((1+o(1))\frac{(\log t)^{\frac{1}{2}}}{(\log\log t)^{\frac{1}{2}}}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

(6) Bondarenko and Seip (2017): there are infinitely many t sufficiently large such that

$$\left|\zeta\left(\frac{1}{2}+it\right)\right| \gg \exp\left(\left(\frac{1}{\sqrt{2}}+o(1)\right)\frac{(\log t)^{\frac{1}{2}}(\log\log\log t)^{\frac{1}{2}}}{(\log\log t)^{\frac{1}{2}}}\right).$$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

(7) Bondarenko and Seip (2017): there are infinitely many t sufficiently large such that

$$\left| \zeta \left(\frac{1}{2} + it \right) \right| \gg \exp\left((1 + o(1)) \frac{(\log t)^{\frac{1}{2}} (\log \log \log t)^{\frac{1}{2}}}{(\log \log t)^{\frac{1}{2}}} \right).$$

(日) (四) (日) (日) (日)

Omega results

(8) R. de la Bretèche and Tenenbaum (2018): there are infinitely many *t* sufficiently large such that

$$\left| \zeta \left(\frac{1}{2} + it \right) \right| \gg \exp\left((\sqrt{2} + o(1)) \frac{(\log t)^{\frac{1}{2}} (\log \log \log t)^{\frac{1}{2}}}{(\log \log t)^{\frac{1}{2}}} \right).$$

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

Idea of the proof

We will use the classical resonance method of Soundararajan in the version of Bondarenko and Seip. We find a certain Dirichlet polynomial which "resonates" with the $|\zeta(\frac{1}{2} + it)|$, i.e. that pick large values of zeta. The resonator will be $|\mathcal{R}(t)|^2$, where

$$\mathcal{R}(t) = \sum_{m \in \mathcal{M}'} r(m)m^{-it} = \sum_{m \leq N} r(m)m^{-it},$$

and \mathcal{M}' is a suitable finite set of integers and r(m) is an arithmetic function.

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

Soundararajan's version

Let $\varphi(t)$ be a smooth function compactly supported in [1,2], such that $0 \leq \varphi(t) \leq 1$ and $\varphi(t) = 1$, for $t \in (5/4, 7/4)$. He computed

$$M_1(\mathcal{R},T) = \int_{-\infty}^{\infty} |\mathcal{R}(t)|^2 \varphi\left(rac{t}{T}
ight) \mathrm{d}t,$$

and

$$M_2(\mathcal{R},T) = \int_{-\infty}^{\infty} \zeta(\frac{1}{2} + it) |\mathcal{R}(t)|^2 \varphi\left(\frac{t}{T}\right) \mathrm{d}t.$$

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

Soundararajan's version

Let $\varphi(t)$ be a smooth function compactly supported in [1,2], such that $0 \leq \varphi(t) \leq 1$ and $\varphi(t) = 1$, for $t \in (5/4, 7/4)$. He computed

$$M_1(\mathcal{R},T) = \int_{-\infty}^{\infty} |\mathcal{R}(t)|^2 \varphi\left(rac{t}{T}
ight) \mathrm{d}t,$$

and

$$M_2(\mathcal{R},T) = \int_{-\infty}^{\infty} \zeta(\frac{1}{2} + it) |\mathcal{R}(t)|^2 \varphi\left(\frac{t}{T}\right) \mathrm{d}t.$$

Then

$$\frac{|M_2(\mathcal{R},T)|}{M_1(\mathcal{R},T)} \leq \max_{t \in [T,2T]} |\zeta(\frac{1}{2}+it)|.$$

Class 16: Extreme values and conditional bounds for $\zeta(s)$

└─Sketch of the proof

Considering $N \leq T^{1-\varepsilon}$:

$$M_{1}(\mathcal{R}, T) = \int_{-\infty}^{\infty} |\mathcal{R}(t)|^{2} \varphi\left(\frac{t}{T}\right) \mathrm{d}t$$
$$= T \sum_{m,n \leq N} r(m) \overline{r(n)} \widehat{\varphi}\left(T \log \frac{m}{n}\right)$$
$$= T \widehat{\varphi}(0) \sum_{m \leq N} |r(m)|^{2} + \text{small terms.}$$

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

From the approximation formula we have for $T \le t \le 2T$:

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

$$\zeta\left(\frac{1}{2}+it\right) = \sum_{k\leq T} \frac{1}{k^{\frac{1}{2}+it}} + O(T^{-\frac{1}{2}}).$$

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

From the approximation formula we have for $T \le t \le 2T$:

Therefore, considering $N < T^{1-\varepsilon}$:

$$\begin{split} M_2(\mathcal{R},T) &= \int_{-\infty}^{\infty} \zeta(\frac{1}{2} + it) |\mathcal{R}(t)|^2 \varphi\left(\frac{t}{T}\right) \mathrm{d}t \\ &= T \sum_{m,n \le N} \sum_{k \le T} \frac{r(m) \,\overline{r(n)}}{k^{\frac{1}{2}}} \,\widehat{\varphi}\left(T \log \frac{mk}{n}\right) + \text{small terms.} \\ &= T \,\widehat{\varphi}(0) \sum_{mk=n \le N} \frac{r(m) \,\overline{r(n)}}{k^{\frac{1}{2}}} + \text{small terms.} \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\zeta\left(\frac{1}{2}+it\right) = \sum_{k<\tau} \frac{1}{k^{\frac{1}{2}+it}} + O(T^{-\frac{1}{2}}).$

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

$$M_1(\mathcal{R}, T) = T \, \widehat{arphi}(0) \, \sum_{m \leq N} |r(m)|^2 + ext{small terms}.$$

$$M_2(\mathcal{R}, T) = T \,\widehat{\varphi}(0) \, \sum_{mk=n \leq N} \frac{r(m) \,\overline{r(n)}}{k^{\frac{1}{2}}} + \text{small terms.}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

$$M_1(\mathcal{R}, T) = T \, \widehat{arphi}(0) \, \sum_{m \leq N} |r(m)|^2 + ext{small terms}.$$

$$M_2(\mathcal{R}, T) = T \,\widehat{\varphi}(0) \sum_{mk=n \leq N} \frac{r(m) \, r(n)}{k^{\frac{1}{2}}} + \text{small terms.}$$

$$\max_{t \in [T,2T]} |\zeta(\frac{1}{2} + it)| \ge \left| \sum_{mk=n \le N} \frac{r(m) \overline{r(n)}}{k^{\frac{1}{2}}} \right| / \left(\sum_{m \le N} |r(m)|^2 \right) + \text{small terms.}$$

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

$$\max_{t \in [T,2T]} |\zeta(\frac{1}{2} + it)| \ge \left| \sum_{mk=n \le N} \frac{r(m)\overline{r(n)}}{k^{\frac{1}{2}}} \right| / \left(\sum_{m \le N} |r(m)|^2 \right) + \text{small terms.}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Class 16: Extreme values and conditional bounds for $\zeta(s)$

└─Sketch of the proof

$$\begin{split} \max_{t\in[T,2T]} |\zeta(\frac{1}{2}+it)| \geq & \left| \sum_{mk=n \leq N} \frac{r(m)\overline{r(n)}}{k^{\frac{1}{2}}} \right| / \left(\sum_{m \leq N} |r(m)|^2 \right) \\ &+ \text{ small terms.} \end{split}$$

Soundararajan proved that:

$$\sup_{r} \left| \sum_{mk=n \le N} \frac{r(m)\overline{r(n)}}{k^{\frac{1}{2}}} \right| \left/ \left(\sum_{m \le N} |r(m)|^2 \right) = \exp\left((1+o(1)) \frac{(\log N)^{\frac{1}{2}}}{(\log \log N)^{\frac{1}{2}}} \right),$$

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

$$\begin{split} \max_{t\in[\mathcal{T},2\mathcal{T}]} |\zeta(\frac{1}{2}+it)| \geq & \left| \sum_{mk=n\leq N} \frac{r(m)\,\overline{r(n)}}{k^{\frac{1}{2}}} \right| / \left(\sum_{m\leq N} |r(m)|^2 \right) \\ &+ \text{ small terms.} \end{split}$$

Soundararajan proved that:

$$\sup_{r} \left| \sum_{mk=n \le N} \frac{r(m)\overline{r(n)}}{k^{\frac{1}{2}}} \right| \left/ \left(\sum_{m \le N} |r(m)|^2 \right) = \exp\left((1+o(1)) \frac{(\log N)^{\frac{1}{2}}}{(\log \log N)^{\frac{1}{2}}} \right),$$

and using $N = T^{1-\varepsilon}$ we obtain the desired result.

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

Bondarenko and Seip's version

Inspired in GCD-sums, they constructed a certain

$$\mathcal{R}(t)=\sum_{m\in\mathcal{M}'}r(m)m^{-it},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $|\mathcal{M}'| \leq T^{\kappa}$ for $\kappa \leq 1/2$ and let $\Phi(t) = e^{-\frac{t^2}{2}}$.

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

Bondarenko and Seip's version

Inspired in GCD-sums, they constructed a certain

$$\mathcal{R}(t) = \sum_{m \in \mathcal{M}'} r(m) m^{-it},$$

where $|\mathcal{M}'| \leq T^{\kappa}$ for $\kappa \leq 1/2$ and let $\Phi(t) = e^{-\frac{t^2}{2}}$.

$$M_1(\mathcal{R}, T) = \int_{\sqrt{T} \le |t| \le T} |\mathcal{R}(t)|^2 \Phi\left(\frac{\log T}{T}t\right) \mathrm{d}t,$$

and

$$M_2(\mathcal{R}, T) = \int_{\sqrt{T} \le |t| \le T} \zeta(\frac{1}{2} + it) |\mathcal{R}(t)|^2 \Phi\left(\frac{\log T}{T}t\right) dt.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

Bondarenko and Seip's version

Inspired in GCD-sums, they constructed a certain

$$\mathcal{R}(t) = \sum_{m \in \mathcal{M}'} r(m) m^{-it},$$

where $|\mathcal{M}'| \leq T^{\kappa}$ for $\kappa \leq 1/2$ and let $\Phi(t) = e^{-\frac{t^2}{2}}$.

$$M_1(\mathcal{R}, T) = \int_{\sqrt{T} \le |t| \le T} |\mathcal{R}(t)|^2 \Phi\left(\frac{\log T}{T}t\right) \mathrm{d}t,$$

and

$$M_2(\mathcal{R},T) = \int_{\sqrt{T} \le |t| \le T} \zeta(\frac{1}{2} + it) |\mathcal{R}(t)|^2 \Phi\left(\frac{\log T}{T}t\right) dt.$$

Then

$$\frac{|M_2(\mathcal{R},T)|}{M_1(\mathcal{R},T)} \leq \max_{t \in [\sqrt{T},T]} |\zeta(\frac{1}{2}+it)|.$$

Class 16: Extreme values and conditional bounds for $\zeta(s)$

└─Sketch of the proof

Since $\widehat{\Phi}(x) = \sqrt{2\pi} \Phi(x)$, we have

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

Since
$$\widehat{\Phi}(x) = \sqrt{2\pi} \Phi(x)$$
, we have

$$M_1(\mathcal{R}, T) = \int_{\sqrt{T} \le |t| \le T} |\mathcal{R}(t)|^2 \Phi\left(\frac{\log T}{T}t\right) dt$$

$$\leq \int_{-\infty}^{\infty} |\mathcal{R}(t)|^2 \Phi\left(\frac{\log T}{T}t\right) dt$$

$$= \frac{T}{\log T} \sum_{m,n \in \mathcal{M}'} r(m) r(n) \widehat{\Phi}\left(\frac{T}{\log T} \log \frac{m}{n}\right)$$

$$= \frac{\sqrt{2\pi}T}{\log T} \sum_{m,n \in \mathcal{M}'} r(m) r(n) \Phi\left(\frac{T}{\log T} \log \frac{m}{n}\right)$$

$$\ll_{\mathcal{R}} T(\log T)^3.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

From the approximation formula we have for $T \le t \le 2T$:

▲□▶▲□▶▲□▶▲□▶ ■ のへで

$$\zeta\left(\frac{1}{2}+it\right) = \sum_{k\leq T} \frac{1}{k^{\frac{1}{2}+it}} + O(T^{-\frac{1}{2}}).$$

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

From the approximation formula we have for $T \le t \le 2T$:

$$\zeta\left(\frac{1}{2}+it\right) = \sum_{k\leq T} \frac{1}{k^{\frac{1}{2}+it}} + O(T^{-\frac{1}{2}}).$$

Then

$$\begin{split} M_2(\mathcal{R},T) &= \int_{\sqrt{T} \le |t| \le T} \zeta(\frac{1}{2} + it) |\mathcal{R}(t)|^2 \Phi\left(\frac{\log T}{T}t\right) \mathrm{d}t \\ &= \int_{-\infty}^{\infty} \left(\sum_{k \le T} \frac{1}{k^{\frac{1}{2} + it}}\right) |\mathcal{R}(t)|^2 \Phi\left(\frac{t}{T}\right) \mathrm{d}t + \text{small terms.} \end{split}$$

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

$$\begin{split} &\int_{-\infty}^{\infty} \left(\sum_{k \leq T} \frac{1}{k^{\frac{1}{2} + it}} \right) |\mathcal{R}(t)|^2 \Phi\left(\frac{t}{T}\right) \mathrm{d}t \\ &= \frac{\sqrt{2\pi}T}{\log T} \sum_{m,n \in \mathcal{M}'} \sum_{k \leq T} \frac{r(m)r(n)}{k^{\frac{1}{2}}} \Phi\left(\frac{T}{\log T}\log\frac{km}{n}\right) \\ &\geq \frac{\sqrt{2\pi}T}{\log T} \sum_{m,n \in \mathcal{M}'} \sum_{k \leq T, \, k: \text{special}} \frac{r(m)r(n)}{k^{\frac{1}{2}}} \Phi\left(\frac{T}{\log T}\log\frac{km}{n}\right) \\ &\gg_{\mathcal{R}} \frac{T}{\log T} A_N, \end{split}$$

Class 16: Extreme values and conditional bounds for $\zeta(s)$

└─Sketch of the proof

$$\begin{split} &\int_{-\infty}^{\infty} \left(\sum_{k \leq T} \frac{1}{k^{\frac{1}{2} + it}} \right) |\mathcal{R}(t)|^2 \Phi\left(\frac{t}{T}\right) \mathrm{d}t \\ &= \frac{\sqrt{2\pi}T}{\log T} \sum_{m,n \in \mathcal{M}'} \sum_{k \leq T} \frac{r(m) r(n)}{k^{\frac{1}{2}}} \Phi\left(\frac{T}{\log T} \log \frac{km}{n}\right) \\ &\geq \frac{\sqrt{2\pi}T}{\log T} \sum_{m,n \in \mathcal{M}'} \sum_{k \leq T, \ k: \text{special}} \frac{r(m) r(n)}{k^{\frac{1}{2}}} \Phi\left(\frac{T}{\log T} \log \frac{km}{n}\right) \\ &\gg_{\mathcal{R}} \frac{T}{\log T} A_N, \end{split}$$

where $N = |\mathcal{M}'|$ and

$$A_N = \prod_{p: \text{ certain primes}} \frac{1 + f(p)^2 + f(p)p^{-1/2}}{1 + f(p)^2}.$$

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

Bondarenko and Seip established that

$$A_N \geq \exp\left((\gamma+o(1))rac{(\log N)^rac{1}{2}(\log\log\log N)^rac{1}{2}}{(\log\log N)^rac{1}{2}}
ight),$$

where $\gamma = 1 - \varepsilon$.

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

Considering $N = [T^{\kappa}]$ with $\kappa \leq 1/2$:

$$\begin{split} M_2(\mathcal{R},T) &= \int_{\sqrt{T} \le |t| \le T} \zeta(\frac{1}{2} + it) |\mathcal{R}(t)|^2 \Phi\left(\frac{\log T}{T}t\right) \mathrm{d}t \\ &\gg_{\mathcal{R}} \frac{T}{\log T} A_N \\ &\gg_{\mathcal{R}} \frac{T}{\log T} \exp\left((\gamma + o(1)) \frac{(\kappa \log T)^{\frac{1}{2}} (\log \log \log T)^{\frac{1}{2}}}{(\log \log T)^{\frac{1}{2}}}\right). \end{split}$$

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

Therefore

$M_1(\mathcal{R}, T) \ll_{\mathcal{R}} T(\log T)^3$,

Class 16: Extreme values and conditional bounds for $\zeta(s)$

└─Sketch of the proof

Therefore

$$M_1(\mathcal{R}, T) \ll_{\mathcal{R}} T(\log T)^3$$
,

and

$$|M_2(\mathcal{R},T)| \gg_{\mathcal{R}} \frac{T}{\log T} \exp\left((\gamma + o(1)) \frac{(\kappa \log T)^{\frac{1}{2}} (\log \log \log T)^{\frac{1}{2}}}{(\log \log T)^{\frac{1}{2}}}\right),$$

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Sketch of the proof

Therefore

$$M_1(\mathcal{R}, T) \ll_{\mathcal{R}} T(\log T)^3$$
,

and

$$|M_2(\mathcal{R},T)| \gg_{\mathcal{R}} \frac{T}{\log T} \exp\left((\gamma + o(1)) \frac{(\kappa \log T)^{\frac{1}{2}} (\log \log \log T)^{\frac{1}{2}}}{(\log \log T)^{\frac{1}{2}}}\right),$$

with $\kappa \leq 1/2$, and $\gamma = 1 - \varepsilon$. Using the inequality

$$\max_{t\in [\sqrt{T},T]} |\zeta(\tfrac{1}{2}+it)| \geq \frac{|M_2(\mathcal{R},T)|}{M_1(\mathcal{R},T)},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

we get the desired result.

What happens if we assume Riemann Hypothesis?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What happens if we assume Riemann Hypothesis? Unconditionally, for all *t* sufficiently large:

$$\left|\zeta\left(\frac{1}{2}+it\right)\right|\ll\exp\left(\left(\frac{13}{84}+\epsilon\right)\log t\right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Littlewood's result

A classical result of Littlewood (1924) states that, under the Riemann hypothesis, there is C > 0 such that

$$\left|\zeta\left(\frac{1}{2}+it\right)\right|\ll\exp\left(C\frac{\log t}{\log\log t}\right).$$

for t sufficiently large.

Littlewood's result

A classical result of Littlewood (1924) states that, under the Riemann hypothesis, there is C > 0 such that

$$\left|\zeta\left(\frac{1}{2}+it\right)\right|\ll\exp\left(C\frac{\log t}{\log\log t}\right).$$

for *t* sufficiently large. The order of magnitude has not been improved over the last ninety years, and the efforts have hence been concentrated in optimizing the values of the implicit constants.

Assuming the Riemann hypothesis, we have

$$\left|\zeta\left(\frac{1}{2}+it\right)\right| \leq \exp\left((C+o(1))\frac{\log t}{\log\log t}\right).$$

Assuming the Riemann hypothesis, we have

$$\left|\zeta\left(\frac{1}{2}+it\right)\right| \leq \exp\left((C+o(1))\frac{\log t}{\log\log t}\right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

(1) Ramachandra and Sankaranarayanan (1993) : C = 0.466.

Assuming the Riemann hypothesis, we have

$$\left|\zeta\left(\frac{1}{2}+it\right)\right| \leq \exp\left((C+o(1))\frac{\log t}{\log\log t}\right).$$

(1) Ramachandra and Sankaranarayanan (1993) : C = 0.466.
 (2) Soundararajan (2009) : C = 0.373.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Assuming the Riemann hypothesis, we have

$$\left|\zeta\left(\frac{1}{2}+it\right)\right| \leq \exp\left((C+o(1))\frac{\log t}{\log\log t}\right).$$

- (1) Ramachandra and Sankaranarayanan (1993) : C = 0.466.
 (2) Soundararajan (2009) : C = 0.373.
- (3) Chandee and Soundararajan (2011) : $C = \frac{\ln(2)}{2} \approx 0.347$. In this case $o(1) = \frac{\log \log \log t}{\log \log t}$.

Assuming the Riemann hypothesis, we have

$$\left|\zeta\left(\frac{1}{2}+it\right)\right| \leq \exp\left((C+o(1))\frac{\log t}{\log\log t}\right).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

(4) Carneiro and Chandee (2011) : $C = \frac{\log 2}{2} \approx 0.347$. In this case $o(1) = \frac{1}{\log \log t}$.

Assuming the Riemann hypothesis, we have

$$\left|\zeta\left(\frac{1}{2}+it\right)\right| \leq \exp\left((C+o(1))\frac{\log t}{\log\log t}\right).$$

(4) Carneiro and Chandee (2011) : C = log 2/2 ≈ 0.347. In this case o(1) = 1/log log t.
(5) Carneiro, Chirre and Milinovich (2017) : Other proof. Class 16: Extreme values and conditional bounds for $\zeta(s)$

Conditionally bounds

LIdea of the proof

Idea of the proof

The proof of these results consists of the following steps:

- Representation lemma: to express the desired object as sums over the zeros of ζ(s).
- Explicit formulas: the tools to evaluate such sums
- Harmonic analysis tools: find appropriate majorants/minorants to plug in.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Evaluation of the terms.

Class 16: Extreme values and conditional bounds for $\zeta(s)$

└─ Idea of the proof

Lemma (Representation lemma)

Assume the Riemann hypothesis. We define the function $f:\mathbb{R}^*\to\mathbb{R}$ by

$$f(x) = \log\left(\frac{4+x^2}{x^2}\right).$$

Then, for t > 0 sufficiently large we have

$$\log \left| \zeta \left(\frac{1}{2} + it \right) \right| = \log t - \frac{1}{2} \sum_{\gamma} f(t - \gamma) + O(1).$$

The sums run over the non-trivial zeros $\rho = \frac{1}{2} + i\gamma$ of $\zeta(s)$.

うせん 川田 ふぼや 小田 そうそう

Class 16: Extreme values and conditional bounds for $\zeta(s)$

Conditionally bounds

└─ Idea of the proof

It's time to call our Guinand-Weil explicit formula!